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Classical domino problem

Consider a finite set τ of Wang tiles

Question:
is there a function x : Z2 → τ such that adjacent tiles share the
same color?
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Classical domino problem

Question:
is there an algorithm which given a finite set of Wang tiles decides
whether they tile the plane or not?

Theorem (Berger 66’)
No.

The domino problem is Undecidable.
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Domino problem

Soon, humankind started to explore new worlds...

. . . . . .

Theorem (Kari 08’)
The domino problem is undecidable in the binary hyperbolic tiling.
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General setting

Let us consider the following ingredients:
A directed, labeled (infinite) graph Γ = (V ,E , L).
A finite set of colors A.
A finite list of forbidden colored labeled connected finite
graphs F .

Domino problem for Γ:
Is there an algorithm which decides, given (A,F), whether there
exists a coloring x : V → A such that no graph from F embeds?
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The original domino problem:
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Binary hyperbolic tiling:

. . . . . .
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Binary hyperbolic tiling:
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General setting: Cayley graphs

A particularly interesting case is when Γ = (V ,E , L) is the Cayley
graph of a finitely generated group G given by the set of
generators S.

V = G .
E = {(g , gs) | g ∈ G , s ∈ S}.
L(g , gs) = s.

Remark: the domino problem does not depend upon the set of
generators S. These problems are all computationally (many-one)
equivalent.

DP(G) is the domino problem of the group G .
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Cayley graph of free group.
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Domino problem on groups.

List of facts:
DP(Z2) is undecidable.

DP(Z) is decidable.
DP(G) is decidable whenever G is virtually free (Cayley graph
looks like the previous tree [finite tree-width]).

Domino conjecture
A finitely generated group has decidable domino problem if and
only if it is virtually free.

Verified for polycyclic groups, Baumslag-Solitar groups, Branch
groups.
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Domino problem on groups.

Domino conjecture
A finitely generated group has decidable domino problem if and
only if it is virtually free.

Why should one care about this?

Theorem (Muller & Schupp ’85)
A graph has decidable monadic second order logic (MSO) if and
only if it has finite tree-width.

Fact 1: A group is virtually free if and only if its Cayley
graphs have finite tree-width.
Fact 2: The domino problem can be expressed in MSO.

If DC holds, then the domino problem contains all the complexity of
MSO for finitely generated groups.
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Surface groups
Consider the fundamental group of a closed orientable surface.

10



Surface groups
Consider the fundamental group of a closed orientable surface.

1

10



Surface groups
Consider the fundamental group of a closed orientable surface.

1

Z2

10



Surface groups
Consider the fundamental group of a closed orientable surface.

1

Z2

〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉
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Surface groups

1

1https://math.stackexchange.com/questions/1834108/
cayley-graph-of-the-fundamental-group-of-the-2-torus
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Surface groups

Theorem (Aubrun, B. Moutot )
The domino problem of the fundamental group of any closed
orientable surface of positive genus is undecidable.

Remark: we just need to show that the domino problem of

π1
( )

∼= 〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉

is undecidable.
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How to prove it

Proof idea: use hyperbolicity.

Step 1: show undecidability of DP for a class of graphs which
embed nicely in the hyperbolic plane.

Step 2: show that one of these graphs Γ can be "locally
encoded" by a subshift of finite type (set of tilings given by
forbidden patterns) of π1

( )
.

Step 3: reduce DP
(
π1
( ))

to DP(Γ).
Step 4: profit.

Skip Proof
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How to prove it: nice class

A (non-deterministic) substitution is a pair (A,R) where A is a
finite alphabet and R is a set of pairs (a 7→ w) ∈ A×A∗.

Example
A = {0},R = {(0 7→ 00)}.
A = {0, 1},R = {(1 7→ 0), (0 7→ 01)}.

An infinite word u = . . . u−1u0u1u2 · · · ∈ AZ produces a word
v = . . . v−1v0v1v2 · · · ∈ AZ if v can be obtained from u by
applying a rule of R on each symbol.

That is, there exists a function ∆ : Z→ Z such that :

(ui 7→ v∆(i) . . . v∆(i+1)−1) ∈ R for every i ∈ Z
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How to prove it: nice class

Let {ui}i∈Z be a sequence of bi-infinite words such that ui
produces ui+1 (with ∆i). We can associate an orbit graph.

ui

ui+1

0 1 2 0 1 0 0 1 2

Join all consecutive symbols of ui by edges from left to right.
Join each symbol of ui with the corresponding sequence of
symbols it produces in ui+1 assigning labels from left to right.
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Example 1: trivial substitution gives Z2.
A = {0} R = {(0 7→ 0)}.
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Example 2: Doubling substitution gives bin hyp tiling.

A = {0} R = {(0 7→ 00)}.
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Undecidability: reduce to example 2.

Idea: take an orbit graph Γ.

0 1 0 1 2

0 1 2 0 1 0 0 1 2
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Undecidability: reduce to example 2.

In each vertex code a finite subgraph of the binary orbit graph +
information on how to locally paste them together.

•
0 1

•
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2

Impose local consistency rules.
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Undecidability: reduce to example 2.

Suppose DP(Γ) is decidable.
Use the previous tiling to encode the binary orbit graph.
Let (A,F) be an alphabet and a set of forbidden patterns for
the binary orbit graph. Use the encoding to simulate tilings in
Γ.
As DP(Γ) is decidable, we may use the associated algorithm to
decide whether (A,F) admits a tiling of the binary orbit
graph.
contradiction X.

Warning
We must check that the language of coded subgraphs is finite.
We must check that the set of encodings is non-empty.
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Hyperbolic geometry to the rescue!

A substitution (A,R) has an expanding eigenvalue if there exists
λ > 1 and v : A → R+ such that for every(a 7→ u1 . . . uk) ∈ R:

λv(a) = (v(u1) + v(u2) + · · ·+ v(uk))

Example
A = {0} R = {(0 7→ 00)} admits the expanding eigenvalue λ = 2.

2λv(0) = (v(0) + v(0))

19



Hyperbolic geometry to the rescue!

To every orbit of a substitution with an expanding eigenvalue we
can associate canonically a tiling of H2.

•

• •

•• • •

(a,w1 . . .wk)-tile

(x , y)

(x , y − log(λ))

v(a) · ey

log(λ)

1
λv(w1) · ey 1

λv(w2) · ey

. . .

. . .

. . . 1
λv(wk) · ey
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Hyperbolic geometry to the rescue!

To every orbit of a substitution with an expanding eigenvalue we
can associate canonically a tiling of H2.

0 1 2 3
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Hyperbolic geometry to the rescue!
We superpose a tiling of (A,R) and a binary tiling.

0 1 2 3 4 5 6 7

(a,w1w2w3)

1 2 6

Finitely many (coded) ways to intersect =⇒ finite alphabet
There is an encoding =⇒ non-emptiness

Remark: Tiling superpositions were introduced by D.B. Cohen and C.
Goodman-Strauss to produce aperiodic tilings of surface groups.
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Hyperbolic geometry to the rescue!

Theorem (Aubrun, B., Moutot)
For every orbit graph Γ of a substitution with an expanding
eigenvalue DP(Γ) is undecidable.

Question

How does this relate to the fundamental group of ?

There is a "hidden" substitution in that group, namely A = {a, b}
and{(

a 7→ ab5ab5ab5ab5ab4
)
,
(
b 7→ ab5ab5ab5ab5ab5ab4

)
.
}

with λ = 17 + 12
√
2 and v(b)/v(a) = 1+

√
2

2 .

Skip Proof
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A way to look at this Cayley graph is as a translation surface
obtained by pasting together octagons.

a

b

a−1

b−1 c

d

c−1

d−1
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Surface group: vertex with ancestor
If a vertex is connected by a generator with the previous ring then
the sequences of vertices in the next level it sees follows the
following pattern:

a b b b b b a b b b b b a b b b b b a b b b b b a b b b b

a

25



Surface group: vertex with ancestor

If a vertex is not connected by a generator with the previous ring
then the sequences of vertices in the next level it sees follows the
following pattern:

a b b b b b a b b b b b a b b b b b a b b b b b a b b b b b a b b b b

b
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Surface group: proof of undecidability

Encode substitution structure using a finite alphabet and local
rules. X

Assume the domino problem of the surface group is decidable.
Use the previous construction to reduce the domino problem
in the orbit graph of the substitution to the one of the surface
group.
Contradiction.

Theorem (Aubrun, B., Moutot)
The domino problem is undecidable on the fundamental group of
the closed orientable surface of genus 2.

26



Surface group: proof of undecidability

Encode substitution structure using a finite alphabet and local
rules. X
Assume the domino problem of the surface group is decidable.

Use the previous construction to reduce the domino problem
in the orbit graph of the substitution to the one of the surface
group.
Contradiction.

Theorem (Aubrun, B., Moutot)
The domino problem is undecidable on the fundamental group of
the closed orientable surface of genus 2.

26



Surface group: proof of undecidability

Encode substitution structure using a finite alphabet and local
rules. X
Assume the domino problem of the surface group is decidable.
Use the previous construction to reduce the domino problem
in the orbit graph of the substitution to the one of the surface
group.

Contradiction.

Theorem (Aubrun, B., Moutot)
The domino problem is undecidable on the fundamental group of
the closed orientable surface of genus 2.

26



Surface group: proof of undecidability

Encode substitution structure using a finite alphabet and local
rules. X
Assume the domino problem of the surface group is decidable.
Use the previous construction to reduce the domino problem
in the orbit graph of the substitution to the one of the surface
group.
Contradiction.

Theorem (Aubrun, B., Moutot)
The domino problem is undecidable on the fundamental group of
the closed orientable surface of genus 2.
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Word-hyperbolic groups

Word-hyperbolic group
A finitely generated group is word-hyperbolic if the geodesic
triangles of one of its Cayley graphs are δ-slim for some δ > 0.

2
2From https://en.wikipedia.org/wiki/Hyperbolic_group
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Word-hyperbolic groups

Facts about word-hyperbolic groups:
Virtually free groups X.
Surface groups (genus g ≥ 2) X.
Nice computability properties: Finitely presented, decidable
word problem, Dehn’s algorithm works, language of shortlex
geodesics is regular, etc.
A random group is almost surely word-hyperbolic.

Bottom line: testing ground for

Domino conjecture
A finitely generated group has decidable domino problem if and
only if it is virtually free.
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word-hyperbolic groups

Gromov’s conjecture

The fundamental group of embeds into any one-ended
word-hyperbolic group.
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word-hyperbolic groups

Gromov’s conjecture

The fundamental group of embeds into any one-ended
word-hyperbolic group.

Facts:
If a group H embeds into a group G , then the domino problem
of G is computationally harder than the domino problem of H.
If a word-hyperbolic group is not virtually free, it contains an
embedded one-ended word-hyperbolic group.
If GC holds, then every word-hyperbolic group which is not
virtually free contains an embedded copy of the fundamental
group of

29



word-hyperbolic groups

Gromov’s conjecture

The fundamental group of embeds into any one-ended
word-hyperbolic group.

Theorem
If GC holds, then the domino problem conjecture holds for every
word-hyperbolic group.

Fun fact: find a (non virt free) word-hyperbolic group with
decidable domino problem and you shall attain fame and glory
disprove Gromov’s conjecture!
Fun fact: Same can be shown with weaker versions of GC.
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Thank you for your attention!

The domino problem is undecidable on surface groups.
https://arxiv.org/abs/1811.08420
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