Computations for the spectrum of the Euclid transfer operator

Beginning around 1994,
Underlying a series of papers
Stating a set of conjectures which seems to be recently proven in 2013 by Alkauskas

The transfer operator which underlies the Euclid algorithm is

$$
\mathbf{G}_{s}[f](x):=\sum_{m=1}^{\infty} \frac{1}{(m+x)^{2 s}} f\left(\frac{1}{m+x}\right)
$$

Philippe was interested to compute the spectrum for $s=1$ [Euclid algorithm] or $s=2$ [Gauss reduction algorithm]

Truncation matrices (I)

On the polynomial $(x-a)^{j}$

$$
h_{j}(x):=\mathbf{G}_{s}\left[(x-a)^{j}\right](x)=\sum_{m=1}^{\infty} \frac{1}{(m+x)^{2 s}}\left(\frac{1}{m+x}-a\right)^{j} .
$$

With the binomial theorem, and using the Hurwitz zeta function $\zeta(s, w)$

$$
h_{j}(x)=\sum_{\ell=0}^{j}\binom{j}{\ell}(-a)^{j-\ell} \zeta(2 s+\ell, x+1), \quad \zeta(s, w)=\sum_{m=0}^{\infty} \frac{1}{(m+w)^{s}}
$$

With the expansion of $s \mapsto \zeta(s, 1+a)$ at any point a :

$$
\zeta(s, x+1)=\sum_{i=0}^{\infty}(-1)^{i}\binom{s+i-1}{i} \zeta(s+i, 1+a)(x-a)^{i} .
$$

Truncation matrices (II)
On series expansions at $x=a$, the operator \mathbf{G}_{s} is an infinite matrix

$$
\begin{gathered}
\left(M_{i, j}\right):=\text { the coefficient of }(x-a)^{i} \text { in } \mathbf{G}_{s}\left[(x-a)^{j}\right], \\
M_{i, j}=(-1)^{i} \sum_{\ell=0}^{j}\binom{j}{\ell}\binom{i+\ell+2 s-1}{i}(-a)^{j-\ell} \zeta(2 s+\ell+i, a+1) .
\end{gathered}
$$

We choose $a=1 / 2$ for faster convergence. Then,

$$
\zeta\left(s, \frac{3}{2}\right)=2^{s}\left[\frac{1}{3^{s}}+\frac{1}{5^{s}}+\ldots\right]=2^{s}\left[-1+\zeta(s)\left(1+2^{-s}\right)\right] .
$$

The finite matrix $\mathbf{T}_{s}^{[m]}$ is the submatrix with indices $0 \leq i, j<m$. $\mathbf{T}_{s}^{[m]}$ is the truncated operator of \mathbf{G}_{s} on polynomials with degree $<m$.

Matrices $\mathbf{T}_{s}^{[m]}$ provide a sequence of approximations to operator \mathbf{G}_{s} \Longrightarrow their spectrum provide good approximations to the spectrum of \mathbf{G}_{s}.

Computing the spectrum of matrices $\mathbf{T}_{s}^{[m]}$ (I)

In 1994, using Maple, Philippe computed the eigenvalues of the $\mathbf{T}_{2}^{[m]}$ for many values of $m \leq 100$ and numerical accuracy up to 150 digits.

He obtained a proven numerical value dominant eigenvalue $\lambda(2)$ of \mathbf{G}_{2}

$$
\lambda(2)=0.199458818343767 \pm 10^{-15}
$$

As m increases, the set of eigenvalues of $\mathbf{T}_{2}^{[m]}$ stabilize....
This stable set yields precise information on the complete spectrum of \mathbf{G}_{2}.
This provides convincing (but not proven) values for the first eigenvalues:

$$
\begin{aligned}
& \lambda^{(1)}(2) \doteq+0.1994588183437672601918456 \\
& \lambda^{(2)}(2) \doteq-0.0757395140843606089278089 \\
& \lambda^{(3)}(2) \doteq+0.0285664037698185278300174 \\
& \lambda^{(4)}(2) \doteq-0.0107774165766126982931408 \\
& \lambda^{(5)}(2)
\end{aligned} \doteq+0.0040709406934264214486407 .
$$

The 37 eigenvalues found are all simple and they alternate in sign.
The ratios $r_{j}=\lambda^{(j}(2) / \lambda^{(j+1)}(2)$ show a remarkable stability,

$$
r_{1}=-2.633, r_{2}=-2.651, r_{3}=-2.650, r_{4}=-2.647, r_{5}=-2.644, \ldots
$$

The spectrum of \mathcal{G} is very nearly a geometric progression of ratio -2.64 .

Introduction of a simplified model.

For large s, the operator \mathbf{G}_{s} is dominated by its first term \mathbf{C}_{s},

$$
\mathbf{C}_{s}[f](x)=\frac{1}{(1+x)^{2 s}} f\left(\frac{1}{1+x}\right)
$$

The spectrum of \mathbf{C}_{s} provides an approximation for the spectrum of \mathbf{G}_{s}. The spectrum of \mathbf{C}_{s} is an exact geometric progression, which involves the fixed point $1 / \phi$ of the map $x \mapsto 1 /(1+x)$.

$$
\operatorname{Sp}_{\mathrm{C}}^{s}=\left\{\lambda^{(j)}(s)=\frac{1}{\phi^{2 s}} \cdot \frac{(-1)^{j-1}}{\phi^{2 j}}, \quad j \geq 0\right\}, \quad \phi=\frac{1+\sqrt{5}}{2}
$$

The ratio between successive eigenvalues is $-\phi^{2}=-2.61803$.

In theory of numbers, interest for the Gauss-Kusmin operator $\mathbf{G}:=\mathbf{G}_{1}$

$$
\mathbf{G}[f](x):=\sum_{m=1}^{\infty} \frac{1}{(m+x)^{2}} f\left(\frac{1}{m+x}\right)
$$

Conjecture. The following statements about $\mathrm{Sp} \mathbf{G}:=\left\{\lambda^{(n)}\right\}$ are true :
(i) The eigenvalues are simple, $\left|\lambda^{(n)}\right|$ strictly decreases.
(ii) They have alternating sign: $(-1)^{n} \lambda^{(n)}>0$
(iii) The ratios have a limit [statement due to our works with Philippe]

$$
\lim _{n \rightarrow \infty} \frac{\lambda^{(n)}}{\lambda^{(n+1)}}=-\phi^{2}, \quad \text { and even } \quad \lambda^{(n)} \sim(-1)^{n+1} \phi^{-2 n}
$$

Alkauskas announced in 2013 a proof of the conjecture. He contacted me and asked if we had performed other experiments. With Julien, we found other computations that were made by Philippe

\# Compute Eigenvalues of G_4 by truncation method at $z=a$ \#

\#

 \#\#\#\#\#\#\#\# ACCURACY
\#,

\# Digits $=10$ is adequate till $\mathrm{m}=6$
\# Digits=15 is adequate till $\mathrm{m}=10$ | $=>$ use Digits:=trunc(1.6*m).
\# Digits=20 is adequate till $\mathrm{m}=14$
\# Digits=40 is adequate till truncation order of 30 ($s=4$)
\# The accuracy is about $3.5^{\wedge}(-\mathrm{m})$ for the dominant eigenvalue
\# that is to say:
\# $[\mathrm{s}=4] \quad 0.5 * 10^{\wedge}(-10)$ for $\mathrm{m}=16$ and $0.2 * 10^{\wedge}(-17)$ for $\mathrm{m}=30$.
[$s=2] 1.0 * 10^{\wedge}(-9)$ for $m=16$.
\# This suggests that the eigenvalue for $m=64$ must be
\# correct with an error less than 10^(-34)!
\# Expect to fish about $3 \mathrm{~m} / 5$ correct eigenvalues
\# and about $1 / 3$ spurious ones. (37 out of 64 for $\mathrm{m}=64$)
\#
\# From file eigenG4
\# This file contains the first 37 eigenvalues of G_4
\# probably correct to $10^{\wedge}(-16)$ each. This checks up
\# to $0.5 * 10^{\wedge}(-17)$ with values computed for the trace.
\# This sequence was "digested" from an eigenvalue computation
\# involving:

$m=64$ (truncation order)

Digits:=100 (initial computation)
$z 0=a=1 / 2$ (gives better convergence, it seems)
4 hours of CPU time on $31 / 12 / 94$

- cf procedure clean2 for cleaning the raw file "eigen64"

T64 $:=[.199458818343767260191845685980,-$.
$757395140843606089278089485787 \mathrm{e}-1$, . $285664037698185278300174698951 \mathrm{e}-1,-$. $107774165766126982931408206228 \mathrm{e}-1$, . $407094069342642144864070572698 \mathrm{e}-2,-$. $153952180018239528860782668416 \mathrm{e}-2$, $582805733584502053498627548492 \mathrm{e}-3,-$ $220823348268191236243289963002 \mathrm{e}-3$, $837325358853106433640466159955 \mathrm{e}-4,-$. $317705979374238814577743179357 \mathrm{e}-4$, $120614646075357503402006049755 \mathrm{e}-4$, -. $458127475393509489219335659010 \mathrm{e}-5$, $174083531597627046233302946233 \mathrm{e}-5,-$ $661746767463171651407014547539 \mathrm{e}-6$, $251634386362587644553320401109 \mathrm{e}-6$, - . $957141719446640135591144960440 \mathrm{e}-7$,
$364164004463695812982581969824 \mathrm{e}-7,-$ $138586405397045330950656708015 \mathrm{e}-7$,
$527517673571311193500250769867 e-8$, $200834084247128475405019242296 \mathrm{e}-8$, $764740714110974322822834769879 \mathrm{e}-9$, $291246485284948234718675736930 \mathrm{e}-9$, $110935606406100723633065236933 \mathrm{e}-9$, -. $422610025809908283847794233095 \mathrm{e}-10$, $161013598339084136090662374610 \mathrm{e}-10,-$. $613529002820587871724682219387 \mathrm{e}-11$, $233804914499454834510321712616 \mathrm{e}-11,-$. $891076555583903764520535962109 \mathrm{e}-12$, $339637447359374500377396316216 \mathrm{e}-12,-$. $129466840179437412125760751310 \mathrm{e}-12$, . $493535166831712593143620280927 \mathrm{e}-13,-$. $188141809398799938649294595742 \mathrm{e}-13$, $717382564780043982306975292912 \mathrm{e}-14,-$. $273327928397144529492414050601 \mathrm{e}-14$, . $103931726919482977829126764200 \mathrm{e}-14,-$. $400572318378184997265264257954 \mathrm{e}-15$, $153441062476148303982245982378 \mathrm{e}-15$]:
\# Digits:=150; sp(100,4); lprint(\%); quit
\# bytes used=6976975640, alloc=10876984, time=8490.55
\# eigenvalues computed with 150 Digits and truncation order=100 \# bytes used=6976975640, alloc=10876984, time=8490.55 <tricastin> T100_raw: =
array(1 .. 100,
[$(63)=.67518419815417125549875723626273673592884995219253959636 \backslash$
61537347556481878102981125181336753687846419875102315860692151868546 3786927304\}
$3088544604386399 \mathrm{e}-19$,
$(64)=-.34508851084378129966880359124217324494711712928162 \backslash$
44670110714915244385989771623442446049595110616520471408667496093002 $3156483825 \backslash$
8670651012877155378391e-19,
$(1)=.1994588183437672601918456859798790806928741875 \backslash$
71410706248352264622383565959244918454909050208401266916287473371739 2767872462\}
94457033286979086196535492 ,
$(2)=-.757395140843606089278089485787484596279339492 \backslash$
27716265207112638027280956877643103437970934736001288193680563406839 9946902396\}
$161772291896458754434346487 \mathrm{e}-1$,
$(3)=.285664037698185278300174698950783625540277 \backslash$
63431847669491708291664836135881205140457589829258568220723436204367 9404289887
$530910555129429212704450507327 \mathrm{e}-1$,
(4) $=-.19660706235235615498179523342085000487 \backslash$

28037471995154575607474492770956924717763872258314846798239331324426 $1111616202 \backslash$
$2299124680196789892979958911722901 \mathrm{e}-1$,
(5) $=-.1077741657661269829314082062287234 \backslash$

13828919801433778601394119305901363563284939445441681306160168878804 6910970801 \}
$06897217133900847924350817383817162508 \mathrm{e}-1$,
$(6)=.4070940693426421448640705727036$
01620277178251034500015335042142093385942239419098504893681713437823 6160415516\}
$45293497897036597311406128444239346788029 \mathrm{e}-2$,
(7) $=-.153952180018239528860782668$

46150751694654779374294607913485953933329894127173932247579406018059 $1354206885 \backslash$
$237117108121473541242365958469155294316700916 \mathrm{e}-2$,
(8) $=.582805733584502053498627$
54823531043127057823229532675275963791159701065202209882769525213897
3221856613\}
$226937126054161482786593155705216472303787581313 \mathrm{e}-3$,
(9) $=-.22082334826819123624 \backslash$
32899742479129033557306272489640307926489195354549364601375445621194 7830902876
$5143645244031271894781256846140837241215063482925991 \mathrm{e}-3$,
(10) $=.8373253588531064 \backslash$

33640473360511432240778450385799600787693035103073308704204573462159 9603304361 \}
$20469653886268131660599801103496640599304157739844435551 \mathrm{e}-4$, (11) $=.491578617826 \backslash$

96306496645877281554851074306550590070270851574375608881771825884259 3840404764
$049350959339064138946048146638395742749184229922811057964539 \mathrm{e}-4$,
$(12)=-.3177059 \backslash$
79374238814577745362311424365793000187753028302962687834483901959751 0937004937
$32632510134084374808329154669303807723248935004231531266663052202 \mathrm{e}-4$
(13) $=.120 \backslash$

61464607535750340202030155178900516843423841477081705457834211292662 3562962249 \}
40608605147724890989090197666445846879782107226518658181261545825491
$3 \mathrm{e}-4$,
(14) $=$
-.
45812747539350948921936514780109324887094115384852118325171273811742 63440613\}
83287495048211170368350230286919669281477979008421303459371096101119
970571e-5,
(
15) $=$.

17408353159762704623560836675934695124984143623680469923787938730777 32673\}
$148889431108931023371037505132423321564831243816965775697109132 \backslash$
$90601145119281 \mathrm{e}-5$,
(16)=-.

66174676746317165248685965092451358309209099693401285440192221200954 2\}
81511752426495366448105888107661602346912874867780184436714714681389 $2750432245 \backslash$
041e-6,

