
Computations for the spectrum of the Euclid transfer operator

Beginning around 1994,

Underlying a series of papers

Stating a set of conjectures

which seems to be recently proven in 2013 by Alkauskas

The transfer operator which underlies the Euclid algorithm is

Gs[f ](x) :=

∞∑
m=1

1

(m+ x)2s
f

(
1

m+ x

)

Philippe was interested to compute the spectrum

for s = 1 [Euclid algorithm] or s = 2 [Gauss reduction algorithm]



Truncation matrices (I)

On the polynomial (x− a)j

hj(x) := Gs[(x− a)j ](x) =
∞∑

m=1

1

(m+ x)2s

(
1

m+ x
− a
)j

.

With the binomial theorem, and using the Hurwitz zeta function ζ(s, w)

hj(x) =

j∑
`=0

(
j

`

)
(−a)j−` ζ(2s+ `, x+ 1), ζ(s, w) =

∞∑
m=0

1

(m+ w)s

With the expansion of s 7→ ζ(s, 1 + a) at any point a:

ζ(s, x+ 1) =

∞∑
i=0

(−1)i
(
s+ i− 1

i

)
ζ(s+ i, 1 + a) (x− a)i.



Truncation matrices (II)

On series expansions at x = a, the operator Gs is an infinite matrix

(Mi,j) := the coefficient of (x− a)i in Gs[(x− a)j ],

Mi,j = (−1)i
j∑

`=0

(
j

`

)(
i+ `+ 2s− 1

i

)
(−a)j−` ζ(2s+ `+ i, a+ 1).

We choose a = 1/2 for faster convergence. Then,

ζ

(
s,

3

2

)
= 2s

[
1

3s
+

1

5s
+ . . .

]
= 2s

[
−1 + ζ(s)(1 + 2−s)

]
.

The finite matrix T
[m]
s is the submatrix with indices 0 ≤ i, j < m.

T
[m]
s is the truncated operator of Gs on polynomials with degree < m.

Matrices T
[m]
s provide a sequence of approximations to operator Gs

=⇒ their spectrum provide good approximations to the spectrum of Gs.



Computing the spectrum of matrices T
[m]
s (I)

In 1994, using Maple, Philippe computed the eigenvalues of the T
[m]
2 for

many values of m ≤ 100 and numerical accuracy up to 150 digits.

He obtained a proven numerical value dominant eigenvalue λ(2) of G2

λ(2) = 0.19945 88183 43767± 10−15

As m increases, the set of eigenvalues of T
[m]
2 stabilize....

This stable set yields precise information on the complete spectrum of G2.

This provides convincing (but not proven) values for the first eigenvalues:

λ(1)(2)
.
= +0.19945 88183 43767 26019 18456

λ(2)(2)
.
= −0.07573 95140 84360 60892 78089

λ(3)(2)
.
= +0.02856 64037 69818 52783 00174

λ(4)(2)
.
= −0.01077 74165 76612 69829 31408

λ(5)(2)
.
= +0.00407 09406 93426 42144 86407.



Computing the spectrum of matrices T
[m]
s (II)

The 37 eigenvalues found are all simple and they alternate in sign.

The ratios rj = λ(j(2)/λ(j+1)(2) show a remarkable stability,

r1 = −2.633, r2 = −2.651, r3 = −2.650, r4 = −2.647, r5 = −2.644, . . .

The spectrum of G is very nearly a geometric progression of ratio −2.64.

Introduction of a simplified model.

For large s, the operator Gs is dominated by its first term Cs,

Cs[f ](x) =
1

(1 + x)2s
f(

1

1 + x
),

The spectrum of Cs provides an approximation for the spectrum of Gs.

The spectrum of Cs is an exact geometric progression,

which involves the fixed point 1/φ of the map x 7→ 1/(1 + x).

SpCs =

{
λ(j)(s) =

1

φ2s
· (−1)

j−1

φ2j
, j ≥ 0

}
, φ =

1 +
√
5

2

The ratio between successive eigenvalues is −φ2 = −2.61803.



Conjectures on the spectrum of Gs.

In theory of numbers, interest for the Gauss-Kusmin operator G := G1

G[f ](x) :=

∞∑
m=1

1

(m+ x)2
f

(
1

m+ x

)

Conjecture. The following statements about SpG := {λ(n)} are true :

(i) The eigenvalues are simple, |λ(n)| strictly decreases.

(ii) They have alternating sign: (−1)nλ(n) > 0

(iii) The ratios have a limit .... [ statement due to our works with Philippe]

lim
n→∞

λ(n)

λ(n+1)
= −φ2, and even λ(n) ∼ (−1)n+1φ−2n

.

Alkauskas announced in 2013 a proof of the conjecture.

He contacted me and asked if we had performed other experiments.

With Julien, we found other computations that were made by Philippe

(for m = 100)






