Super-normality

Verónica Becher^{1*} Olivier Carton^{2*} Lucas Puterman^{1*}

¹Universidad de Buenos Aires

 2 IRIF Université Paris Diderot & CNRS

*Supported by IRP SINFIN http://www.lia-sinfin.org/

2019 – ANR Codys

Outline

Normality

Super-normality

Interpretation

Results

Open questions

| | | |

Expansion of real numbers (in some base b)

Fix an integer base $b \ge 2$. The alphabet is $A = \{0, 1, \dots, b-1\}$.

• if
$$b = 2$$
, $A = \mathbb{B} = \{0, 1\}$,

• if
$$b = 10, A = \{0, 1, 2, \dots, 9\}.$$

Each real number $\xi \in [0, 1)$ has an expansion in base *b*: $x = a_1 a_2 a_3 \cdots$ where $a_i \in A$ and

$$\xi = \sum_{k \ge 1} \frac{a_k}{b^k}.$$

In the rest of this talk: real number $\xi \in [0, 1) \iff$ sequence $x \in A^{\mathbb{N}}$ $1/3 \iff 010101 \cdots = (01)^{\mathbb{N}}$ $\pi/4 \iff 1100100100001111 \cdots$

Normal sequences

A sequence is normal if all finite words (aka blocks) of the same length occur in it with the same (limit) frequency.

If $x \in A^{\mathbb{N}}$ and $w \in A^*$, the frequency of w in x is defined as

$$\operatorname{freq}(x,w) = \lim_{N \to \infty} \frac{|x[1:N]|_w}{N}$$

where x[1:N] is the prefix of length N of x and $|x[1:N]|_w$ is the number of occurrences of w in it.

A sequence $x \in A^{\mathbb{N}}$ is normal if for each finite word $w \in A^*$:

$$freq(x,w) = \frac{1}{(\#A)^{|w|}}$$

where

#A is the cardinality of the alphabet A
|w| is the length of the finite word w.

Normal sequences (continued)

Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0, 1) is a normal sequence over the alphabet $\{0, 1, ..., 9\}$.

Nevertheless, not so many examples have been proved normal. Some of them are:

• Champernowne 1933 (natural numbers):

 $12345678910111213141516171819202122232425\cdots$

• Besicovitch 1935 (squares):

 $149162536496481100121144169196225256289324\cdots$

► Copeland and Erdős 1946 (primes):

 $235711131719232931374143475359616771737983\cdots$

Super-normality

- Introduced in 2010 by Zeev Rudnick
- ▶ Talk in 2010 by Benjamin Weiss (to be found on YouTube)

Let $\lambda > 0$ be a positive real number. A binary (that is over the alphabet $\mathbb{B} = \{0, 1\}$) sequence $x \in \mathbb{B}^{\mathbb{N}}$ is λ -super-normal if for each fixed integer $k \ge 0$

$$\lim_{n \to \infty} \frac{\#\{w \in \mathbb{B}^n : |x[1 : \lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n} = e^{-\lambda} \frac{\lambda^k}{k!}.$$

A binary sequence x is super-normal if it is λ -super-normal for each real number $\lambda > 0$.

Binomial law

Suppose that the probability of an event X is $0 \le p \le 1$. The probability of having $k \ge 0$ occurrences of X in N independent draws is

$$\binom{N}{k} p^k (1-p)^{N-k}$$

Of course

$$\sum_{k=0}^{N} \binom{N}{k} p^k (1-p)^{N-k} = 1$$

and k and p being fixed

$$\lim_{N \to \infty} \binom{N}{k} p^k (1-p)^{N-k} = 0$$

| | | |

Convergence to the Poisson law

Let $\lambda > 0$ fixed and $N \ge 1$ and $0 \le p \le 1$ such that $Np = \lambda$.

$$\lim_{\substack{N \to \infty \\ Np = \lambda}} \binom{N}{k} p^k (1-p)^{N-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Of course

$$\sum_{k \ge 0} e^{-\lambda} \frac{\lambda^k}{k!} = 1$$

This is the Poisson law.

Convergence to the Poisson law (continued)

$$\lim_{\substack{N \to \infty \\ Np = \lambda}} \binom{N}{k} p^k (1-p)^{N-k}$$

$$= \lim_{N \to \infty} \binom{N}{k} \left(\frac{\lambda}{N}\right)^k \left(1 - \frac{\lambda}{N}\right)^{N-k}$$

$$= \lim_{N \to \infty} \frac{N(N-1)\cdots(N-k+1)}{N^k} \left(1 - \frac{\lambda}{N}\right)^N \frac{\lambda^k}{k!}$$

$$= e^{-\lambda} \frac{\lambda^k}{k!}$$

| | | |

Suppose that symbols 0 and 1 in \mathbb{B} have probability 1/2. The probability of a word $w \in \mathbb{B}^n$ of length n is $p = 2^{-n}$.

The prefix of length $N = \lfloor \lambda 2^n \rfloor$ of x is seen as $\lfloor \lambda 2^n \rfloor$ independent draws of words of length n. For each $k \ge 0$,

$$\lim_{n \to \infty} \frac{\#\{w \in A^n : |x[1 : \lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n} = e^{-\lambda} \frac{\lambda^k}{k!}$$

What is known

Theorem (Weiss) If x is λ -super-normal for some $\lambda > 0$, then x is normal.

Key ingredient:

Lemma (Hot spot/Pyatetskiĭ–Shapiro)

If there is a constant K such for each word $w \in A^*$,

$$\limsup_{N \to \infty} \frac{|x[1:N]|_w}{N} \leqslant \frac{K}{(\#A)^{|w|}}$$

then x is normal.

Proposition (Weiss)

The Champernowne sequence is not 1-super-normal.

What is not known (yet)

Theorem (Weiss) The set of super-normal sequences has measure 1.

▶ An explicit example of a super-normal sequence ?

▶ An explicit example of a super-normal sequence ?

▶ An explicit example of a super-normal sequence ?

Thank you

ŀ