# Reachability for multidimensional continued fractions and minimality of interval exchange transformations

### Vincent Delecroix

CNRS / Université de Bordeaux

CODYS meeting Arles-Bordeaux-Caen-Paris, december 2020

# Reachability / orbit problem

Let  $\mathcal{I}$  be a set of triples (f, X, Y) where  $f : D \to D$  is a function  $X \subset D$ and  $Y \subset D$ .

REACH( $\mathcal{I}$ ): input: a triple (f, X, Y) in  $\mathcal{I}$ output: whether there exists  $x \in X, y \in Y, n \ge 0$ such that  $f^n(x) = y$ 

# Reachability / orbit problem

Let  $\mathcal{I}$  be a set of triples (f, X, Y) where  $f : D \to D$  is a function  $X \subset D$ and  $Y \subset D$ .

REACH( $\mathcal{I}$ ): **input:** a triple (f, X, Y) in  $\mathcal{I}$ **output:** whether there exists  $x \in X, y \in Y, n \ge 0$ such that  $f^n(x) = y$ 

Our functions  $f : D \to D$  will be piecewise affine maps on  $K^d$  where  $K \subset \mathbb{R}$  and X, Y will be polyhedron.

 $d \ge 1$ 

 $\Lambda \subset \mathbb{R}$  stable under addition

 $f:[0,1]^d \to [0,1]^d$  bijective piecewise translations with discontinuities contained in hyperplanes  $\{x_i = \alpha\}$  with  $i \in \{1, \ldots, d\}$  and  $\alpha \in \Lambda$  and translations contained in  $\Lambda^d$ .

interval exchange transformations with permutation  $\pi = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}$ 



interval exchange transformations with permutation  $\pi = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}$ 



### Theorem (Keane condition)

$$\begin{aligned} X &= \{\lambda_D, \lambda_D + \lambda_C, \lambda_D + \lambda_C + \lambda_B\} \\ Y &= \{\lambda_A, \lambda_A + \lambda_B, \lambda_A + \lambda_B + \lambda_C\} \\ \text{If there is no } n &\geq 0, \ x \in X \text{ and } y \in Y \text{ such that } T^n_{\pi,\lambda}(x) = y \text{ then all infinite orbits of } T_{\pi,\lambda} \text{ are dense.} \end{aligned}$$

interval exchange transformations with permutation  $\pi = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}$ 



### Theorem (Keane condition)

$$\begin{aligned} X &= \{\lambda_D, \lambda_D + \lambda_C, \lambda_D + \lambda_C + \lambda_B\} \\ Y &= \{\lambda_A, \lambda_A + \lambda_B, \lambda_A + \lambda_B + \lambda_C\} \\ \text{If there is no } n &\geq 0, \ x \in X \text{ and } y \in Y \text{ such that } T^n_{\pi,\lambda}(x) = y \text{ then all infinite orbits of } T_{\pi,\lambda} \text{ are dense.} \end{aligned}$$

Remark:

- $\lambda \in \mathbb{Q}^4 \Rightarrow \mathcal{T}_{\pi,\lambda}$  completely periodic
- $\lambda$  totally irrational  $\Rightarrow$   $T_{\pi,\lambda}$  satisfies Keane condition

P. Hooper rectangle exchange system (d = 2)



# Example 2: simplicial systems

Piecewise affine functions with Markovian topological dynamics.

# Why do we care about reachability?

- Oynamical systems: periodic orbits, minimality of interval exchange transformations, GL(2, ℝ)-orbit closures of translation surfaces,
- Provide the second s
- Control theory

# Decidability

# For any $d \ge 1$ , REACH(Mat<sub> $d \times d$ </sub>(K)) is decidable (Kannan-Lipton 1980 for $K = \mathbb{Q}$ ).

### Undecidability result

We define a restricted class  $\mathcal{F}$  of 2-dimensional rational piecewise affine functions on  $D = ([0,1) \cap \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix})^2$  with discontinuities contained in hyperplanes  $x = p/2^n$  or  $y = p/2^n$ Piecewise  $(x, y) \mapsto (ax + by + c, dx + ey + f)$  with  $a, b, d, e \in \{1, 2, \frac{1}{2}\}$  and  $c, f \in \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ .

### Undecidability result

We define a restricted class  $\mathcal{F}$  of 2-dimensional rational piecewise affine functions on  $D = ([0,1) \cap \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix})^2$  with discontinuities contained in hyperplanes  $x = p/2^n$  or  $y = p/2^n$ Piecewise  $(x, y) \mapsto (ax + by + c, dx + ey + f)$  with  $a, b, d, e \in \{1, 2, \frac{1}{2}\}$  and  $c, f \in \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ .

### Theorem (folklore?)

The problem  $REACH(\{(\mathcal{F}, (1, 1), (0, 0))\}_{f \in \mathcal{F}}))$  is undecidable.

# Undecidability result

We define a restricted class  $\mathcal{F}$  of 2-dimensional rational piecewise affine functions on  $D = ([0,1) \cap \mathbb{Z} \begin{bmatrix} 1 \\ 2 \end{bmatrix})^2$  with discontinuities contained in hyperplanes  $x = p/2^n$  or  $y = p/2^n$ Piecewise  $(x, y) \mapsto (ax + by + c, dx + ey + f)$  with  $a, b, d, e \in \{1, 2, \frac{1}{2}\}$  and  $c, f \in \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ .

### Theorem (folklore?)

The problem  $REACH(\{(\mathcal{F}, (1, 1), (0, 0))\}_{f \in \mathcal{F}}))$  is undecidable.

### Theorem (folklore bis)

There exists an explicit function  $f \in \mathcal{F}$  such that the problem  $REACH(\{(f, x, (0, 0))\}_{x \in D})$  is undecidable.

Whether the reachability problem is decidable or undecidable is an open question for the following classes of maps

- interval exchange transformations over number fields,
- 1-dimensional piecewise rational affine maps,
- d-dimensional piecewise translations over number fields,
- simplicial systems,

• . . .

# This talk

- Partial result for reachability of interval exchange transformations.
- 2 Link with a specific reachability problem for simplicial systems.

### Periodic orbits and relations

 $(\pi, \lambda)$ : interval exchange transformation.

A periodic orbit gives rise to a non-negative relation on translations



$$\tau_A + 2\tau_D + \tau_C = 0.$$

### Periodic orbits and relations

 $(\pi, \lambda)$ : interval exchange transformation.

A periodic orbit gives rise to a non-negative relation on translations



 $\tau_A + 2\tau_D + \tau_C = 0.$ 

$$\mathsf{R}(\tau) := \{ r \in \mathbb{Z}^{\mathcal{A}} : \sum_{\alpha \in \mathcal{A}} r_{\alpha} \cdot \tau_{\alpha} = 0 \}$$

### Periodic orbits and relations

 $(\pi, \lambda)$ : interval exchange transformation.

A periodic orbit gives rise to a non-negative relation on translations



$$\tau_A + 2\tau_D + \tau_C = 0.$$

$$\mathsf{R}(\tau) := \{ r \in \mathbb{Z}^{\mathcal{A}} : \sum_{\alpha \in \mathcal{A}} r_{\alpha} \cdot \tau_{\alpha} = 0 \}$$

#### Lemma

Let  $\pi$  be a permutation and  $\lambda \in \mathbb{R}^d$ . If  $\mathbb{Z}_{\geq 0}^d \cap \mathsf{R}(\tau) = \{0\}$  then the iet  $T_{\pi,\lambda}$  has no periodic orbit.

# Rauzy induction

Idea: dynamics on the space of interval exchanges  $\mathcal{R}: (\pi, \lambda) \mapsto (\pi', \lambda')$ 

integral non-negative matrix cocycle  $A_n(\pi, \lambda)$ :  $\lambda = A_n(\pi, \lambda) \cdot \lambda^{(n)}$ .

We have  $\tau^{(n)} = A_n(\pi, \lambda)^t \tau^{(0)}$ .

### Improved lemma with induction

Replace  $C_0(\pi,\lambda) := \mathbb{Z}_{\geq 0}^d$  by the subcone  $C_n(\pi,\lambda) := A_n(\pi,\lambda)\mathbb{Z}^d$ .

### Improved lemma with induction

Replace  $C_0(\pi, \lambda) := \mathbb{Z}_{\geq 0}^d$  by the subcone  $C_n(\pi, \lambda) := A_n(\pi, \lambda) \mathbb{Z}^d$ .

#### Lemma

Let  $\pi$  be a permutation and  $\lambda \in \mathbb{R}^d$ . If the Rauzy induction is well defined up to step n and  $C_n(\pi, \lambda) \cap \mathbb{R}(\tau) = \{0\}$  then the let  $T_{\pi,\lambda}$  has no periodic orbit.

# Improved lemma with induction

Replace  $C_0(\pi, \lambda) := \mathbb{Z}_{\geq 0}^d$  by the subcone  $C_n(\pi, \lambda) := A_n(\pi, \lambda) \mathbb{Z}^d$ .

#### Lemma

Let  $\pi$  be a permutation and  $\lambda \in \mathbb{R}^d$ . If the Rauzy induction is well defined up to step n and  $C_n(\pi, \lambda) \cap \mathbb{R}(\tau) = \{0\}$  then the let  $T_{\pi,\lambda}$  has no periodic orbit.

Questions:

- under which condition Rauzy induction is well defined?
- **2** what does look like  $C_n(\pi, \lambda)$ ?

# Infinite orbits of the Rauzy induction

### Theorem (Rauzy, Veech)

Let  $\pi$  be an irreducible permutation and  $\lambda \in \mathbb{R}^A$ . Then the following conditions are equivalent

- $(\pi, \lambda)$  satisfies the Keane condition,
- Rauzy induction is defined for all times and  $\lambda^{(n)} \rightarrow 0$ ,
- for all  $n \ge 0$ , there exists m such that  $A_m(\pi^{(n)}, \lambda^{(n)}) > 0$ .

Short digression on Multidimensional continued fractions

# The shape of the cones $C_n(\pi, \lambda)$

### Theorem (Rauzy, Veech)

Let  $\pi$  be an irreducible permutation and  $\lambda \in \mathbb{R}^A$ . Then

- if  $(\pi, \lambda)$  does not satisfy Keane condition, then there exists n such that the rightmost intervals of  $(\pi^{(n)}, \lambda^{(n)})$  have equal lengths ("trivial saddle connection"),
- if (π, λ) satisfies the Keane condition, then C<sub>n</sub>(π, λ) converges to the cone of invariant measures of T<sub>π,λ</sub>.

# The semi-algorithm

input:  $(\pi, \lambda)$ 

- n = 0
- repeat
  - if  $C_n(\pi,\lambda) \cap R(\pi,\lambda) = \{0\}$ : return "no periodic orbit"
  - if Keane condition is violated at the *n*-th step: return "found saddle connection"
  - ▶ n = n + 1

### bad news: SAF=0

Starting from 6 letters, there exists some  $(\pi, \lambda)$  with

- Keane condition
- $C_{\infty}(\pi,\lambda) \cap \mathsf{R}(\tau) \neq \{0\}.$

### bad news: SAF=0

Starting from 6 letters, there exists some  $(\pi, \lambda)$  with

- Keane condition
- $C_{\infty}(\pi,\lambda) \cap \mathsf{R}(\tau) \neq \{0\}.$

The most famous one is the so-called Arnoux-Rauzy example

$$\pi = \begin{pmatrix} A_{1,\ell} & A_{1,r} & A_2 & B_1 & B_2 & C_1 & C_2 \\ A_{1,r} & B_2 & B_1 & C_2 & C_1 & A_2 & A_{1,\ell} \end{pmatrix} \quad \lambda = (\theta + 1, \theta^2 - \theta - 1, \theta^2, \theta, \theta, 1, 1)$$

where  $\theta^3 - \theta^2 - \theta - 1 = 0$ .

#### Lemma

The semi-algorithm does not terminate on minimal SAF=0 instances.

# Hope (out of reach)

### Conjecture

Let  $\pi$  be an irreducible permutation on d letters and  $\lambda \in (\mathbb{R}_{\geq 0} \cap \overline{\mathbb{Q}})^d$ . Then if  $T_{\pi,\lambda}$  is minimal, it is uniquely ergodic.

If the conjecture was true, then the semi-algorithm would always terminate on algebraic  $\lambda$  with SAF $(\pi, \lambda) \neq 0$ .

# It is an algorithm on quadratic fields

### Theorem (Boshernitzan 88)

For  $\lambda$  in a quadratic number field  $\mathbb{Q}[\sqrt{D}]^d$  the semi-algorithm always terminate

- SAF=0 implies completely periodic,
- minimal implies uniquely ergodic.