Reachability for multidimensional continued fractions and minimality of interval exchange transformations

Vincent Delecroix

CNRS / Université de Bordeaux
CODYS meeting Arles-Bordeaux-Caen-Paris, december 2020

Reachability / orbit problem

Let \mathcal{I} be a set of triples (f, X, Y) where $f: D \rightarrow D$ is a function $X \subset D$ and $Y \subset D$.
input: a triple (f, X, Y) in \mathcal{I}
$\operatorname{REACH}(\mathcal{I})$: output: whether there exists $x \in X, y \in Y, n \geq 0$ such that $f^{n}(x)=y$

Reachability / orbit problem

Let \mathcal{I} be a set of triples (f, X, Y) where $f: D \rightarrow D$ is a function $X \subset D$ and $Y \subset D$.
input: a triple (f, X, Y) in \mathcal{I}
$\operatorname{REACH}(\mathcal{I})$: output: whether there exists $x \in X, y \in Y, n \geq 0$ such that $f^{n}(x)=y$

Our functions $f: D \rightarrow D$ will be piecewise affine maps on K^{d} where $K \subset \mathbb{R}$ and X, Y will be polyhedron.

Example 1: piecewise translations

$d \geq 1$
$\Lambda \subset \mathbb{R}$ stable under addition
$f:[0,1]^{d} \rightarrow[0,1]^{d}$ bijective piecewise translations with discontinuities contained in hyperplanes $\left\{x_{i}=\alpha\right\}$ with $i \in\{1, \ldots, d\}$ and $\alpha \in \Lambda$ and translations contained in Λ^{d}.

Example 1: piecewise translations $d=1$
interval exchange transformations with permutation $\pi=\left(\begin{array}{ccc}A & B & C \\ D \\ D & C & B\end{array}\right)$

Example 1: piecewise translations $d=1$

interval exchange transformations with permutation $\pi=\left(\begin{array}{ccc}A & B & C \\ D \\ D & C & B\end{array}\right)$

Theorem (Keane condition)
$X=\left\{\lambda_{D}, \lambda_{D}+\lambda_{C}, \lambda_{D}+\lambda_{C}+\lambda_{B}\right\}$
$Y=\left\{\lambda_{A}, \lambda_{A}+\lambda_{B}, \lambda_{A}+\lambda_{B}+\lambda_{C}\right\}$
If there is no $n \geq 0, x \in X$ and $y \in Y$ such that $T_{\pi, \lambda}^{n}(x)=y$ then all infinite orbits of $T_{\pi, \lambda}$ are dense.

Example 1: piecewise translations $d=1$

interval exchange transformations with permutation $\pi=\left(\begin{array}{ccc}A & B & C \\ D \\ D & C & B\end{array}\right)$

Theorem (Keane condition)
$X=\left\{\lambda_{D}, \lambda_{D}+\lambda_{C}, \lambda_{D}+\lambda_{C}+\lambda_{B}\right\}$
$Y=\left\{\lambda_{A}, \lambda_{A}+\lambda_{B}, \lambda_{A}+\lambda_{B}+\lambda_{C}\right\}$
If there is no $n \geq 0, x \in X$ and $y \in Y$ such that $T_{\pi, \lambda}^{n}(x)=y$ then all infinite orbits of $T_{\pi, \lambda}$ are dense.

Remark:

- $\lambda \in \mathbb{Q}^{4} \Rightarrow T_{\pi, \lambda}$ completely periodic
- λ totally irrational $\Rightarrow T_{\pi, \lambda}$ satisfies Keane condition

Example 1: piecewise translations $d=2$

P. Hooper rectangle exchange system $(d=2)$

Example 2: simplicial systems

Piecewise affine functions with Markovian topological dynamics.

Why do we care about reachability?

(1) Dynamical systems: periodic orbits, minimality of interval exchange transformations, $\mathrm{GL}(2, \mathbb{R})$-orbit closures of translation surfaces,
(2) Theoretical computer science
(3) Control theory

Decidability

For any $d \geq 1, \operatorname{REACH}\left(\operatorname{Mat}_{d \times d}(K)\right)$ is decidable (Kannan-Lipton 1980 for $K=\mathbb{Q}$).

Undecidability result

We define a restricted class \mathcal{F} of 2-dimensional rational piecewise affine functions on $D=\left([0,1) \cap \mathbb{Z}\left[\frac{1}{2}\right]\right)^{2}$ with discontinuities contained in hyperplanes $x=p / 2^{n}$ or $y=p / 2^{n}$
Piecewise $(x, y) \mapsto(a x+b y+c, d x+e y+f)$ with $a, b, d, e \in\left\{1,2, \frac{1}{2}\right\}$ and $c, f \in \mathbb{Z}\left[\frac{1}{2}\right]$.

Undecidability result

We define a restricted class \mathcal{F} of 2-dimensional rational piecewise affine functions on $D=\left([0,1) \cap \mathbb{Z}\left[\frac{1}{2}\right]\right)^{2}$ with discontinuities contained in hyperplanes $x=p / 2^{n}$ or $y=p / 2^{n}$
Piecewise $(x, y) \mapsto(a x+b y+c, d x+e y+f)$ with $a, b, d, e \in\left\{1,2, \frac{1}{2}\right\}$ and $c, f \in \mathbb{Z}\left[\frac{1}{2}\right]$.

Theorem (folklore?)
The problem $\left.\operatorname{REACH}\left(\{(\mathcal{F},(1,1),(0,0))\}_{f \in \mathcal{F}}\right)\right)$ is undecidable.

Undecidability result

We define a restricted class \mathcal{F} of 2-dimensional rational piecewise affine functions on $D=\left([0,1) \cap \mathbb{Z}\left[\frac{1}{2}\right]\right)^{2}$ with discontinuities contained in hyperplanes $x=p / 2^{n}$ or $y=p / 2^{n}$
Piecewise $(x, y) \mapsto(a x+b y+c, d x+e y+f)$ with $a, b, d, e \in\left\{1,2, \frac{1}{2}\right\}$ and $c, f \in \mathbb{Z}\left[\frac{1}{2}\right]$.

Theorem (folklore?)
The problem $\left.\operatorname{REACH}\left(\{(\mathcal{F},(1,1),(0,0))\}_{f \in \mathcal{F}}\right)\right)$ is undecidable.

Theorem (folklore bis)
There exists an explicit function $f \in \mathcal{F}$ such that the problem $\operatorname{REACH}\left(\{(f, x,(0,0))\}_{x \in D}\right)$ is undecidable.

Open problems

Whether the reachability problem is decidable or undecidable is an open question for the following classes of maps

- interval exchange transformations over number fields,
- 1-dimensional piecewise rational affine maps,
- d-dimensional piecewise translations over number fields,
- simplicial systems,

This talk

(1) Partial result for reachability of interval exchange transformations.
(2) Link with a specific reachability problem for simplicial systems.

Periodic orbits and relations

(π, λ): interval exchange transformation.
A periodic orbit gives rise to a non-negative relation on translations

$$
\tau_{A}+2 \tau_{D}+\tau_{C}=0
$$

Periodic orbits and relations

(π, λ): interval exchange transformation.
A periodic orbit gives rise to a non-negative relation on translations

$$
\tau_{A}+2 \tau_{D}+\tau_{C}=0
$$

$$
\mathrm{R}(\tau):=\left\{r \in \mathbb{Z}^{A}: \sum_{\alpha \in A} r_{\alpha} \cdot \tau_{\alpha}=0\right\}
$$

Periodic orbits and relations

(π, λ) : interval exchange transformation.
A periodic orbit gives rise to a non-negative relation on translations

$$
\tau_{A}+2 \tau_{D}+\tau_{C}=0
$$

$$
\mathrm{R}(\tau):=\left\{r \in \mathbb{Z}^{A}: \sum_{\alpha \in A} r_{\alpha} \cdot \tau_{\alpha}=0\right\}
$$

Lemma

Let π be a permutation and $\lambda \in \mathbb{R}^{d}$. If $\mathbb{Z}_{\geq 0}^{d} \cap \mathbb{R}(\tau)=\{0\}$ then the iet $T_{\pi, \lambda}$ has no periodic orbit.

Rauzy induction

Idea: dynamics on the space of interval exchanges $\mathcal{R}:(\pi, \lambda) \mapsto\left(\pi^{\prime}, \lambda^{\prime}\right)$
integral non-negative matrix cocycle $A_{n}(\pi, \lambda): \lambda=A_{n}(\pi, \lambda) \cdot \lambda^{(n)}$.
We have $\tau^{(n)}=A_{n}(\pi, \lambda)^{t} \tau^{(0)}$.

Improved lemma with induction

Replace $C_{0}(\pi, \lambda):=\mathbb{Z}_{\geq 0}^{d}$ by the subcone $C_{n}(\pi, \lambda):=A_{n}(\pi, \lambda) \mathbb{Z}^{d}$.

Improved lemma with induction

Replace $C_{0}(\pi, \lambda):=\mathbb{Z}_{\geq 0}^{d}$ by the subcone $C_{n}(\pi, \lambda):=A_{n}(\pi, \lambda) \mathbb{Z}^{d}$.

Lemma

Let π be a permutation and $\lambda \in \mathbb{R}^{d}$. If the Rauzy induction is well defined up to step n and $C_{n}(\pi, \lambda) \cap R(\tau)=\{0\}$ then the iet $T_{\pi, \lambda}$ has no periodic orbit.

Improved lemma with induction

Replace $C_{0}(\pi, \lambda):=\mathbb{Z}_{\geq 0}^{d}$ by the subcone $C_{n}(\pi, \lambda):=A_{n}(\pi, \lambda) \mathbb{Z}^{d}$.

Lemma

Let π be a permutation and $\lambda \in \mathbb{R}^{d}$. If the Rauzy induction is well defined up to step n and $C_{n}(\pi, \lambda) \cap \mathrm{R}(\tau)=\{0\}$ then the iet $T_{\pi, \lambda}$ has no periodic orbit.

Questions:
(1) under which condition Rauzy induction is well defined?
(2) what does look like $C_{n}(\pi, \lambda)$?

Infinite orbits of the Rauzy induction

Theorem (Rauzy, Veech)

Let π be an irreducible permutation and $\lambda \in \mathbb{R}^{A}$. Then the following conditions are equivalent

- (π, λ) satisfies the Keane condition,
- Rauzy induction is defined for all times and $\lambda^{(n)} \rightarrow 0$,
- for all $n \geq 0$, there exists m such that $A_{m}\left(\pi^{(n)}, \lambda^{(n)}\right)>0$.

Short digression on Multidimensional continued fractions

The shape of the cones $C_{n}(\pi, \lambda)$

Theorem (Rauzy, Veech)

Let π be an irreducible permutation and $\lambda \in \mathbb{R}^{A}$. Then

- if (π, λ) does not satisfy Keane condition, then there exists n such that the rightmost intervals of $\left(\pi^{(n)}, \lambda^{(n)}\right)$ have equal lengths ("trivial saddle connection"),
- if (π, λ) satisfies the Keane condition, then $C_{n}(\pi, \lambda)$ converges to the cone of invariant measures of $T_{\pi, \lambda}$.

The semi-algorithm

input: (π, λ)

- $\mathrm{n}=0$
- repeat
- if $C_{n}(\pi, \lambda) \cap R(\pi, \lambda)=\{0\}$: return "no periodic orbit"
- if Keane condition is violated at the n-th step: return "found saddle connection"
- $\mathrm{n}=\mathrm{n}+1$

bad news: $S A F=0$

Starting from 6 letters, there exists some (π, λ) with

- Keane condition
- $C_{\infty}(\pi, \lambda) \cap \mathrm{R}(\tau) \neq\{0\}$.

bad news: $S A F=0$

Starting from 6 letters, there exists some (π, λ) with

- Keane condition
- $C_{\infty}(\pi, \lambda) \cap \mathrm{R}(\tau) \neq\{0\}$.

The most famous one is the so-called Arnoux-Rauzy example

$$
\pi=\left(\begin{array}{ccccc}
A_{1, \ell} & A_{1, r} & A_{2} & B_{1} & B_{2}
\end{array} C_{1} C_{2}\right) \quad \lambda=\left(\theta+1, \theta^{2}-\theta-1, \theta^{2}, \theta, \theta, 1,1\right)
$$

where $\theta^{3}-\theta^{2}-\theta-1=0$.

Lemma

The semi-algorithm does not terminate on minimal $S A F=0$ instances.

Hope (out of reach)

Conjecture

Let π be an irreducible permutation on d letters and $\lambda \in\left(\mathbb{R}_{\geq 0} \cap \overline{\mathbb{Q}}\right)^{d}$. Then if $T_{\pi, \lambda}$ is minimal, it is uniquely ergodic.

If the conjecture was true, then the semi-algorithm would always terminate on algebraic λ with $\operatorname{SAF}(\pi, \lambda) \neq 0$.

It is an algorithm on quadratic fields

Theorem (Boshernitzan 88)

For λ in a quadratic number field $\mathbb{Q}[\sqrt{D}]^{d}$ the semi-algorithm always terminate

- $S A F=0$ implies completely periodic,
- minimal implies uniquely ergodic.

