On Cross Sections to the Horocycle and Geodesic Flows on Quotients by Hecke Triangle Groups G_q

Diaaeldin Taha dtaha.personal@gmail.com

March 23, 2020

- 1. The classical Boca-Cobeli-Zaharescu map
- 2. CFs for Hecke triangle groups G_q
- 3. Cross-sections to the horocycle flow on $SL(2,\mathbb{R})/G_q$
- 4. Cross-sections to the geodesic flow on $SL(2,\mathbb{R})/G_q$

The Stern-Brocot tree

- The rationals can be enumerated using the Stern-Brocot process :
 - ▶ Given any two unimodular rationals ^{a0}/_{q0}, ^{a1}/_{q1} ∈ Q, insert their mediant ^{a0}/_{q0} ⊕ ^{a1}/_{q1} := ^{a0+a1}/_{q0+q1} between them.
 ▶ The pairs ^{a0}/_{q0}, ^{a0+a1}/_{q0+q1} and ^{a0+a1}/_{q0+q1}, ^{a1}/_{q1} are unimodular.
 ▶ The repetitive application of the Stern-Brocot process exhausts the rationals between ^{a0}/_{q0} and ^{a1}/_{q1}.

The Farey fractions

 \mathfrak{O} The **Farey fractions** $\mathscr{F}(Q)$ at level Q

$$\mathscr{F}(Q) := \left\{ rac{a}{q} \middle| 0 \le a \le q \le Q, \ \operatorname{gcd}(a,q) = 1
ight\}.$$

▶ The first fraction to appear between two successive fractions $\frac{a_0}{q_0}, \frac{a_1}{q_1} \in \mathscr{F}(Q)$ is $\frac{a_0+a_1}{q_0+q_1} \in \mathscr{F}(q_0+q_1)$.

Figure: The Farey fractions at level Q = 3 are given by the slopes of visible integer points inside the triangle bounded by the lines y = 0, y = x, and x = 3.

Some properties of the Farey fractions

- If $\frac{a_0}{q_0}, \frac{a_1}{q_1} \in \mathscr{F}(\overline{Q})$ are successive, then $0 < q_0, q_1 \le \overline{Q}$, and $q_1 + q_2 > Q$.
- If $\frac{a_0}{q_0}, \frac{a_1}{q_1} \in \mathscr{F}(\overline{Q})$ are successive, then they are unimodular. I.e. $\frac{a_1}{q_1} - \frac{a_0}{q_0} = \frac{1}{q_0q_1}$.
- If $\frac{a_0}{q_0}, \frac{a_1}{q_1}, \frac{a_2}{q_2} \in \mathscr{F}(Q)$ are successive, then

$$a_{2} = \left\lfloor \frac{Q+q_{0}}{q_{1}} \right\rfloor a_{1} - a_{0}$$
$$q_{2} = \left\lfloor \frac{Q+q_{0}}{q_{1}} \right\rfloor q_{1} - q_{0}$$

The BCZ dynamical system

- Boca-Cobeli-Zaharescu (2001) introduced a dynamical system that tracks the successive normalized denominators of the Farey fractions at any level.
- If $\frac{a_0}{q_0}$, $\frac{a_1}{q_1}$, $\frac{a_2}{q_2} \in \mathscr{F}(Q)$ are successive, then > $\left(\frac{q_0}{Q}, \frac{q_1}{Q}\right)$ and $\left(\frac{q_1}{Q}, \frac{q_2}{Q}\right)$ belong to the **Farey triangle** $\mathcal{T} := \left\{(a, b) \in \mathbb{R}^2 \middle| 0 < a, b \le 1, a + b > 1\right\},$ > $\left(\frac{q_1}{Q}, \frac{q_2}{Q}\right) = \mathcal{T}\left(\frac{q_0}{Q}, \frac{q_1}{Q}\right)$, where $\mathcal{T} : \mathcal{T} \to \mathcal{T}$ is the **BCZ map**

$$T(a,b) := \left(b, \left\lfloor \frac{1+a}{b} \right\rfloor b - a\right).$$

The Farey triangle

Figure: The Farey triangle T.

Applications of the BCZ map to Farey statistics

 \bigcirc For any Q, consider the measure

$$\rho_{Q} = \frac{1}{\#\mathscr{F}(Q) - 1} \sum_{\frac{a_{0}}{q_{0}}, \frac{a_{1}}{q_{1}} \in \mathscr{F}(Q): \text{succ}} \delta_{\left(\frac{q_{0}}{Q}, \frac{q_{1}}{Q}\right)}$$
$$= \frac{1}{\#\mathscr{F}(Q) - 1} \sum_{i=0}^{\#\mathscr{F}(Q) - 2} \delta_{T^{i}\left(\frac{0}{Q}, \frac{1}{Q}\right)}$$

on $\ensuremath{\mathbb{T}}.$

Theorem (Boca-Cobeli-Zaharescu (2001))

The measures ρ_Q weak-* converge to the probability measure m := 2 dadb on T.

Example: distribution of Farey gaps

Corollary (Boca-Cobeli-Zaharescu (2001))

Let

$$f_Q(t) := \frac{1}{\#\mathscr{F}(Q)} \# \left\{ succ. \ \frac{a_0}{q_0}, \frac{a_1}{q_1} \in \mathscr{F}(Q) \middle| Q^2 \left(\frac{a_1}{q_1} - \frac{a_0}{q_0} \right) \ge t \right\}.$$

Then $\lim_{Q\to\infty} f_Q(t) = f(t)$, where

$$f(t) := m\left(\left\{(a,b) \in \mathcal{T} \mid \frac{1}{ab} \ge t\right\}\right).$$

• Note: $\#\mathscr{F}(Q) \sim \frac{3}{\pi^2}Q^2$.

Cross section to the horocycle Flow

• Write $X_2 := SL(2,\mathbb{R})/SL(2,\mathbb{Z})$.

Theorem (Athreya-Cheung (2014))

Consider the function $P : \mathcal{T} \to X_2$ given for any $(a, b) \in \mathcal{T}$ by $P(a, b) := \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} SL(2, \mathbb{Z})$. The following are true: 1. The set $P(\mathcal{T})$ is in bijection with the collection of lattices in X_2 that have a horizontal vector of length not exceeding 1.

2 The set $P(\mathcal{T})$ is a Poincaré cross section to the horocycle flow $h_s := \begin{pmatrix} 1 & 0 \\ -s & 1 \end{pmatrix} \curvearrowright X_2$ with roof function $R(a,b) := \frac{1}{ab}$, and first return map T.

Extend the previous ideas to the family of Hecke triangle groups.

The λ_q -CF Algorithm

The Hecke triangle groups

 For q = 3,4,5,..., the Hecke triangle group G_q is the subgroup of SL(2,ℝ) generated by
 S := ⁰ -1 1 0
 T_q := ¹ λ_q where λ_q := 2 cos π/q.
 We have G₃ = SL(2,ℤ).

The λ_{q} -continued fraction algorithm

🛆 As is customary, we write

$$U_q := T_q S = \begin{pmatrix} \lambda_q & -1 \\ 1 & 0 \end{pmatrix}.$$

conjugate to a rotation by π/q
 rotates vectors on the ellipses given by Qq(x,y) := x² − λqxy + y²

 \bigcirc For $i = 0, 1, \dots, 2q - 1$, we write

$$\mathfrak{w}_i^q := U_q^i (1,0)^T.$$

• Note that
$$\mathfrak{w}_0^q = (1,0)^T$$
 and $\mathfrak{w}_{q-1}^q = (0,1)^T$.

Figure: The vectors $\{\mathfrak{w}_{i}^{5}\}_{i=0}^{9}$ along with the ellipse $Q_{5}((x,y)^{T}) = x^{2} - \lambda_{5}xy + y^{2} = 1$. Note that λ_{5} is the golden ratio $\varphi = (1 + \sqrt{5})/2$.

The λ_{q} -continued fraction algorithm

 \bigcirc For $i = 0, 1, \dots, 2q - 2$, we write

$$\Sigma_i^q := (0,\infty)\mathfrak{w}_i^q + [0,\infty)\mathfrak{w}_{i+1}^q$$

for the sector in \mathbb{R}^2 bound by \mathfrak{w}_i^q (inclusive), and \mathfrak{w}_{i+1}^q (exclusive).

- ▶ The matrix T_q^{-1} sends Σ_0^q to the first quadrant $FQ := \bigcup_{i=0}^{q-2} \Sigma_i^q$, reduces Q_q -values of vectors except for those that are parallel to $(1,0)^T$.
- ▶ The matrix U_q^{-1} sends Σ_i^q to $\Sigma_{i-1} \mod 2q$, maintains the Q_q -values of vectors.

Figure: The vectors $\{\mathfrak{w}_i^5\}_{i=0}^4$, and the sectors $\{\Sigma_i^5\}_{i=0}^3$.

The λ_q -continued fraction algorithm

Definitior

For any $\mathbf{u} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, if $\mathbf{u} \in \Sigma_{i_0}^q$ with $i_0 \in \{0, 1, \dots, 2q-2\}$, then the λ_q -continued fraction algorithm sends \mathbf{u} to the $\mathcal{T}_q^{-1} U_q^{-i_0} \mathbf{u}$ in the first quadrant $\mathsf{FQ} := \bigcup_{i=0}^{q-2} \Sigma_i^q$.

Consequences of the λ_q -CF Algorithm

Some consequences of the λ_q -CF algorithm:

△ All non-trivial discrete linear orbits of G_q on the plane \mathbb{R}^2 are homothetic dilations of

$$\Lambda_q := G_q(1,0)^T.$$

- There exists a G_q -Stern-Brocot process that exhausts all the elements of Λ_q in the sector spanned by any unimodular pair $\mathbf{u}, \mathbf{v} \in \Lambda_q$ (i.e. $\mathbf{u} \wedge \mathbf{v} = 1$).
- The elements of the SL(2, \mathbb{R}) orbit SL(2, \mathbb{R}) · Λ_q can be bijectively identified with the elements of $X_q := SL(2, \mathbb{R})/G_q$.

Figure: The elements of Λ_5 in the first quadrant generated using N = 5 applications of the G_5 -Stern-Brocot process.

The BCZ Map Analogue for G_q

Theorem (Taha (2019))

Consider the G_q-Farey triangle

$$\mathbb{T}^q = \left\{ (a, b) \in \mathbb{R}^2 \, \middle| \, 0 < a \le 1, \ 1 - \lambda_q a < b \le 1 \right\},$$

and the maps $P_q: \mathbb{T}^q \to X_q$ given for any $(a, b) \in \mathbb{T}^q$ by $P_q(a, b) := \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} G_q$. The following are true:

- The set P_q(ℑ^q) is in bijection with the elements in the SL(2,ℝ)-orbit of Λ_q that have a horizontal vector of length not exceeding 1.
- 2 The set P_q(ℑ^q) is a Poincaré cross section to the horocycle flow h_s ∩ X_q with explicit roof function R_q and first return map BCZ_q.

The G_5 -Farey triangle

Figure: The G_5 -Farey triangle \mathcal{T}^5 .

The Farey fractions analogue for G_q

△ For any $A \in SL(2, \mathbb{R})$, $\tau > 0$, and interval $I \subseteq \mathbb{R}$, we denote by

 $\mathscr{F}_{I}(A\Lambda_{q},\tau) := \left\{ \mathbf{u} \in A\Lambda_{q} \cap ((0,\tau] \times \mathbb{R}) \middle| \mathsf{slope}(\mathbf{u}) \in I \right\}$

the Farey fractions analogue for G_q .

Figure: The set $\mathscr{F}_{[0.5,1]}(\Lambda_5,3)$ is the collection of points from Λ_5 inside the triangle bounded by the lines y = 0.5x, y = x, and x = 3.

Applications of the G_q -BCZ map to G_q -Farey statistics

- **1**. The G_q -next-vector algorithm: The *best* algorithm for generating elements of Λ_q in a box.
- 2. G_q -Farey statistics: equidistribution of slopes and slope gap distribution of the elements of Λ_q in homothetic dilations of triangles
- 3. Quadratic growth of the number of elements of Λ_q in homothetic dilations of *measureable* shapes.

Figure: The elements of Λ_5 in the box $[0, 100]^2$ generated using the G_5 -next-vector algorithm.

The AN Natural Extension of λ_q -CFs

- Arnoux-Nogueira (1993) introduced a heuristic for building models of natural extensions of vectorial continued fraction algorithms.
- The λ_q-CF algorithm can be expressed as a function **u** → A_q(**u**)⁻¹**u** on the first quadrant FQ, where A_q : FQ → SL(2,ℝ) is constant on the sectors {Σ^q_i}^{q-2}_{i=0}.
- Writing $\overline{\mathsf{FQ} \times \mathsf{FQ}} := \{(\mathbf{u}, \mathbf{v}) \in \mathsf{FQ} \times \mathsf{FQ} | \mathbf{u} \cdot \mathbf{v} = 1\}$, the map A_q can be extended to $\widehat{A}_q : \overline{\mathsf{FQ} \times \mathsf{FQ}} \to \overline{\mathsf{FQ} \times \mathsf{FQ}}$ via $(\mathbf{u}, \mathbf{v}) \mapsto (A_q(\mathbf{u})^{-1}\mathbf{u}, A(\mathbf{u})^T\mathbf{v}).$
- The space $\overline{\mathsf{FQ} \times \mathsf{FQ}}$ comes with a natural "geodesic flow" $\varphi^t(\mathbf{u}, \mathbf{v}) := (e^t \mathbf{u}, e^{-t} \mathbf{v}).$

 \bigcirc It can be seen that the elements of the suspension of the horocycle flow over the G_q -Farey triangles

 $S_{R_{q}}\mathcal{T}^{q} := \{ ((a,b),s) | (a,b) \in \mathcal{T}^{q}, s \in [0, R_{q}(a,b))] \}$

can be, as G_q -cosets, be bijectively identified with the element of the portion of $\widehat{FQ \times FQ}$ lying above particular polygons (the G_q -Stern-Brocot polygon \mathcal{P}^q)

 $S\mathcal{P}^q := \{ (\mathbf{u}, \mathbf{v}) \in \widehat{\mathsf{FQ} \times \mathsf{FQ}} \mid \mathbf{u} \in \mathcal{P}^q \}.$

 This provides a coding of the geodesic flow on X_q alternative to the usual Bowen-Series coding.

The G₅-Stern-Brocot polygon

Figure: The G₅-Stern-Brocot polygon.

Double regular *n*-gons

 Particular groups of symmetries (i.e. the Veech groups) of double regular *n*-gons with *n* odd are conjugate to the Hecke triangle groups G_n.

Figure: Double-Pentagon Shaped Tile, 15th Century Iran, the Metropolitan Museum of Art.

 The previous results can be used to study the linear flow and its closed trajectories on translation surfaces arising from those polygons. E.g. Davis-Lelievre (2018) with the λ₅-continued fraction algorithm.

Figure: A periodic path on the pentagon. Source: https://www.swarthmore.edu/NatSci/ddavis3/pents/index.html

Thank you!