Discret interval exchange transformations and perfectly clustering words

Mélodie Lapointe

Institut de Recherche en informatique fondamentale

November 20, 2020

Outline

We study a family of words called

perfectly clustering words

to highlight links between words combinatorics, numbers theory and dynamical system.

We want to

- ▶ to understand the structure of perfectly clustering words,
- to generalize the relation between the Raney tree and the Christoffel words,
- to understand their link with the free group.

Perfectly clustering words and Christoffel words

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas nanasa

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas nanasa anasan

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

```
ananas
nanasa
anasan
nasana
asanan
sanana
```

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas nanasa anasan nasana asanan sanana anana s

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

nanasa anasan nasana asanan sanana ananas anasan

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas anasan asanan nanasa nasana sanana

The Burrows-Wheeler transform maps a word w to the last column of the matrix containing all conjugates of w in lexicographical order.

Example :

ananas anasan asanan nanasa nasana sanana

BWT(ananas) = snnaaa

- $|w|_a$ denote the number of occurrences of the letter *a* in *w*.
- A word w is π -clustering if

BWT(w) =
$$a_{\pi(1)}^{|w|_{a_{\pi(1)}}} a_{\pi(2)}^{|w|_{a_{\pi(2)}}} \dots a_{\pi(r)}^{|w|_{a_{\pi(r)}}}$$

and $\pi \neq id$.

► A word *w* is perfectly clustering if

BWT(w) =
$$a_r^{|w|_{a_r}} a_{r-1}^{|w|_{a_{r-1}}} \dots a_1^{|w|_{a_1}}$$

Example :

Words	appartement	aluminium	ananas
BWT	tptmeepaanr	mmnauuiil	snnaaa

Geometric definition :

Let *p* and *q* be two relatively prime natural number. The Christoffel path of slope q/p is the path from (0,0) to (q,p) such that

- ► the path lies below the segment
- the region enclose by the path and the segment contains no integral points besides those on the path.

The Christoffel words of slope q/p is the word on $\{a, b\}^*$ which represent the Christoffel path of slope q/p where

$$a \mapsto [(x, y), (x + 1, y)]$$
$$b \mapsto [(x, y), (x, y + 1)].$$

► A power of a word *w* is

$$w^1 = w$$
 and $w^n = w^{n-1}w$ for $n > 1$.

- A word is primitive if it is not the power of a smaller word.
- A word is a Lyndon word if it is primitive and the smallest of its conjugates.

Theorem (Mantaci, Restivo et Sciortino, 2003)

A binary word w is perfectly clustering if and only if w is a conjugate or a power of a conjugate of a Christoffel word.

Christoffel words are Lyndon words. Therefore, we will study perfectly clustering words that are Lyndon words.

- $c = (c_1, \ldots, c_r)$ a length vector
- π a permutation
- $\blacktriangleright |c| = c_1 + \dots + c_r$
- A a finite totally ordered alphabet of cardinality r

A discrete r-interval exchange transformation *T* with length vector *c* and permutation π is defined on a set of |c| points, $\{1, \ldots, |c|\}$, particult into *r* intervals

$$I_{a_i} = \left\{ k : \sum_{j < i} c_j < k \le \sum_{j \le i} c_j \right\}$$

by

$$T(x) = x + t_i$$

when $x \in I_{a_i}$ and

$$t_i = \sum_{\pi^{-1}(j) < \pi^{-1}(j)} c_j - \sum_{j < i} c_j.$$

• The orbit of a point $z \in \{1, ..., |c|\}$ is the set

$$\mathcal{O}(z) = \{T^n(z) | n \in \mathbb{Z}\}.$$

- O(z) is always finite if *T* is a discrete interval exchange transformation.
- The mapping *T* is minimal if the orbit of any point in $\{1, \ldots, |c|\}$ is dense in $\{1, \ldots, |c|\}$.
- ► Therefore *T* is minimal if and only if the orbits of all points in {1,..., |*c*|} are equals.

• The trajectory of a point *z* under *T* is the infinite sequence $(z_n)_{n \in \mathbb{N}}$ defined by

$$z_n = a_i$$
 if $T^n(z) \in I_{a_i}$.

Since T is discrete, the trajectory of a point is a periodic sequence.

Example : T with lenght vector (3, 5, 4, 2) and permutation 4321

Orbit : $\mathcal{O}(4) = \{4, 7, 10\}$ Trajectory : $(bbc)^{\omega}$

Links between perfectly clustering words and DIET

Theorem (Ferenczi and Zamboni, 2013)

Let $w = w_1 \dots w_n$ be a primitive word on an alphabet $\mathcal{A} = \{a_1, \dots, a_r\}$ such that for all $a \in \mathcal{A}$, $|w|_a \ge 1$. The following statement are equivalent :

- w is π -clustering,
- www is a factor in the trajectory of a minimal discret r-interval echange transformation with permutation π,
- www is a factor in the trajectory of a discret r-interval echange transformation with permutation π,
- www is a factor in the trajectory of a continuous r-interval echange transformation with permutation π,

Remark : From now on, the DIET are always with the symmetric permutation $\pi = r(r - 1) \dots 1$.

Some infinite complete binary trees

Raney tree

Tree construction rule's :

- root: (1, 1)
- all other nodes :

(i,j)

(i+j,j) (i,i+j)

(1,1)

Theorem (Raney, 1973 and Calkin et Wilf, 2000)

All pairs of relatively prime integers appears exactly once in the Raney tree.

Therefore, all length vectors of minimal discrete 2-interval exchange transformation appears in the Raney tree.

Tree of dual Christoffel words

w

 $\widetilde{D}(w)$

Tree construction rule's :

- root : *ab*
- all other nodes :

G(w)

Theorem

All Christoffel words appears exactly once in the tree of dual Christoffel words.

Remarks : $G : a \mapsto a$ and $b \mapsto ab$ $\widetilde{D} : a \mapsto ab$ and $b \mapsto a$

Tree of dual Christoffel words

Theorem

The Raney tree and the dual of the Christoffel tree are isomorphic.

Proof outline :

 $\blacktriangleright w \mapsto (|w|_a, |w|_b)$

• Construct the dual of Christoffel words of slope j/i

- ► Can we generalize both trees?
- What are the relationship between the generalization of those trees?

Generalization of Raney tree

Circular composition

Goal : Labelling an infinite tree with lenght associated to minimal DIET.

What is known :

- *c* = (*c*₁, *c*₂), *T* is minimal iff gcd(c) = 1 (Raney tree, Stern-Brocot tree);
- $c = (c_1, c_2, c_3), T$ is minimal iff $gcd(c_1 + c_2, c_2 + c_3) = 1$ (Redlich and Pak, 2009);
- *c* = (*c*₁,...,*c_r*) and *r* > 3, there do not exist homogeneous polynomials *f*₁ and *f*₂ of arbitrary degree with interger coefficients such that

$$gcd(f_1(c), f_2(c)) = 1$$

iff *T* is minimal (Karnauhova and Liebscher, 2015).

Circular composition

- ► A discrete *r*-interval exchange transformation *T* can be viewed as a permutation.
- ► *T* is minimal iff its permutations is circular i.e. has 1 cycle.
- A composition *C* is circular if the symmetric DIET *T* is minimal

Example : T with lenght vector (3, 2, 6)

Permutation : $\mathcal{P}(T) = (1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6)$
$$\psi_i(x) = \begin{cases} x & \text{if } x \in \{1, \dots, m\}, \\ x \cdot (x + |t_i|) & \text{if } x \in \{m + 1, \dots, m + |t_i|\} \text{ and } t_i \ge 0, \\ (x + |t_i|) \cdot x & \text{if } x \in \{m + 1, \dots, m + |t_i|\} \text{ and } t_i < 0, \\ x + |t_i| & \text{otherwise} \end{cases}$$

where $x \in \{1, \dots, |c|\}$ is a letter, \cdot is word concatenation and

$$m = \begin{cases} \sum_{j \le i} c_j & \text{if } t_i \ge 0, \\ \sum_{j > i} c_j & \text{if } t_i < 0. \end{cases}$$

Recall : $t_i = \sum_{j>i} c_j - \sum_{j<i} c_j$

$$\psi_i(x) = \begin{cases} x & \text{if } x \in \{1, \dots, m\}, \\ x \cdot (x + |t_i|) & \text{if } x \in \{m + 1, \dots, m + |t_i|\} \text{ and } t_i \ge 0, \\ (x + |t_i|) \cdot x & \text{if } x \in \{m + 1, \dots, m + |t_i|\} \text{ and } t_i < 0, \\ x + |t_i| & \text{otherwise} \end{cases}$$

Proposition

Let i be in $\{1, \ldots, r\}$ *and c a lenght vector. Then,*

 $\psi_i(\mathcal{P}(T_c)) \equiv \mathcal{P}(T_{c'})$

where $c' = (c_1, ..., c_i + |t_i|, ..., c_r).$

Example : $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

 $\mathcal{P}(T_{(3,2,6)}) \quad 1, \quad 9, \quad 4, \quad 7, \quad 2, \quad 10, \quad 5, \quad 8, \quad 3, \quad 11, \quad 6$ $\blacktriangleright t_2 = 6 - 2 = 3 > 0$ $\blacktriangleright m = 3 + 2 = 5$ $\psi_2(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6,7,8\} \\ x+3 & \text{otherwise} \end{cases}$

Example : $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

 $\mathcal{P}(T_{(3,2,6)})$ 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

Example :
$$\psi_2(\mathcal{P}(T_{(3,2,6)}))$$

 $\mathcal{P}(T_{(3,2,6)})$ 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

▶
$$t_2 = 6 - 2 = 3 > 0$$

▶ *m* = 3 + 2 = 5

 $\psi_2(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$

$$m = \begin{cases} \sum_{j \le i} c_j & \text{if } t_i \ge 0, \\ \sum_{j > i} c_j & \text{if } t_i < 0. \end{cases}$$

$$\mathcal{P}(T_{(3,2,6)}) = 1, \quad 9, \quad 4, \quad 7, \quad 2, \quad 10, \quad 5, \quad 8, \quad 3, \quad 11, \quad 6$$

$$\psi_2(\mathcal{P}(T_{(3,2,6)})) = t_2 = 6 - 2 = 3 > 0$$

$$\blacktriangleright \quad m = 3 + 2 = 5$$

$$\flat \quad \psi_2(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6,7,8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$\psi_i(x) = \begin{cases} x & \text{if } x \in \{1, \dots, m\}, \\ x \cdot (x+|t_i|) & \text{if } x \in \{m+1, \dots, m+|t_i|\} \text{ and } t_i \ge 0, \\ (x+|t_i|) \cdot x & \text{if } x \in \{m+1, \dots, m+|t_i|\} \text{ and } t_i < 0, \\ x+|t_i| & \text{otherwise} \end{cases}$$

Example : $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

 $\mathcal{P}(T_{(3,2,6)})$ 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$ 1,

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$\mathcal{P}(T_{(3,2,6)})$$
 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$ 1, 12,

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

Example : $\psi_2(\mathcal{P}(T_{(3,2,6)}))$

 $\mathcal{P}(T_{(3,2,6)})$ 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$ 1, 12, 4,

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$\mathcal{P}(T_{(3,2,6)})$$
 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6 $\psi_2(\mathcal{P}(T_{(3,2,6)}))$ 1, 12, 4, 7, 10,

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$t_{2} = 6 - 2 = 3 > 0$$

$$m = 3 + 2 = 5$$

$$\psi_{2}(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

$$\mathcal{P}(T_{(3,2,6)}) \quad 1, \quad 9, \quad 4, \quad 7, \quad 2, \quad 10, \quad 5, \quad 8, \quad 3, \quad 11, \quad 6$$

$$\psi_2(\mathcal{P}(T_{(3,2,6)})) \quad 1, \quad 12, \quad 4, \quad 7, 10, \quad 2, \quad 13, \quad 5, \quad 8, 11, \quad 3, \quad 14, \quad 6, 9$$

$$\blacktriangleright \quad t_2 = 6 - 2 = 3 > 0$$

$$\blacktriangleright \quad m = 3 + 2 = 5$$

$$\{x \qquad \text{if } x \in \{1, \dots, 5\}\}$$

$$\psi_2(x) = \begin{cases} x & \text{if } x \in \{1, \dots, 5\} \\ x \cdot (x+3) & \text{if } x \in \{6, 7, 8\} \\ x+3 & \text{otherwise} \end{cases}$$

Rauzy Induction

How can you induce on the middle interval?

(2,3,4) 1: +2>0 (2,5.4)123456789 1234567891011 1234567891011 123456789 1, 8, 3, 5, 7, 2, 9, 4, 6 1, 10, 3, 5, 7, 9, 2, 11, 4, 6,8 acbbcacbc acbbb cac bbc a -> ac b-> b 123456789 1234567 a-sac 1234567 C ->C 123456789 bab 1, 3, 5, 7, 2, 4, 6 1,3,5,7,9,2,4,6,8 C→C abbcabc abbbcabbc a→a b→b Rangy top c →bc

How can you induce on the middle interval?

ψ_i	Rauzy	Morphismes	$t_i > 0$
ψ_1	Rauzy à gauche bottom 2x	$\lambda_a = (a, ab, ac)$	Vrai
ψ_2	Rauzy à gauche (bottom + top + inverse bottom)	$\lambda_b = (ab^{-1}, b, bc)$	Vrai
ψ_2	Rauzy à droite (bottom + top + inverse bottom)	$\rho_b = (ab, b, b^{-1}c)$	Faux
ψ_3	Rauzy à droite bottom 2x	$\rho_c = (ac, bc, c)$	Faux

Tree of circular composition

Remark : The criterion on δ_i check that $\delta_i \neq 0$ and is necessary for the unicity.

Tree of circular composition

Tree of circular composition

Theorem

All circular compositions appear exactly once in the tree of circular composition.

Generalization of the tree of dual Christoffel words

The first idea is to work on the free group F(A) instead of the free monoid A. Recall that

- The inverse of an element $l \in \mathcal{F}(\mathcal{A})$ is denoted by l^{-1} .
- ► Each element of the free group may be represent by a reduced word, which is a product of the letters or their inverses, without the factors xx^{-1} or $x^{-1}x$ for $x \in A$.
- A element *w* of the free group is called positive if $w \in A^*$.

Morphism

Example

$$\rho_{\ell}: F(\mathcal{A}) \to F(\mathcal{A})$$

$$\rho_{\ell}(x) = \begin{cases} x & \text{si } x = \ell \\ x\ell & \text{si } x < \ell \\ \ell^{-1}x & \text{si } x > \ell \end{cases}$$

$$\rho_b : F(\{a, b, c\}) \to F(\{a, b, c\})$$

$$\rho_b(x) = \begin{cases} ab & \text{si } x = a \\ b & \text{si } x = b \\ b^{-1}c & \text{si } x = c \end{cases}$$

Remarks : $\rho_b = \widetilde{D}$

Morphism

Example

$$\begin{split} \lambda_{\ell} : F(\mathcal{A}) &\to F(\mathcal{A}) & \lambda_{b} : F(\{a, b, c\}) \to F(\{a, b, c\}) \\ \lambda_{\ell}(x) &= \begin{cases} x & \text{si } x = \ell \\ x\ell^{-1} & \text{si } x < \ell \\ \ell x & \text{si } x > \ell \end{cases} & \lambda_{b}(x) = \begin{cases} ab^{-1} & \text{si } x = a \\ b & \text{si } x = b \\ bc & \text{si } x = c \end{cases} \end{split}$$

Remarks : $\lambda_a = G$ $\rho_\ell^{-1} = \lambda_\ell$

Remarks : N(x) maps a letter x to the next letter in the lexicographical order.

Let *w* be a positive word of F(A). The morphism $\lambda_{\ell}(w)$ and $\rho_{\ell}(w)$ are necessarily positive but their exists a condition on the parikh vector of perfectly clustering word.

Proposition

Let w be a perfectly clustering Lyndon word.

• If
$$\sum_{a>\ell} |w|_a > \sum_{a<\ell} |w|_a$$
, then $\lambda_{\ell}(w)$ is positive.

• If
$$\sum_{a>\ell} |w|_a < \sum_{a<\ell} |w|_a$$
, then $\rho_\ell(w)$ is positive.

Remark : In the construction of the tree, $\sum_{a>\ell} |w|_a$ and $\sum_{a<\ell} |w|_a$ are never equal.

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

where $\ell = a_{\lfloor i/2 \rfloor+1}$ and $i \in \{0, \dots, 2|Alph(w)| - 1\}$. Example :

30/37

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

abadacad aacabac

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

abadacad aacabac adbcbd

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

Tree of perfectly clustering Lyndon words

Let *w* be a perfectly clustering word appearing in the tree. Then,

$$S_{i}(w) = \begin{cases} \lambda_{\ell} \circ \Delta_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \lambda_{\ell}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} > \sum_{a < \ell} |w|_{a}; \\ \rho_{\ell}(w), & \text{if } i \text{ is even and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}; \\ \rho_{N(\ell)} \circ \Delta_{N(\ell)}(w), & \text{if } i \text{ is odd and } \sum_{a > \ell} |w|_{a} < \sum_{a < \ell} |w|_{a}, \end{cases}$$

where $\ell = a_{\lfloor i/2 \rfloor + 1}$ and $i \in \{0, \dots, 2|Alph(w)| - 1\}$. Example :

Tree of perfectly clustering word

Theorem

Every complete perfectly clustering Lyndon word appears exactly once in the tree of perfectly clustering word.

Tree of perfectly clustering word

Theorem

Every complete perfectly clustering Lyndon word appears exactly once in the tree of perfectly clustering word.

Theorem

The tree of circular composition and the tree of complete perfectly clustering Lyndon words are isomorphic.

Tree of perfectly clustering word

Theorem

Every complete perfectly clustering Lyndon word appears exactly once in the tree of perfectly clustering word.

Theorem

The tree of circular composition and the tree of complete perfectly clustering Lyndon words are isomorphic.

Corollary

If w is a complete perfectly clustering word, then their exists a sequence of group morphism

$$\xi_1 \circ \xi_2 \circ \cdots \circ \xi_k(ab) = w$$

such that $\xi_i \in \{\lambda_\ell, \rho_\ell, \lambda_\ell \circ \Delta_\ell, \rho_{N(\ell)} \circ \Delta_{N(\ell)} \mid \ell \in \mathcal{A}\}.$

Primitive element of F(A)

Primitive elements

- ► A basis of the free group *F*(*A*) is a |*A*|-uplet *u* = (*u*₁,...*u*_{|*A*|}) such that the function *a_i* → *u_i* extends to an automorphims of *F*(*A*).
- An element *g* is primitive if there exists elements $h_1, \ldots, h_{|\mathcal{A}|-1}$ such that $(g, h_1, \ldots, h_{|\mathcal{A}|-1})$ is a basis of $F(\mathcal{A})$.
- ► A primitive element of *F*(*A*) is primitive on *A*^{*} but a primitive word on *A*^{*} is not necessarily a primitive element of *F*(*A*).

Primitive elements

Theorem

If w is a perfectly clustering words on A^* , then w is a positive primitive element of F(A).

Idea of the proof :

- λ_{ℓ} and ρ_{ℓ} are automorphisms.
- ▶ If $A \subseteq B$, then a primitive element of F(A) is a primitive element of F(B).
- If *w* is a primitive element of *F*(*A*), then $\lambda_{\ell} \circ \Delta_{\ell}(w)$ and $\rho_{N(\ell)} \circ \Delta_{N(\ell)}(w)$ are primitive element of *F*(*A* \cup *b*).

Primitive elements

Theorem

If w is a perfectly clustering words on A^* , then w is a positive primitive element of F(A).

Theorem (Osbone, Zieschang (1981) and Kassel, Reutenauer (2007))

The word $\{a, b\}^*$ that are conjugates of Christoffel words are exactly the positive primitive elements of the free group $F(\{a, b\})$.

For the free group F(A) the converse is not true : (*cabaaba*, *caba*, *cababa*) is a basis of $F(\{a, b, c\})$, but the word *cabaaba* is not perfectly clustering since BWT(*cabaaba*) = *bcabaaa*.

- Perfectly clustering word are a generalization of Christoffel words.
- Perfectly clustering words are codage of discrete interval exchange transformation.
- We construct a a generalization of the Raney tree.
- We construct a generalization of the tree of dual Christoffel words.
- They can be enumerate using free group automorphism.
- Perfectly clustering words are positive primitive elements of the free group.

Summary

The discrete *r*-interval exchange transformation with $r \in \{2,3\}$ are special, since their exists *gcd* criterion to compute the minimality.

Do you know examples of substitutions on the 4-letters alphabets corresponding to 4-interval exchange transformation?