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The space Ω of unimodular lattices in C2.

Minimal vectors in a lattice.

The diagonal �ow gt =

(
et 0

0 e−t

)
.

A subset T in Ω transverse to the �ow.

The �rst return map on T associated with the �ow.
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Ordinary continued fraction-minimal vector

Let M ∈ SL(2,R) and let Λ = MZ2. A nonzero vector

u = (u1, u2) ∈ Λ is minimal if the only nonzero vectors

x = (x1, x2) ∈ Λ that are in the cylinder

C (u) = {(x1, x2) : |x1| ≤ |u1|, |x2| ≤ |u2|}.
are such that |x1| = |u1| and |x2| = |u2|.
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Ordinary continued fraction-minimal vector

If x ∈ R, M =

(
1 −x
0 1

)
and (p, q) ∈ Z2, q > 0, then the

vector X = M

(
p
q

)
=

(
p − qx

q

)
is a minimal in Λx = MZ2 i�

(p, q) is a best approximation vector of x .

The sequence of minimal vectors Xn =

(
pn − qnx

qn

)
is ordered

according to the height qn. The qn are the denominators of

the convergents of x .
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Consecutive minimal vectors

Two minimal vectors u = (u1, u2) and v = (v1, v2) in lattice Λ
are consecutive if |u2| < |v2| and if the only lattice points in

the interior of the cylinder

C (u, v) = {(x1, x2) : |x1| ≤ |u1| and |x2| ≤ |v2|}
is zero.
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Consecutive minimal vectors

Lemma

If u and v are consective minimal vectors Λ then Λ = Zu + Zv .
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Transversal in SL(2,R)/ SL(2,Z)

Let T be the set of unimodular lattices Λ in R2 such that there

exist two vectors u = (u1, u2) and v = (v1, v2) in Λ such that

|u2|, |v1| < |u1| = |v2| = r ,
The only nonzero vector of Λ in the ball B∞(0, r) are ±u and

±v .
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The transversal T

Clearly u and v are two consecutive minimal vectors of Λ and

λ1(Λ, ‖.‖∞) = λ2(Λ, ‖.‖∞).
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The transversal T

Let u = (u1, u2) and

v = (v1, v2) be in R2.

We want to know whether

Λ = Zu + Zv is in T

The conditions on u and v are

r = |u1| = |v2| > |u2|, |v1|
u ± v /∈ C (u, v)

u1v2 − u2v1 = ±1
We can suppose u2, v2 ≥ 0.

We obtain{
u = r(ε, y),
v = r(−εx , 1)

where ε = ±1, x , y ∈]0, 1[ are
free and r = 1

1+xy
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Transversal, entrance map, hitting time

If u = (u1, u2) and v = (v1, v2) are

two consecutive minimal of a lattice

Λ, then

gtΛ =

(
et 0

0 e−t

)
Λ ∈ T

where

t =
1

2
ln
|v2|
|u1|

.
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Actually, this holds when ±u and ±v are the only nonzero lattice

vectors in the cylinder C (u, v).

This is always true outside a set of zero measure in

SL(2,R)/ SL(2,Z):
The set of lattices with no nonzero point on the axes
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Λ ∈ T , �rst return map
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With t = 1
2

ln |w2|
|v1| , again gtΛ ∈ T
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The �rst return map

u = r(ε, y), v = r(−εx , 1)

w = u + b1/xcv = r(ε(1− b1/xcx), y + b1/xc)
gtv = r ′(−ε, 1

y+b1/xc), gtw = r ′(ε{1/x}, 1)
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Cylinders in C2

For u = (u1, u2), v = (v1, v2) ∈ C2

C (u) = {(x1, x2) ∈ C2 : |x1| ≤ |u1| and |x1| ≤ |u2|}
C (u, v) = {(x1, x2) ∈ C2 : |x1| ≤ |u1| and |x1| ≤ |v2|}
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Lattices over Gauss integers

De�nition

A Gauss lattice in a �nite dimensional C-vector space E is a subset

that

is submodule over the Gauss integers,

is a discrete subset of E ,

generates the vector space E .

If z is a complex number

Λz =

(
1 −z
0 1

)
Z[i ]2

is a lattice in C2 with determinant 1.
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The set of unimodular Gauss lattices in C2

The set of units in Z[i ] is U4 = {±1,±i}

Ω1 = {Λ is a Gauss lattice in C2 s.t. detC(Λ) ∈ U4}

is the set of unimodular lattices in C2.

If Λ = MZ[i ]2 ∈ Ω1 then the matrix M can be chosen in order that

detC(M) = 1, therefore

Ω1 ≈ SL(2,C)/ SL(2,Z[i ])
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De�nition

Let Λ be a Gauss lattice in C2.

A non zero vector u = (u1, u2) ∈ Λ is a minimal vector in Λ if

for every non zero v ∈ Λ, v ∈ C (u)⇒ |v1| = |u1| and
|v2| = |u2|.
Two minimal vectors u = (u1, u2) and v = (v1, v2) are

consecutive if |u2| < |v2| and the only lattice point in the

interior of C (u, v) is zero.

Λ lattice in C2. Sequence of �all� minimal vectors,

(Xn(Λ))n∈D = (z1n, z2n)n∈D

D interval ⊂ Z.
Xn(Λ) and Xn+1(Λ) are consecutive and (|z2n|)n∈D is increasing.

rn(Λ) = |z1n| ↓ and qn(Λ) = |z2n| ↑
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Lemma

Let Λ be a lattice in C2 and let (Xn(Λ))n∈D be the sequence of

minimal vectors of Λ.
1

2
| detC(Λ)| ≤ qn+1(Λ)rn(Λ) ≤ 4

π | detC(Λ)|.
qn+14(Λ) ≥ Cqn(Λ) where C = 1

2
(1 + cos(2π

7
)) > 1.1234

rn+56(Λ) ≤ 1

2
rn(Λ).

By Minkowski convex body Theorem

(πqn+1(Λ)rn(Λ))2 ≤ 16| detR(Λ)| = 16| detC(Λ)|2.

Next,

2qn+1(Λ)rn(Λ) ≥ qn+1(Λ)rn(Λ) + qn(Λ)rn+1(Λ)

≥ | detC(Xn(Λ),Xn+1(Λ))| ≥ | detC(Λ)|.
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Index of lattices spanned by consecutive minimal vectors

Let I = (1 + i)Z[i ] and let J = 1

1+i (Z[i ] \ I ).

Proposition

Let Λ be a Gauss lattice in C2. Suppose that u = (u1, u2) and

v = (v1, v2) are two consecutive minimal vectors in Λ. Call L the

lattice spanned by u and v . Then

1 L has index 1 or 2: [Λ : L] = | detR(L)|
| detR(Λ)| = 1 or 2.

2 If L has index 2 then

Λ = {au + bv : (a, b) ∈ Z[i ]2 ∪ J2}

and U = u,V = 1

1+i (u + v) is a basis of Λ.
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Proof.

Since u and v are consecutive minimal vectors,

|u2| ≤ |v2| and |v1| ≤ |u1|, hence
| detC(Λ)| ≤ | detC(L)| ≤ 2|u1||v2|,

| detR(L)| ≤ 4|u1|2|v2|2 = 4
Vol(C(u,v))

π2
≤ 4

16| detR(Λ)|
π2

.

Therefore
| detR(L)|
| detR(Λ)|

≤ 64

π2
= 6, 48 . . .

This index is the square of the modulus of a Gauss integer, it is the

sum of two squares.

Hence [Λ : L] = 1, 2, 4 or 5
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Proof.

There exists a basis U,V of Λ and a, b and c ∈ Z[i ] such that{
u = aU
v = bU + cV .

Since u is primitive in Λ, a must be a unit in Λ.
Changing U in a−1U, we can suppose a = 1.

|c2| = [Λ : L] = 1, 2, 4 or 5.

Suppose that c = 2. There exists g ∈ Z[i ] such that |g − b
c | ≤

1√
2
.

Since |cg − b| ≤
√
2, |cg − b| = 0, 1 or

√
2.

w = V + gU = −b
cU + 1

c v + gu = cg−b
c u + 1

c v ∈ Λ

If cg − b = 0 then w = 1

c v ∈ Λ, impossible for v is primitive.

If |cg − b| = 1, by convexity w ∈ the interior of C (u, v) impossible.

If |cg − b| =
√
2 then z = ( cg−bc )−1 ∈ Z[i ] and the vector

w ′ = zw − u = z
c v is in Λ. Impossible because | zc | < 1 and v is

primitive. ...... QED
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Reduced basis

De�nition

Let E be a two-dimensional C-vector space equipped with a

C-norm ‖.‖. A basis (u, v) of a Gauss lattice Λ = Z[i ]u + Z[i ]v is

reduced with respect to the norm ‖.‖ if ‖u‖ = λ1(Λ, ‖.‖,Z[i ]) and

‖v‖ = λ2(Λ, ‖.‖,Z[i ]).
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Gauss algorithm

E is a two dimensional C-vector space equipped with an Hermitian

norm |.|E .

Input: A basis (u, v) of a Gauss lattice Λ in E .

1 If |v |E < |u|E , exchange u ↔ v .

2 A := False

3 Main loop: while A = False
1 Compute w = (a + ib)u the orthogonal projection of v on the

line Cu.
2 Find the Gauss integer p closest to a + ib and replace v by

v − pu.
3 If |u|E ≤ |v |E , A := True, else exchange u ↔ v .

Output: (u, v) a reduced basis of Λ.
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Proposition

The above algorithm �nd a reduced basis of Λ = Z[i ]u + Z[i ]v for

the norm |.|E in �nitely many steps.

Lyu, C. Porter, C. Ling, Lattice Reduction over Imaginary

Quadratic Fields with an Application to Compute-and-Forward,

arXiv: May 2019.
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Gauss algorithm and minimal vectors

For t > 0 denote |.|t the Hermitian norm on C2 de�ned by

|(z1, z2)|2t = |tz1|2 + |1t z2|
2.

Proposition

Let v be a minimal vectors in a Gauss lattice Λ ⊂ C2. Set

s =

√
4

π
| detC(Λ)| and t =

s

|v1|

Let (w ,w ′) be a reduced basis of Λ with respect to the norm |.|t .
Then the next minimal vector after v is one of the vectors

zw + z ′w ′ with z , z ′ ∈ Z[i ] and (|z |2 + |z ′|2) < 23.
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Then the next minimal vector after v is one of the vectors

zw + z ′w ′ with z , z ′ ∈ Z[i ] and (|z |2 + |z ′|2) < 23.
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Gauss algorithm and minimal vectors

Proposition

Let u and v be two consecutive minimal vector in a Gauss lattice

Λ ⊂ C2 and let L = Z[i ]u + Z[i ]v . Set

s =

√
4

π
| detC(Λ)| and t =

s

|v1|
,

{
U = u
V = v

or

{
U = u
V = 1

1+i (u + v)
according [L : Λ] = 1 or 2

There is an absolute constant C such that Gauss algorithm

associated with the Hermitian norm |.|t , with input the basis U,V
needs at most C steps.
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Transversal

Let U4 be the group of units in Z[i ]. Let T be the set of Gauss

unimodular lattices Λ in C2 such that detC Λ ∈ U and such that

there exists two vectors u = (u1, u2) and v = (v1, v2) in Λ

1 |u2|, |v1| < |u1| = |v2| = r ,

2 the only nonzero vectors of Λ in the ball B∞(0, r) are in

U4u ∪ U4v .

The vectors u and v associated with Λ are unique up to

multiplicative factors in U4.

The lattice L = Z[i ]u + Z[i ]v has index 1 or 2 in Λ. Therefore the

transversal T is the union of two disjoint pieces T1 and T2

according to the index of L.

dimR T = 5
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Parametrization of T1

Let Ψk : R× D2 → Ω1, k = 1, 2 be the maps de�ned by

Ψ1(θ,w1,w2) = Z[i ]u + Z[i ]v

where

u = u(θ,w1,w2) = r(e iθ, e iθ
′
w2),

v = v(θ,w1,w2) = r(e iθw1, e
iθ′),

r =
1√

|1− w1w2|
,

θ′ = −θ − arg(1− w1w2).

Then for all Λ in T1 there exists exactly one element

(θ,w1,w2) ∈ [0, π
2

[×D2 such that u(θ,w1,w2), v(θ,w1,w2) are the

minimal vectors associated with Λ.
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u = u(θ,w1,w2) = r(e iθ, e iθ
′
w2),

v = v(θ,w1,w2) = r(e iθw1, e
iθ′).

We want that

|au − bv |∞ > r

for all nonzero Gauss integers a, b.
Since

|au − bv |∞ = r max(|ae iθ − be iθw1|, |ae iθ
′
w2 − be iθ

′ |)
= r max(|b||w1 − a

b |, |a||w2 − b
a |).

Hence |au − bv |∞ > r means that either

w1 /∈ D(
a

b
,
1

|b|
)

or

w2 /∈ D(
b

a
,
1

|a|
).
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Proposition

Choosing an appropriate normalization of the Haar, the �ow gt
induces on the transversal a measure ν which has the density

f (θ,w1,w2) =
32

|1− w1w2|4

with respect of the Lebesgue measure of [0, π/2]× D2, using the

parametrization Ψk , k = 1, 2.
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