Multidimensional Continued Fractions and Euclidean Dynamics Leiden March 2020 Minimal vectors in lattices over Gauss integers in \mathbb{C}^2 Nicolas Chevallier

- The space Ω of unimodular lattices in \mathbb{C}^2 .
- Minimal vectors in a lattice.

• The diagonal flow
$$g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$
.

- A subset \mathcal{T} in Ω transverse to the flow.
- The first return map on T associated with the flow.

• Let $M \in SL(2, \mathbb{R})$ and let $\Lambda = M\mathbb{Z}^2$. A nonzero vector $u = (u_1, u_2) \in \Lambda$ is *minimal* if the only nonzero vectors $x = (x_1, x_2) \in \Lambda$ that are in the cylinder

 $C(u) = \{(x_1, x_2) : |x_1| \le |u_1|, |x_2| \le |u_2|\}.$

are such that $|x_1| = |u_1|$ and $|x_2| = |u_2|$.

• Let $M \in SL(2,\mathbb{R})$ and let $\Lambda = M\mathbb{Z}^2$. A nonzero vector $u = (u_1, u_2) \in \Lambda$ is minimal if the only nonzero vectors $x = (x_1, x_2) \in \Lambda$ that are in the cylinder $C(u) = \{(x_1, x_2) : |x_1| \le |u_1|, |x_2| \le |u_2|\}.$ are such that $|x_1| = |u_1|$ and $|x_2| = |u_2|$. •

3/35

• If
$$x \in \mathbb{R}$$
, $M = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$ and $(p, q) \in \mathbb{Z}^2$, $q > 0$, then the vector $X = M \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p - qx \\ q \end{pmatrix}$ is a minimal in $\Lambda_x = M\mathbb{Z}^2$ iff (p, q) is a best approximation vector of x .

• If
$$x \in \mathbb{R}$$
, $M = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$ and $(p, q) \in \mathbb{Z}^2$, $q > 0$, then the vector $X = M \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p - qx \\ q \end{pmatrix}$ is a minimal in $\Lambda_x = M\mathbb{Z}^2$ iff (p, q) is a best approximation vector of x .

• The sequence of minimal vectors $X_n = \begin{pmatrix} p_n - q_n x \\ q_n \end{pmatrix}$ is ordered according to the height q_n . The q_n are the denominators of the convergents of x.

Consecutive minimal vectors

• Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in lattice Λ are *consecutive* if $|u_2| < |v_2|$ and if the only lattice points in the interior of the cylinder

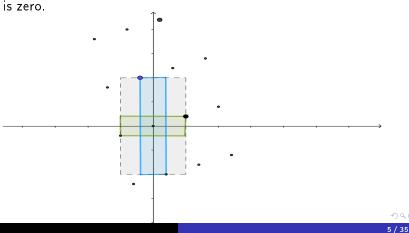
$$\mathcal{C}(u,v) = \{(x_1,x_2): |x_1| \leq |u_1| ext{ and } |x_2| \leq |v_2|\}$$

is zero.

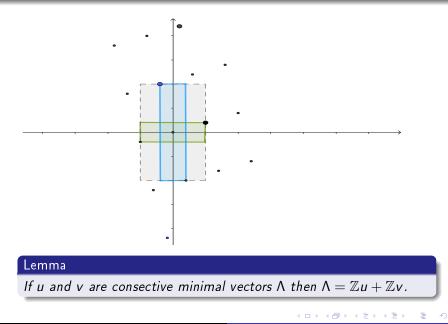
Consecutive minimal vectors

• Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in lattice Λ are *consecutive* if $|u_2| < |v_2|$ and if the only lattice points in the interior of the cylinder

$$\mathcal{C}(u,v) = \{(x_1,x_2): |x_1| \leq |u_1| ext{ and } |x_2| \leq |v_2|\}$$



Consecutive minimal vectors



Transversal in $SL(2,\mathbb{R})/SL(2,\mathbb{Z})$

Let T be the set of unimodular lattices Λ in \mathbb{R}^2 such that there exist two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ such that

Transversal in $SL(2,\mathbb{R})/SL(2,\mathbb{Z})$

Let T be the set of unimodular lattices Λ in \mathbb{R}^2 such that there exist two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ such that

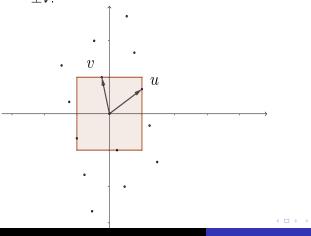
• $|u_2|, |v_1| < |u_1| = |v_2| = r$,

Transversal in $SL(2,\mathbb{R})/SL(2,\mathbb{Z})$

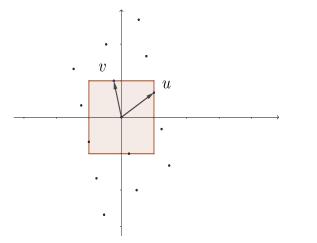
Let T be the set of unimodular lattices Λ in \mathbb{R}^2 such that there exist two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ such that

•
$$|u_2|, |v_1| < |u_1| = |v_2| = r$$

• The only nonzero vector of Λ in the ball $B_{\infty}(0,r)$ are $\pm u$ and $\pm v$.



The transversal T



Clearly *u* and *v* are two consecutive minimal vectors of Λ and $\lambda_1(\Lambda, \|.\|_{\infty}) = \lambda_2(\Lambda, \|.\|_{\infty})$.

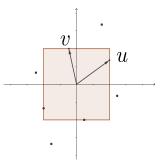
The transversal T

Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be in \mathbb{R}^2 . We want to know whether $\Lambda = \mathbb{Z}u + \mathbb{Z}v$ is in T Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be in \mathbb{R}^2 . We want to know whether $\Lambda = \mathbb{Z}u + \mathbb{Z}v$ is in T

The conditions on u and v are

- $r = |u_1| = |v_2| > |u_2|, |v_1|$
- $u \pm v \notin C(u, v)$
- $u_1v_2 u_2v_1 = \pm 1$

We can suppose $u_2, v_2 \ge 0$.



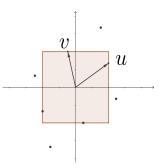
Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be in \mathbb{R}^2 . We want to know whether $\Lambda = \mathbb{Z}u + \mathbb{Z}v$ is in T

The conditions on u and v are

- $r = |u_1| = |v_2| > |u_2|, |v_1|$
- $u \pm v \notin C(u, v)$

•
$$u_1v_2 - u_2v_1 = \pm 1$$

We can suppose $u_2, v_2 \ge 0$.



We obtain

$$\begin{cases} u = r(\varepsilon, y), \\ v = r(-\varepsilon x, 1) \end{cases}$$

where
$$\varepsilon = \pm 1$$
, $x, y \in]0, 1[$ are
free and $r = \frac{1}{1+xy}$

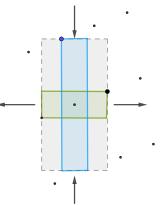
Transversal, entrance map, hitting time

If $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are two consecutive minimal of a lattice Λ , then

$$g_t \Lambda = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \Lambda \in T$$

where

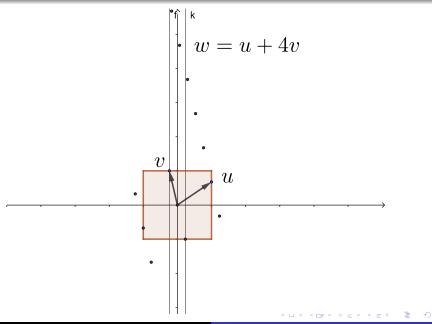
$$t = \frac{1}{2} \ln \frac{|v_2|}{|u_1|}.$$



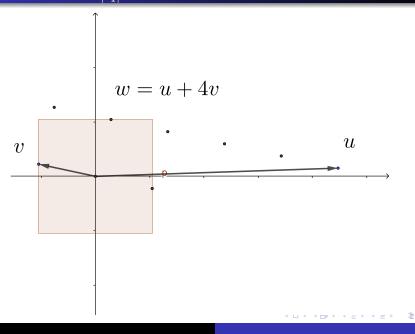
Actually, this holds when $\pm u$ and $\pm v$ are the only nonzero lattice vectors in the cylinder C(u, v).

This is always true outside a set of zero measure in $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$: The set of lattices with no nonzero point on the axes

$\Lambda \in T$, first return map

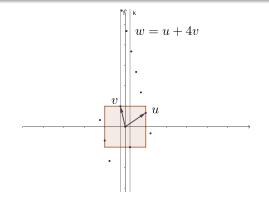


With $t = rac{1}{2} \ln rac{|w_2|}{|v_1|}$, again $g_t \Lambda \in T$



13/35

The first return map



$$\begin{split} u &= r(\varepsilon, y), \ v = r(-\varepsilon x, 1) \\ w &= u + \lfloor 1/x \rfloor v = r(\varepsilon(1 - \lfloor 1/x \rfloor x), y + \lfloor 1/x \rfloor) \\ g_t v &= r'(-\varepsilon, \frac{1}{y + \lfloor 1/x \rfloor}), \ g_t w = r'(\varepsilon\{1/x\}, 1) \end{split}$$

14/35

For
$$u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{C}^2$$

 $C(u) = \{(x_1, x_2) \in \mathbb{C}^2 : |x_1| \le |u_1| \text{ and } |x_1| \le |u_2|\}$
 $C(u, v) = \{(x_1, x_2) \in \mathbb{C}^2 : |x_1| \le |u_1| \text{ and } |x_1| \le |v_2|\}$

₽...

《曰》《卽》《臣》《臣》

Definition

A Gauss lattice in a finite dimensional $\mathbb C\text{-vector}$ space E is a subset that

- is submodule over the Gauss integers,
- is a discrete subset of *E*,

• generates the vector space *E*.

If z is a complex number

$$\Lambda_z = \begin{pmatrix} 1 & -z \\ 0 & 1 \end{pmatrix} \mathbb{Z}[i]^2$$

is a lattice in \mathbb{C}^2 with determinant 1.

The set of units in $\mathbb{Z}[i]$ is $\mathbb{U}_4 = \{\pm 1, \pm i\}$

 $\Omega_1 = \{\Lambda \text{ is a Gauss lattice in } \mathbb{C}^2 \text{ s.t. } \mathsf{det}_\mathbb{C}(\Lambda) \in \mathbb{U}_4\}$

is the set of unimodular lattices in $\mathbb{C}^2.$

If $\Lambda = M\mathbb{Z}[i]^2 \in \Omega_1$ then the matrix M can be chosen in order that $\det_{\mathbb{C}}(M) = 1$, therefore

 $\Omega_1 \approx \mathsf{SL}(2,\mathbb{C})/\operatorname{SL}(2,\mathbb{Z}[i])$

Definition

Let Λ be a Gauss lattice in \mathbb{C}^2 .

- A non zero vector u = (u₁, u₂) ∈ Λ is a minimal vector in Λ if for every non zero v ∈ Λ, v ∈ C(u) ⇒ |v₁| = |u₁| and |v₂| = |u₂|.
- Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are consecutive if $|u_2| < |v_2|$ and the only lattice point in the interior of C(u, v) is zero.

Definition

Let Λ be a Gauss lattice in \mathbb{C}^2 .

- A non zero vector u = (u₁, u₂) ∈ Λ is a minimal vector in Λ if for every non zero v ∈ Λ, v ∈ C(u) ⇒ |v₁| = |u₁| and |v₂| = |u₂|.
- Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are consecutive if $|u_2| < |v_2|$ and the only lattice point in the interior of C(u, v) is zero.

 Λ lattice in $\mathbb{C}^2.$ Sequence of "all" minimal vectors,

$$(X_n(\Lambda))_{n\in D} = (z_{1n}, z_{2n})_{n\in D}$$

D interval $\subset \mathbb{Z}$. $X_n(\Lambda)$ and $X_{n+1}(\Lambda)$ are consecutive and $(|z_{2n}|)_{n\in D}$ is increasing.

$$r_n(\Lambda) = |z_{1n}| \downarrow$$
 and $q_n(\Lambda) = |z_{2n}| \uparrow$

Lemma

Let Λ be a lattice in \mathbb{C}^2 and let $(X_n(\Lambda))_{n \in D}$ be the sequence of minimal vectors of Λ .

- $\frac{1}{2} |\det_{\mathbb{C}}(\Lambda)| \leq q_{n+1}(\Lambda) r_n(\Lambda) \leq \frac{4}{\pi} |\det_{\mathbb{C}}(\Lambda)|.$
- $q_{n+14}(\Lambda) \ge Cq_n(\Lambda)$ where $C = \frac{1}{2}(1 + \cos(\frac{2\pi}{7})) > 1.1234$
- $r_{n+56}(\Lambda) \leq \frac{1}{2}r_n(\Lambda)$.

Lemma

Let Λ be a lattice in \mathbb{C}^2 and let $(X_n(\Lambda))_{n \in D}$ be the sequence of minimal vectors of Λ .

- $\frac{1}{2} |\det_{\mathbb{C}}(\Lambda)| \leq q_{n+1}(\Lambda) r_n(\Lambda) \leq \frac{4}{\pi} |\det_{\mathbb{C}}(\Lambda)|.$
- $q_{n+14}(\Lambda) \ge Cq_n(\Lambda)$ where $C = \frac{1}{2}(1 + \cos(\frac{2\pi}{7})) > 1.1234$
- $r_{n+56}(\Lambda) \leq \frac{1}{2}r_n(\Lambda)$.

By Minkowski convex body Theorem

$$(\pi q_{n+1}(\Lambda)r_n(\Lambda))^2 \leq 16 |\det_{\mathbb{R}}(\Lambda)| = 16 |\det_{\mathbb{C}}(\Lambda)|^2.$$

Lemma

Let Λ be a lattice in \mathbb{C}^2 and let $(X_n(\Lambda))_{n\in D}$ be the sequence of minimal vectors of Λ .

- $\frac{1}{2} |\det_{\mathbb{C}}(\Lambda)| \leq q_{n+1}(\Lambda) r_n(\Lambda) \leq \frac{4}{\pi} |\det_{\mathbb{C}}(\Lambda)|.$
- $q_{n+14}(\Lambda) \ge Cq_n(\Lambda)$ where $C = \frac{1}{2}(1 + \cos(\frac{2\pi}{7})) > 1.1234$
- $r_{n+56}(\Lambda) \leq \frac{1}{2}r_n(\Lambda)$.

By Minkowski convex body Theorem

$$(\pi q_{n+1}(\Lambda)r_n(\Lambda))^2 \leq 16 |\det_{\mathbb{R}}(\Lambda)| = 16 |\det_{\mathbb{C}}(\Lambda)|^2.$$

Next,

$$2q_{n+1}(\Lambda)r_n(\Lambda) \ge q_{n+1}(\Lambda)r_n(\Lambda) + q_n(\Lambda)r_{n+1}(\Lambda) \ \ge |\det_{\mathbb{C}}(X_n(\Lambda), X_{n+1}(\Lambda))| \ge |\det_{\mathbb{C}}(\Lambda)|.$$

Index of lattices spanned by consecutive minimal vectors

Let
$$I = (1 + i)\mathbb{Z}[i]$$
 and let $J = \frac{1}{1+i}(\mathbb{Z}[i] \setminus I)$.

Proposition

Let Λ be a Gauss lattice in \mathbb{C}^2 . Suppose that $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are two consecutive minimal vectors in Λ . Call L the lattice spanned by u and v. Then

• L has index 1 or 2:
$$[\Lambda : L] = \frac{|\det_{\mathbb{R}}(L)|}{|\det_{\mathbb{R}}(\Lambda)|} = 1$$
 or 2.

If L has index 2 then

$$\Lambda = \{au + bv : (a, b) \in \mathbb{Z}[i]^2 \cup J^2\}$$

and U = u, $V = \frac{1}{1+i}(u+v)$ is a basis of Λ .

Since u and v are consecutive minimal vectors,

•
$$|u_2| \leq |v_2|$$
 and $|v_1| \leq |u_1|$, hence
 $|\det_{\mathbb{C}}(\Lambda)| \leq |\det_{\mathbb{C}}(L)| \leq 2|u_1||v_2|$,

•
$$|\det_{\mathbb{R}}(L)| \le 4|u_1|^2|v_2|^2 = 4 \frac{\operatorname{Vol}(C(u,v))}{\pi^2} \le 4 \frac{16|\det_{\mathbb{R}}(\Lambda)|}{\pi^2}$$

æ

★ 문 ► ★ 문 ►

Since u and v are consecutive minimal vectors,

•
$$|u_2| \leq |v_2|$$
 and $|v_1| \leq |u_1|$, hence
 $|\det_{\mathbb{C}}(\Lambda)| \leq |\det_{\mathbb{C}}(L)| \leq 2|u_1||v_2|$,
• $|\det_{\mathbb{R}}(L)| \leq 4|u_1|^2|v_2|^2 = 4\frac{\operatorname{Vol}(C(u,v))}{\pi^2} \leq 4\frac{16|\det_{\mathbb{R}}(\Lambda)|}{\pi^2}$.
Therefore
 $|\det_{\mathbb{R}}(L)| = 64$

$$\frac{|\det_{\mathbb{R}}(L)|}{|\det_{\mathbb{R}}(\Lambda)|} \leq \frac{64}{\pi^2} = 6,48\dots$$

This index is the square of the modulus of a Gauss integer, it is the sum of two squares.

Hence $[\Lambda: L] = 1, 2, 4$ or 5

There exists a basis U,V of Λ and a,b and $c\in\mathbb{Z}[i]$ such that

$$\begin{cases} u = aU \\ v = bU + cV. \end{cases}$$

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\left\{ egin{array}{ll} u={\sf a}U\ v={\sf b}U+{\sf c}V. \end{array}
ight.$$

Since *u* is primitive in Λ , *a* must be a unit in Λ . Changing *U* in $a^{-1}U$, we can suppose a = 1.

22/35

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\left\{ egin{array}{ll} u={\sf a}U\ v={\sf b}U+{\sf c}V. \end{array}
ight.$$

Since *u* is primitive in Λ , *a* must be a unit in Λ . Changing *U* in $a^{-1}U$, we can suppose a = 1. $|c^2| = [\Lambda : L] = 1, 2, 4$ or 5.

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\left\{ egin{array}{ll} u={\sf a}U\ v={\sf b}U+{\sf c}V. \end{array}
ight.$$

Since *u* is primitive in Λ , *a* must be a unit in Λ . Changing *U* in $a^{-1}U$, we can suppose a = 1. $|c^2| = [\Lambda : L] = 1, 2, 4$ or 5. Suppose that c = 2. There exists $g \in \mathbb{Z}[i]$ such that $|g - \frac{b}{c}| \le \frac{1}{\sqrt{2}}$. Since $|cg - b| \le \sqrt{2}$, |cg - b| = 0, 1 or $\sqrt{2}$.

Proof.

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\begin{cases} u = aU \\ v = bU + cV. \end{cases}$$

Since u is primitive in Λ , a must be a unit in Λ . Changing U in $a^{-1}U$, we can suppose a = 1. $|c^2| = [\Lambda : L] = 1, 2, 4$ or 5. Suppose that c = 2. There exists $g \in \mathbb{Z}[i]$ such that $|g - \frac{b}{c}| \le \frac{1}{\sqrt{2}}$. Since $|cg - b| \le \sqrt{2}$, |cg - b| = 0, 1 or $\sqrt{2}$. $w = V + gU = -\frac{b}{c}U + \frac{1}{c}v + gu = \frac{cg - b}{c}u + \frac{1}{c}v \in \Lambda$

If cg - b = 0 then $w = \frac{1}{c}v \in \Lambda$, impossible for v is primitive.

Proof.

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\left\{ egin{array}{ll} u={\sf a}U\ v={\sf b}U+{\sf c}V. \end{array}
ight.$$

Since *u* is primitive in Λ , *a* must be a unit in Λ . Changing *U* in $a^{-1}U$, we can suppose a = 1. $|c^2| = [\Lambda : L] = 1, 2, 4$ or 5. Suppose that c = 2. There exists $g \in \mathbb{Z}[i]$ such that $|g - \frac{b}{c}| \le \frac{1}{\sqrt{2}}$. Since $|cg - b| \le \sqrt{2}$, |cg - b| = 0, 1 or $\sqrt{2}$. $w = V + gU = -\frac{b}{c}U + \frac{1}{c}v + gu = \frac{cg - b}{c}u + \frac{1}{c}v \in \Lambda$

If cg - b = 0 then $w = \frac{1}{c}v \in \Lambda$, impossible for v is primitive. If |cg - b| = 1, by convexity $w \in$ the interior of C(u, v) impossible.

Proof.

There exists a basis U, V of Λ and a, b and $c \in \mathbb{Z}[i]$ such that

$$\begin{cases} u = aU \\ v = bU + cV. \end{cases}$$

Since *u* is primitive in Λ , *a* must be a unit in Λ . Changing U in $a^{-1}U$, we can suppose a = 1. $|c^2| = [\Lambda : L] = 1, 2, 4$ or 5. Suppose that c = 2. There exists $g \in \mathbb{Z}[i]$ such that $|g - \frac{b}{c}| \leq \frac{1}{\sqrt{2}}$. Since $|cg - b| < \sqrt{2}$, |cg - b| = 0, 1 or $\sqrt{2}$. $w = V + gU = -\frac{b}{2}U + \frac{1}{2}v + gu = \frac{cg-b}{2}u + \frac{1}{2}v \in \Lambda$ If cg - b = 0 then $w = \frac{1}{c}v \in \Lambda$, impossible for v is primitive. If |cg - b| = 1, by convexity $w \in$ the interior of C(u, v) impossible. If $|cg - b| = \sqrt{2}$ then $z = (\frac{cg - b}{c})^{-1} \in \mathbb{Z}[i]$ and the vector $w' = zw - u = \frac{z}{c}v$ is in Λ . Impossible because $|\frac{z}{c}| < 1$ and v is QED, primitive.

Definition

Let *E* be a two-dimensional \mathbb{C} -vector space equipped with a \mathbb{C} -norm ||.||. A basis (u, v) of a Gauss lattice $\Lambda = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ is reduced with respect to the norm ||.|| if $||u|| = \lambda_1(\Lambda, ||.||, \mathbb{Z}[i])$ and $||v|| = \lambda_2(\Lambda, ||.||, \mathbb{Z}[i])$.

E is a two dimensional $\mathbb C\text{-vector}$ space equipped with an Hermitian norm $|.|_E.$

E is a two dimensional $\mathbb{C}\text{-vector}$ space equipped with an Hermitian norm $|.|_E.$

- **Input:** A basis (u, v) of a Gauss lattice Λ in E.
 - If $|v|_E < |u|_E$, exchange $u \leftrightarrow v$.

 $A := \mathsf{False}$

- 3 Main loop: while A = False
 - Compute w = (a + ib)u the orthogonal projection of v on the line Cu.
 - **2** Find the Gauss integer p closest to a + ib and replace v by v pu.
 - If $|u|_E \leq |v|_E$, A := True, else exchange $u \leftrightarrow v$.

Output: (u, v) a reduced basis of Λ .

Proposition

The above algorithm find a reduced basis of $\Lambda = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ for the norm $|.|_E$ in finitely many steps.

Proposition

The above algorithm find a reduced basis of $\Lambda = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ for the norm $|.|_E$ in finitely many steps.

Lyu, C. Porter, C. Ling, Lattice Reduction over Imaginary Quadratic Fields with an Application to Compute-and-Forward, *arXiv:* May 2019.

Gauss algorithm and minimal vectors

For t > 0 denote $|.|_t$ the Hermitian norm on \mathbb{C}^2 defined by

$$|(z_1, z_2)|_t^2 = |tz_1|^2 + |\frac{1}{t}z_2|^2.$$

Gauss algorithm and minimal vectors

For t > 0 denote $|.|_t$ the Hermitian norm on \mathbb{C}^2 defined by

$$|(z_1, z_2)|_t^2 = |tz_1|^2 + |\frac{1}{t}z_2|^2.$$

Proposition

Let v be a minimal vectors in a Gauss lattice $\Lambda \subset \mathbb{C}^2$. Set

$$s=\sqrt{rac{4}{\pi}|\det_{\mathbb{C}}(\Lambda)|}$$
 and $t=rac{s}{|v_1|}$

Let (w, w') be a reduced basis of Λ with respect to the norm $|.|_t$. Then the next minimal vector after v is one of the vectors zw + z'w' with $z, z' \in \mathbb{Z}[i]$ and $(|z|^2 + |z'|^2) < 23$.

Proposition

Let u and v be two consecutive minimal vector in a Gauss lattice $\Lambda \subset \mathbb{C}^2$ and let $L = \mathbb{Z}[i]u + \mathbb{Z}[i]v$. Set

$$s=\sqrt{rac{4}{\pi}}|\det_{\mathbb{C}}(\Lambda)|$$
 and $t=rac{s}{|v_1|},$

$$\begin{cases} U = u \\ V = v \end{cases} \text{ or } \begin{cases} U = u \\ V = \frac{1}{1+i}(u+v) \end{cases} \text{ according } [L:\Lambda] = 1 \text{ or } 2 \end{cases}$$

There is an absolute constant C such that Gauss algorithm associated with the Hermitian norm $|.|_t$, with input the basis U, V needs at most C steps.

Let \mathbb{U}_4 be the group of units in $\mathbb{Z}[i]$. Let T be the set of Gauss unimodular lattices Λ in \mathbb{C}^2 such that $\det_{\mathbb{C}} \Lambda \in \mathbb{U}$ and such that there exists two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ

1
$$|u_2|, |v_1| < |u_1| = |v_2| = r$$
,

② the only nonzero vectors of Λ in the ball $B_{\infty}(0, r)$ are in $\mathbb{U}_4 u \cup \mathbb{U}_4 v$.

Let \mathbb{U}_4 be the group of units in $\mathbb{Z}[i]$. Let T be the set of Gauss unimodular lattices Λ in \mathbb{C}^2 such that $\det_{\mathbb{C}} \Lambda \in \mathbb{U}$ and such that there exists two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ

$$|u_2|, |v_1| < |u_1| = |v_2| = r,$$

② the only nonzero vectors of Λ in the ball $B_{\infty}(0, r)$ are in $U_4 u \cup U_4 v$.

The vectors u and v associated with Λ are unique up to multiplicative factors in \mathbb{U}_4 .

Let \mathbb{U}_4 be the group of units in $\mathbb{Z}[i]$. Let T be the set of Gauss unimodular lattices Λ in \mathbb{C}^2 such that $\det_{\mathbb{C}} \Lambda \in \mathbb{U}$ and such that there exists two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ

$$|u_2|, |v_1| < |u_1| = |v_2| = r,$$

② the only nonzero vectors of Λ in the ball $B_{\infty}(0, r)$ are in $U_4 u \cup U_4 v$.

The vectors u and v associated with Λ are unique up to multiplicative factors in \mathbb{U}_4 .

The lattice $L = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ has index 1 or 2 in Λ . Therefore the transversal T is the union of two disjoint pieces T_1 and T_2 according to the index of L.

Let \mathbb{U}_4 be the group of units in $\mathbb{Z}[i]$. Let \mathcal{T} be the set of Gauss unimodular lattices Λ in \mathbb{C}^2 such that $\det_{\mathbb{C}} \Lambda \in \mathbb{U}$ and such that there exists two vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in Λ

$$|u_2|, |v_1| < |u_1| = |v_2| = r,$$

② the only nonzero vectors of Λ in the ball $B_{\infty}(0, r)$ are in $U_4 u \cup U_4 v$.

The vectors u and v associated with Λ are unique up to multiplicative factors in \mathbb{U}_4 .

The lattice $L = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ has index 1 or 2 in Λ . Therefore the transversal T is the union of two disjoint pieces T_1 and T_2 according to the index of L.

$$\dim_{\mathbb{R}} T = 5$$

Parametrization of T_1

Let $\Psi_k:\mathbb{R} imes\mathbb{D}^2 o\Omega_1$, k=1,2 be the maps defined by

$$\Psi_1(\theta, w_1, w_2) = \mathbb{Z}[i]u + \mathbb{Z}[i]v$$

where

$$u = u(\theta, w_1, w_2) = r(e^{i\theta}, e^{i\theta'}w_2),$$

$$v = v(\theta, w_1, w_2) = r(e^{i\theta}w_1, e^{i\theta'}),$$

$$r = \frac{1}{\sqrt{|1 - w_1w_2|}},$$

$$\theta' = -\theta - \arg(1 - w_1w_2).$$

Then for all Λ in T_1 there exists exactly one element $(\theta, w_1, w_2) \in [0, \frac{\pi}{2}[\times \mathbb{D}^2 \text{ such that } u(\theta, w_1, w_2), v(\theta, w_1, w_2) \text{ are the minimal vectors associated with } \Lambda$.

$$u = u(\theta, w_1, w_2) = r(e^{i\theta}, e^{i\theta'}w_2),$$

$$v = v(\theta, w_1, w_2) = r(e^{i\theta}w_1, e^{i\theta'}).$$

$$u = u(\theta, w_1, w_2) = r(e^{i\theta}, e^{i\theta'}w_2),$$

$$v = v(\theta, w_1, w_2) = r(e^{i\theta}w_1, e^{i\theta'}).$$

We want that

$$|au - bv|_{\infty} > r$$

for all nonzero Gauss integers a, b.

$$u = u(\theta, w_1, w_2) = r(e^{i\theta}, e^{i\theta'}w_2),$$

$$v = v(\theta, w_1, w_2) = r(e^{i\theta}w_1, e^{i\theta'}).$$

We want that

$$|au - bv|_{\infty} > r$$

for all nonzero Gauss integers *a*, *b*. Since

$$|au - bv|_{\infty} = r \max(|ae^{i\theta} - be^{i\theta}w_1|, |ae^{i\theta'}w_2 - be^{i\theta'}|)$$
$$= r \max(|b||w_1 - \frac{a}{b}|, |a||w_2 - \frac{b}{a}|).$$

$$u = u(\theta, w_1, w_2) = r(e^{i\theta}, e^{i\theta'}w_2),$$

$$v = v(\theta, w_1, w_2) = r(e^{i\theta}w_1, e^{i\theta'}).$$

We want that

$$|au - bv|_{\infty} > r$$

for all nonzero Gauss integers *a*, *b*. Since

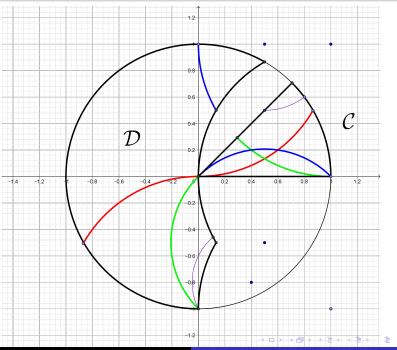
$$|au - bv|_{\infty} = r \max(|ae^{i\theta} - be^{i\theta}w_1|, |ae^{i\theta'}w_2 - be^{i\theta'}|)$$
$$= r \max(|b||w_1 - \frac{a}{b}|, |a||w_2 - \frac{b}{a}|).$$

Hence $|au-bv|_{\infty}>r$ means that either

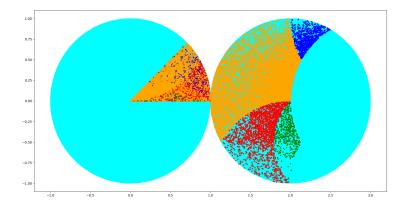
$$w_1 \notin D(\frac{a}{b}, \frac{1}{|b|})$$

or

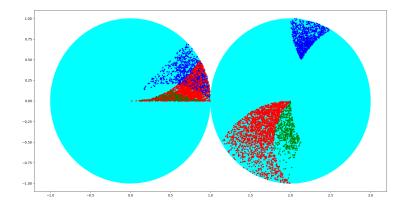
$$w_2 \notin D(\frac{b}{a}, \frac{1}{|a|}).$$

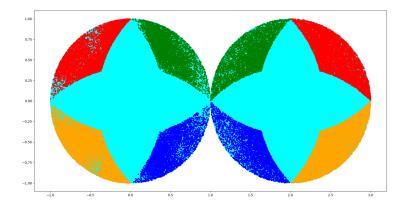


31/35



▲口▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ▶ ④ ◎ ◎





▲日▼▲□▼▲目▼▲目▼ 目 の40

Proposition

Choosing an appropriate normalization of the Haar, the flow g_t induces on the transversal a measure ν which has the density

$$f(\theta, w_1, w_2) = \frac{32}{|1 - w_1 w_2|^4}$$

with respect of the Lebesgue measure of $[0, \pi/2] \times \mathbb{D}^2$, using the parametrization Ψ_k , k = 1, 2.