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Countable shifts

Λ = finite or countable alphabet

Σ = ΛN = shift space

f : Σ→ Σ, f ((xi )i∈N) = (xi+1)i∈N = shift dynamics

Ω =
⋃
n≥0

Λn = set of finite words

Σ(`) = {x ∈ Σ starting by `} = cylinder associated to ` ∈ Ω.
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Bounded distortion

Definition

µ = f -inv. prob. measure has bounded distortion if ∃C ≥ 1 s.t.

C−1µ(Σ(`1)) · µ(Σ(`2)) ≤ µ(Σ(`1`2)) ≤ Cµ(Σ(`1)) · µ(Σ(`2))

for all `1, `2 ∈ Ω.

Bounded distortion =⇒ ergodicity, mixing, ...

Example (Bernoulli shifts)

Λ = {1, . . . , k}, ν({i}) = pi ∈ (0, 1),
k∑

i=1
pi = 1 =⇒ µ = νN has

bounded distortion (with C = 1).

“Bounded distortion = almost Bernoulli”
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Locally constant integrable cocycles

Let G be a matrix group acting on Kd , where K = R, C or H.

Example (some classical groups)

G = GL(d ,R), SL(d ,R), Sp(d ,R), O(p, q), UC(p, q), UH(p, q),
p + q = d , O(d ,H), etc.

Definition (Locally constant integrable cocycle)

It is A : Σ→ G , A((xi )i∈N) = Ax0 ∈ G s.t.
∫

Σ log ‖A±1(x)‖ dµ(x)

=
∑̀
∈Λ

µ(Σ(`)) log ‖A±1
` ‖ <∞.

By Oseledets theorem, we have Lyapunov exponents θ1 ≥ · · · ≥ θd
describing the fiber dynamics of

(f ,A) : Σ×Kd → Σ×Kd , (f ,A)(x , v) = (f (x),A(x)v)
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Rauzy–Veech algorithm
Rauzy gasket
Cassaigne algorithm

Rauzy–Veech algorithm (I): interval exchange maps

An interval exchange map of d ≥ 2 subintervals of a bounded open
interval I is an injective map T : DT → DT−1 where DT ,DT−1 ⊂ I
with #(I − DT ) = #(I − DT−1) = d − 1 and T |c.c. of DT

is a
translation onto a c.c. of DT−1 .
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Rauzy–Veech algorithm (II): translation surfaces

The first return map of a translation flow on a translation surface
is an interval exchange map.

ζA

ζB ζC

ζD

ζA

ζB
ζC

ζD

A B C D

ABCD
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Rauzy–Veech algorithm (III): renormalization

An elementary step of the Rauzy–Veech algorithm takes an i.e.m.
T to the i.e.m. T̂ = first return of T -orbits to Î = (a, b) where
a = min{I − DT , I − DT−1} and b = max{I − DT , I − DT−1}.

Example (Elementary step on i.e.m. with d = 2)

The i.e.m. T (x) =

{
x + α, if 0 < x < 1− α

x − (1− α), if 1− α < x < 1
is taken to

T̂ (x) =

{
x + α, if 0 < x < 1− 2α

x − (1− 2α), if 1− 2α < x < 1− α for 0 < α < 1
2 .

Remark

The previous example is an elementary step of the Euclidean
division algorithm on the lengths 1− α and α of the c.c. of DT .
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Rauzy–Veech algorithm (IV): finite shifts

The Rauzy–Veech algorithm is coded by a finite graph (Rauzy
diagram) whose arrows are decorated with d × d matrices
Bγ = Id + Eαβ ∈ SL(d ,Z) (where Eαβ = elementary matrix).

A D

CB CB

CB

Roughly speaking, the vertices of this graph account for the
permutations of subintervals and the matrices Bγ encode the
changes of lengths of subintervals.
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Rauzy–Veech algorithm (IV): countable shifts

After accelerating (Zorich, Yoccoz, Avila-Viana, etc.), one gets a
loc. constant integ. (Kontsevich-Zorich) cocycle over a countable
shift with a (Masur-Veech) prob. meas. having bounded distortion.

The Lyapunov exponents of this cocycle have the form

θ1 > θ2 ≥ · · · ≥ θg ≥ 0 = · · · = 0︸ ︷︷ ︸
s−1 times

≥ −θg ≥ · · · ≥ −θ2 > −θ1

where d = 2g + s − 1 and g is the genus of the underlying
translation surfaces.

Remark

This structure of the Lyapunov spectrum is explained by the fact
that Bγ ∈ SL(d ,Z) corresponds to an action in the first relative
homology of a translation surface, i.e., Bγ is symplectic in disguise.
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Rauzy gasket (I): special systems of isometries

A special system of isometries is a collection φj : [0, xj ]→ [yj , 1],
1 ≤ j ≤ 3, of translations between intervals with x1 + x2 + x3 = 1.

Some eclectic motivations for the study of systems of isometries
come from:

pseudo-groups of rotations and free actions on R-trees
(Levitt, Gaboriau, Paulin),

Novikov’s problem (Dynnikov, de Leo),

letter freq. in ternary episturmian words (Arnoux, Starosta).
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Rauzy gasket (II): Rauzy–Dynnikov algorithm

Similarly to the case of interval exchange maps, we can
renormalize special systems of isometries as follows.

The parameter space is ∆ = {(x1, x2, x3) ∈ R3
+ : x1 + x2 + x3 = 1}.

Let ∆j = {(x1, x2, x3) ∈ ∆ : xj ≥
∑

k 6=j xk}, 1 ≤ j ≤ 3. The
projectivizations of

M1 =

 1 1 1
0 1 0
0 0 1

 , M2 =

 1 0 0
1 1 1
0 0 1

 , M3 =

 1 0 0
0 1 0
1 1 1


induce weakly contracting maps fj : ∆→ ∆j , j = 1, 2, 3.

We renormalize a parameter outside the hole ∆ \
⋃3

j=1 ∆j by
applying the inverse of the appropriate fj .
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Rauzy gasket (III): Rauzy gasket

The Rauzy gasket is the non-empty compact subset R of ∆ s.t.

R = f1(R) ∪ f2(R) ∪ f3(R).

C. Matheus Simplicity of Lyapunov exponents and Galois theory



Introduction
Some MCF algorithms

Simplicity criteria
Some applications

Rauzy–Veech algorithm
Rauzy gasket
Cassaigne algorithm

Rauzy gasket (IV): countable shifts

The Rauzy-Dynnikov algorithm is also coded by a finite graph
whose arrows are decorated by matrices in SL(3,Z).

By accelerating (and using thermodynamical methods), one gets a
loc. constant integ. cocycle over a countable shift with a
(Avila-Hubert-Skripchenko) prob. meas. with bounded distortion.

Remark

An analogous discussion holds for the fully subtractive algorithm
because it is “dual” to the Rauzy-Dynnikov algorithm (as it was
first noticed by Arnoux-Starosta).
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Selmer and Cassaigne algorithms

The (homogenous) Selmer algorithm sends (x1, x2, x3) ∈ ∆ with
0 < x1 < x2 < x3 to 1

1−x1
(x1, x2, x3 − x1) ∈ ∆, etc.

It was noticed by Cassaigne the dynamics can be also encoded by
the algorithm

(x1, x2, x3) ∈ ∆ 7→
{

(x1 − x3, x3, x2) if x1 > x3

(x2, x1, x3 − x1) if x1 < x3

C. Matheus Simplicity of Lyapunov exponents and Galois theory
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Countable shifts

In the same spirit of the Rauzy-Veech algorithm, the Cassaigne
algorithm was accelerated by Fougeron-Skripchenko to produce a
loc. constant integ. cocycle over a countable shift with a prob.
meas. with bounded distortion.
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Furstenberg simplicity criterion for SL(2,R)

Theorem (Furstenberg)

Consider a loc. constant SL(2,R)-valued cocycle A : Σ→ SL(2,R)
over a Bernoulli shift (Σ, µ) (i.e., a finitely supported random walk
on SL(2,R)). If

the group generated by A(Σ) is not contained in a conjugated
of SO(2,R) nor preserves a line in R2, and

the group generated by A(Σ) does not preserve a pair of lines,

then θ1 > 0.

Remark

We shall see that these assumptions are particular instances of
Zariski-density (cf. Guivarc’h-Raugi, Goldsheid-Margulis) and
pinching and twisting (cf. Avila-Viana).
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Guivarc’h-Raugi and Goldsheid-Margulis simplicity criteria

Let G be a semisimple Lie group.

Theorem (Guivarc’h-Raugi, Goldsheid-Margulis)

Consider a loc. constant G -valued cocycle A : Σ→ G over a
Bernoulli shift (Σ, µ) (i.e., a finitely supported random walk on G ).
If the monoid generated by A(Σ) is Zariski dense in G , then the
Lyapunov exponents are “as simple as possible”: the Lyapunov
vector belongs to the interior of the Weyl chamber.

Example

For G = SO(p, q), q ≤ p, a typical diagonal matrix has the form
diag(eθ1 , . . . , eθq , 1, . . . , 1︸ ︷︷ ︸

p−q times

, e−θq , . . . , e−θ1) and, hence, a “simple”

Lyapunov spectrum is θ1 > · · · > θq > 0p−q > −θq > · · · > −θ1.
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Avila-Viana simplicity criteria (I)

Theorem (I)

Consider a loc. constant integ. cocycle A : Σ→ GL(d ,C) over a
countable shift with a prob. meas. having bounded distortion. If

A is pinching: ∃ a finite word ` = (`0, . . . , `n−1) ∈ Ω s.t. all
eigenvalues of A` := A`n−1 . . .A`0 have distinct moduli;

A is twisting: ∃ a finite word k ∈ Ω s.t. Ak(F ) ∩ F ′ = {0} for
all A`-invariant n-plane F and (d − n)-plane F ′, 1 ≤ n ≤ d ,

then the Lyapunov spectrum of A is simple.

Remark

It is crucial to get a single element Ak twisting all A`-invariant
subspaces at the same time: e.g., A0 = diag(2, 1/2) and
A1=rotation by π/2 lead to zero exponents.
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Avila-Viana simplicity criteria (II)

Theorem (II)

Consider a loc. constant integ. cocycle A : Σ→ Sp(2d ,R) over a
countable shift with a prob. meas. having bounded distortion. If

A is pinching: ∃ a finite word ` ∈ Ω s.t. all eigenvalues of A`

are real and simple;

A is twisting: ∃ k ∈ Ω s.t. Ak(F ) ∩ F ′ = {0} for all A`-inv.
isotropic F and coisotropic F ′ with dimF + dimF ′ = 2d ,

then the Lyapunov spectrum of A is simple.
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Zariski-density versus pinching and twisting

Zariski density implies pinching and twisting, but the converse is
not true in general.

On the other hand, Zariski density is easier to check in practice
and it allows for an uniform statement independently of the
semisimple Lie group G .

For this reason, Möller, Yoccoz and I looked for simplicity criteria
closer to the Zariski density assumption of Guivarc’h-Raugi and
Goldsheid-Margulis.
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Galois-theoretical simplicity criterion

Theorem (M.-Möller-Yoccoz)

Let G = SL(d) or Sp(2d). Consider a loc. const. integ. cocycle
A : Σ→ G (Z) over a countable shift with a prob. meas. with
bounded distortion. If the monoid generated by A(Σ) contains two
Galois-pinching elements (i.e., their characteristic polynomials are
irreducible with all roots ∈ R and largest possible Galois group)
with disjoint splitting fields, then A has simple Lyapunov spectrum.

Remark

This result holds for other semisimple Lie groups (after adjusting
the definition of Galois-pinching).
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Galois-pinching and Zariski density

The Galois-theoretical simplicity criterion is closer to Zariski
density thanks to the following results of Prasad-Rapinchuk:

any Zariski-dense subgroup of G (Z) contains a
Galois-pinching element;

if a monoid Γ ⊂ G (Z) contains a Galois-pinching element γ1

and an element γ2 of infinite order not commuting with γ1,
then the Zariski closure of Γ is G or the subgroup H
associated to the longest roots.
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How to check the Galois-theoretical criterion in practice?

Let P(x) = x4 + ax3 + bx2 + ax + 1 ∈ Z[x ] be the characteristic
polynomial of an element of Sp(4,Z).

By Galois theory, P has the largest possible Galois group if and
only if ∆1 := a2 − 4b + 8, ∆2 := (b + 2 + 2a)(b + 2− 2a) and
∆1∆2 are not squares. In this case, the quadratic subfields of the
splitting field are Q(

√
∆1), Q(

√
∆2), Q(

√
∆1∆2).

Moreover, P has real, positive, simple roots if and only if ∆1 > 0,
t := −a− 4 > 0 and d := b + 2 + 2a > 0.

Remark

Rivin found some interesting polynomial time (mostly probabilistic)
algorithms to compute Galois groups of characteristic polynomials,
to determine the Zariski denseness assumption in Guivarc’h-Raugi
and Goldsheid-Margulis theorems when G = SL(d) or Sp(2d), etc.
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Zorich phenomenon, square-tiled surfaces, ...

Avila-Viana famously used their simplicity criterion to establish
that the Lyapunov spectrum of the accelerations of the
Rauzy-Veech algorithm have the form

θ1 > θ2 > · · · > θg > 0s−1 > −θg > · · · > −θ2 > −θ1,

so that the deviations of ergodic averages of almost all i.e.m. T are

N−1∑
n=0

f (T n(x)) =

(∫
f

)
N + c2(f , x)Nθ2/θ1 + . . .

M.-Möller-Yoccoz used the Galois-theoretical criterion together
with Faltings’ theorem (on rational points on genus > 1 curves) to
show the simplicity of the Lyapunov spectra of the cocycles over
finite extensions of the Gauss map associated to the “majority” of
square-tiled surfaces in H(4).
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Novikov’s problem (I)

Novikov wanted to understand the trajectories of electrons in a
metal subjected to an uniform magnetic field.

Mathematically, some of these electrons travel along the
intersection of Fermi surfaces and the family of planes orthogonal
to the magnetic field.
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Novikov’s problem (II)

The diffusion rate of typical trajectories is driven by −θ3/θ1 where
θ1 ≥ θ2 ≥ θ3 are the Lyapunov exponents of the Rauzy gasket.
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Novikov’s problem (III)

By the duality with the fully subtractive algorithm, one has
θ1 > 0 > θ2 ≥ θ3 (after Avila-Delecroix).

Since θ1 + θ2 + θ3 = 0 (because the cocycle is SL(3,Z)-valued),
Avila-Hubert-Skripchenko could apply the Galois-theoretical
simplicity criterion to get θ1 > 0 > θ2 > θ3 and, a fortiori,

−θ3/θ1 > 1/2
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Uniform approximation exponent of Cassaigne’s algorithm

In a recent work, Fougeron-Skripchenko used Lagarias’ work and
the Galois-theoretical simplicity criterion to check that the
positivity of the uniform approximation exponent

1− θ2/θ1

of Cassaigne algorithm: in a nutshell, the Lyapunov spectrum
θ1 > θ2 > θ3 of this algorithm is simple because the matrices 1 2 1

1 1 1
1 2 2

 and

 1 2 2
2 4 3
1 1 1


are Galois-pinching with disjoint splitting fields (as their
characteristic polynomials x3 − 4x2 + 1 and x3 − 6x2 + 1 have
discriminants 229 and 33 · 31, etc.).
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Concluding remarks

It is clear that this list of applications of these simplicity criteria
based on Galois theory and Zariski density is incomplete, and I
hope that these techniques (together with suitable numerical
support) will fit the context of many others MCF algorithms.

Thank you! Merci! Spaśıbo!
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