Invariants in verification

ANR Codys Peter Habermehl IRIF

21 november 2018

Overview

- What is an invariant ?
- What are the major issues concerning invariants in verification ?
 - How to define invariants ?
 - How to verify invariants ?
 - How to obtain invariants ?

What is an invariant ?

- C : a set of possible configurations (of a system)
- $R \subseteq C \times C$: a transition relation
- For S \subseteq C: R(S) := {s' : there exists s in S s.t. (s,s') \in R}
- Init \subseteq C: a set of initial configurations
- Reach(Init) := R*(Init) := Init ∪ R(Init) ∪ R(R(Init))....
- Inv \subseteq C is an invariant, iff Reach \subseteq Inv

Example

- 1: x = 3
- 2: while x > 0 :
- 3: $x = 2^*x 1$
- A program has configurations
- Here: a configuration is a pair (pc,x)
- A (Loop) Invariant : x > 0
- This invariant is not inductive.

Inductive Invariant

- Init \subseteq Inv
- $R(Inv) \subseteq Inv$
 - x = 3
 - while x > 0:

x = 2*x-1

• Inductive invariant: x > 1

What is a « best » invariant ?

- A smallest invariant wrt. \subseteq
- Reach is an inductive invariant
 - Init \subseteq Reach
 - R(Reach) \subseteq Reach
- Of course Reach might be very « complicated »
- Having an invariant which is sufficiently strong to prove a property is enough.
- We consider safety properties: Nothing bad is ever going to happen, systems always stay save, never violates an assertion,...
- Includes non-termination but not termination

Example

x = 3

while x > 0:

$$x = 2*x - 1$$

assert(x is odd)

- Invariant x > 1 is not sufficiently strong to prove that the assertion always holds
- Another Invariant: {x in Nat: x > 2 and x is odd}
- Reach is not needed here.

Major issues

- How to define invariants ?
- How to verify invariants ?
- How to obtain (compute) invariants ?

How to define invariants ?

- Depends on the program (system) on hand
- Programs with
 - Integer variables
 - Floats
 - Arrays
 - Dynamic data structures (Lists, Trees, etc.)
 - Concurrency
 - ...
- Suitable logics to describe sets of configurations
 - Hoare-style verification, Variants of predicate logic

Logical formalisms to describe invariants

- For basic data structures : predicate logic (Floyd-Hoare)
- Integer (rational) variables :
 - Intervals (with congruence information)
 - Convex polyhedra
 - Linear inequalities
 -
- Dynamic data structures : Separation logic
 - allows to reason about the heap (shape invariants, shape analysis,...)

How to verify invariants ?

- An invariant Inv is typically just a formula in some logic describing a set of configurations
- $Inv \subseteq C$
- Init \subseteq Inv
- R(Inv) \subseteq Inv
- The logical formalism should be able to express these properties
- Expressing Reach ?
- Decidability of these properties is a bonus
- Tradeoff between expressibility and decidability

How to get invariants

- Ask student(s) to find invariants
- For special cases, compute all invariants
- Abstraction techniques (Abstract interpretation)
- Learning methods

Compute special invariants

- For simple programs
 - Example (related to the Kannan-Lipton orbit problem :

 $\mathbf{x} = \mathbf{x}_0$; while True : $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$; assert ($\mathbf{x} \neq \mathbf{y}$)

- Fix a set Invs of potential invariants
 - Convex polyhedra, linear inequalities, polynomials,...
 - might be given by a scheme
- Does there always exist an invariant from Invs showing the property ?
- Compute the set of invariants $\mathsf{I}\subseteq\mathsf{Invs}$
- Compute the best (strongest) invariant(s) in Invs

How to get invariants ? Abstract interpretation

- Fix a « simple » abstract domain
- Compute an abstract fixpoint overapproximating Reach
- Example :
 - x=3 [3..3]

while x > 0:

 $x = x^{*}2 - 1$ [3..5] \rightarrow [3.. ∞] (« widening »)

How to get invariants ?

- A wide range of abstract domains
- Abstract interpretation can be combined with CEGAR (Counter-example guided abstraction refinement)
 - Start with an abstraction
 - Compute invariant
 - If too coarse (not strong enough) to prove property, one gets (a) counter-example(s)
 - Refine abstraction and restart

Learning invariants

- The method implemented in DAIKON
- Take a set Invs of potential invariants
- Run the program and throw out successively candidates which are revealed to be not invariants

Learning Invariants (2)

- Use of classical machine learning techniques
- Learning from examples
 - Learner wants to infer a description of a set from a teacher
 - Teacher produces examples (positive or negative) or (stronger) Learner can explicitly ask if some elements are in the set
 - Learner hypothesizes a description of the set
 - Teacher validates or gives counterexample

Learning invariants (3)

- Teacher can produce positive and negative examples easily
- In the context of invariants, what is a counterexample ?
- Hyp is not inductive :
 - x in Hyp, but R(x) not in Hyp
- Has lead to a new framework :
 - ICE (Implication counter-examples) learning

Transition invariants

- Generalisation to transition relations
- $R^*:= R \cup R \circ R \cup R \circ R \circ R \dots$
- Transition invariant : $\mathsf{R}^* \subseteq \mathsf{Tinv} \subseteq \mathsf{C} \mathrel{x} \mathsf{C}$
- Typically more difficult to obtain than an invariant
- Allows for example to prove termination (if Tinv satisfies some properties)

Is an invariant really an invariant ?

- Real life is not a model
- One has to be careful with theoretical invariants which are not correct on a machine