Invariants in verification

ANR Codys
Peter Habermehl IRIF

21 november 2018
Overview

• What is an invariant?
• What are the major issues concerning invariants in verification?
 – How to define invariants?
 – How to verify invariants?
 – How to obtain invariants?
What is an invariant?

- C : a set of possible configurations (of a system)
- $R \subseteq C \times C$: a transition relation
- For $S \subseteq C$:
 $R(S) := \{s' : \text{there exists } s \in S \text{ s.t. } (s,s') \in R\}$
- $\text{Init} \subseteq C$: a set of initial configurations
- $\text{Reach(Init)} := R^*(\text{Init}) := \text{Init} \cup R(\text{Init}) \cup R(R(\text{Init}))\ldots$
- $\text{Inv} \subseteq C$ is an invariant, iff $\text{Reach} \subseteq \text{Inv}$
Example

1: \text{x = 3}
2: \text{while } x > 0 :
3: \quad x = 2x - 1

- A program has configurations
- Here: a configuration is a pair \text{(pc,x)}
- A (Loop) Invariant: \text{x > 0}
- This invariant is not inductive.
Inductive Invariant

- \text{Init} \subseteq \text{Inv}
- R(\text{Inv}) \subseteq \text{Inv}
- x = 3
 - \text{while } x > 0:
 - x = 2x - 1
- Inductive invariant: \(x > 1 \)
What is a « best » invariant ?

• A smallest invariant wrt. ⊆
• Reach is an inductive invariant
 – Init ⊆ Reach
 – R(Reach) ⊆ Reach
• Of course Reach might be very « complicated »
• Having an invariant which is sufficiently strong to prove a property is enough.
• We consider safety properties: Nothing bad is ever going to happen, systems always stay save, never violates an assertion,…
• Includes non-termination but not termination
Example

\[x = 3 \]

while \(x > 0 \):
 \[x = 2^x - 1 \]
 assert(\(x \) is odd)

- Invariant \(x > 1 \) is not sufficiently strong to prove that the assertion always holds
- Another Invariant: \(\{ x \in \text{Nat}: x > 2 \text{ and } x \text{ is odd} \} \)
- Reach is not needed here.
Major issues

- How to define invariants?
- How to verify invariants?
- How to obtain (compute) invariants?
How to define invariants?

- Depends on the program (system) on hand
- Programs with
 - Integer variables
 - Floats
 - Arrays
 - Dynamic data structures (Lists, Trees, etc.)
 - Concurrency
 - ...
- Suitable logics to describe sets of configurations
 - Hoare-style verification, Variants of predicate logic
Logical formalisms to describe invariants

• For basic data structures: predicate logic (Floyd-Hoare)
• Integer (rational) variables:
 – Intervals (with congruence information)
 – Convex polyhedra
 – Linear inequalities
 – ….
• Dynamic data structures: Separation logic
 – allows to reason about the heap (shape invariants, shape analysis,...)
How to verify invariants?

- An invariant Inv is typically just a formula in some logic describing a set of configurations
 - Inv ⊆ C
 - Init ⊆ Inv
 - R(Inv) ⊆ Inv
- The logical formalism should be able to express these properties
- Expressing Reach ?
- Decidability of these properties is a bonus
- Tradeoff between expressibility and decidability
How to get invariants

- Ask student(s) to find invariants
- For special cases, compute all invariants
- Abstraction techniques (Abstract interpretation)
- Learning methods
Compute special invariants

• For simple programs
 – Example (related to the Kannan-Lipton orbit problem:
 \[x = x_0 \; \text{while True : } x = Ax + b ; \text{ assert (}x \neq y\)]
• Fix a set Invs of potential invariants
 – Convex polyhedra, linear inequalities, polynomials,...
 – might be given by a scheme
• Does there always exist an invariant from Invs showing the property ?
• Compute the set of invariants \(I \subseteq \text{Invs} \)
• Compute the best (strongest) invariant(s) in Invs
How to get invariants?
Abstract interpretation

• Fix a « simple » abstract domain
• Compute an abstract fixpoint overapproximating Reach
• Example :
 x=3 [3..3]
 while x > 0 :
 x = x*2 – 1 [3..5] → [3..∞] (« widening »)
How to get invariants?

- A wide range of abstract domains
- Abstract interpretation can be combined with CEGAR (Counter-example guided abstraction refinement)
 - Start with an abstraction
 - Compute invariant
 - If too coarse (not strong enough) to prove property, one gets (a) counter-example(s)
 - Refine abstraction and restart
Learning invariants

- The method implemented in DAIKON
- Take a set Invs of potential invariants
- Run the program and throw out successively candidates which are revealed to be not invariants
Learning Invariants (2)

- Use of classical machine learning techniques
- Learning from examples
 - Learner wants to infer a description of a set from a teacher
 - Teacher produces examples (positive or negative) or (stronger) Learner can explicitly ask if some elements are in the set
 - Learner hypothesizes a description of the set
 - Teacher validates or gives counterexample
Learning invariants (3)

- Teacher can produce positive and negative examples easily
- In the context of invariants, what is a counterexample?
- Hyp is not inductive:
 - x in Hyp, but $R(x)$ not in Hyp
- Has lead to a new framework:
 - ICE (Implication counter-examples) learning
Transition invariants

- Generalisation to transition relations
- \(R^* := R \cup R \circ R \cup R \circ R \circ R \ldots \)
- Transition invariant: \(R^* \subseteq T_{inv} \subseteq C \times C \)
- Typically more difficult to obtain than an invariant
- Allows for example to prove termination (if \(T_{inv} \) satisfies some properties)
Is an invariant really an invariant?

- Real life is not a model
- One has to be careful with theoretical invariants which are not correct on a machine