
Invariants in verification

ANR Codys
Peter Habermehl IRIF

21 november 2018

21 november 2018 Peter Habermehl ANR Codys 2

Overview

● What is an invariant ?
● What are the major issues concerning

invariants in verification ?
– How to define invariants ?

– How to verify invariants ?

– How to obtain invariants ?

21 november 2018 Peter Habermehl ANR Codys 3

What is an invariant ?

● C : a set of possible configurations (of a system)
● R ⊆ C x C: a transition relation
● For S ⊆ C:

R(S) := {s’ : there exists s in S s.t. (s,s’) ∈ R}
● Init ⊆ C: a set of initial configurations
● Reach(Init) := R*(Init) := Init ∪ R(Init) ∪ R(R(Init))….
● Inv ⊆ C is an invariant, iff Reach ⊆ Inv

21 november 2018 Peter Habermehl ANR Codys 4

Example

1: x = 3

2: while x > 0 :

3: x = 2*x – 1

● A program has configurations
● Here: a configuration is a pair (pc,x)
● A (Loop) Invariant : x > 0
● This invariant is not inductive.

21 november 2018 Peter Habermehl ANR Codys 5

Inductive Invariant

● Init ⊆ Inv
● R(Inv) ⊆ Inv

x = 3

while x > 0:

 x = 2*x-1
● Inductive invariant: x > 1

21 november 2018 Peter Habermehl ANR Codys 6

What is a « best » invariant ?

● A smallest invariant wrt. ⊆
● Reach is an inductive invariant

– Init ⊆ Reach

– R(Reach) ⊆ Reach

● Of course Reach might be very « complicated »
● Having an invariant which is sufficiently strong to prove a property

is enough.
● We consider safety properties: Nothing bad is ever going to

happen, systems always stay save, never violates an assertion,…
● Includes non-termination but not termination

21 november 2018 Peter Habermehl ANR Codys 7

Example

x = 3

while x > 0 :

 x = 2*x – 1
assert(x is odd)

● Invariant x > 1 is not sufficiently strong to prove
that the assertion always holds

● Another Invariant: {x in Nat: x > 2 and x is odd}
● Reach is not needed here.

21 november 2018 Peter Habermehl ANR Codys 8

Major issues

● How to define invariants ?
● How to verify invariants ?
● How to obtain (compute) invariants ?

21 november 2018 Peter Habermehl ANR Codys 9

How to define invariants ?

● Depends on the program (system) on hand
● Programs with

– Integer variables

– Floats

– Arrays

– Dynamic data structures (Lists, Trees, etc.)

– Concurrency

– …

● Suitable logics to describe sets of configurations
– Hoare-style verification, Variants of predicate logic

21 november 2018 Peter Habermehl ANR Codys 10

Logical formalisms to describe
invariants

● For basic data structures : predicate logic (Floyd-Hoare)
● Integer (rational) variables :

– Intervals (with congruence information)

– Convex polyhedra

– Linear inequalities

– ….

● Dynamic data structures : Separation logic
– allows to reason about the heap (shape invariants, shape

analysis,...)

21 november 2018 Peter Habermehl ANR Codys 11

How to verify invariants ?

● An invariant Inv is typically just a formula in some logic
describing a set of configurations

● Inv ⊆ C
● Init ⊆ Inv
● R(Inv) ⊆ Inv
● The logical formalism should be able to express these

properties
● Expressing Reach ?
● Decidability of these properties is a bonus
● Tradeoff between expressibility and decidability

21 november 2018 Peter Habermehl ANR Codys 12

How to get invariants

● Ask student(s) to find invariants
● For special cases, compute all invariants
● Abstraction techniques (Abstract interpretation)
● Learning methods

21 november 2018 Peter Habermehl ANR Codys 13

Compute special invariants

● For simple programs
– Example (related to the Kannan-Lipton orbit problem :

 x = x0 ; while True : x = Ax + b ; assert (x ≠ y)

● Fix a set Invs of potential invariants
– Convex polyhedra, linear inequalities, polynomials,...

– might be given by a scheme

● Does there always exist an invariant from Invs showing the property ?
● Compute the set of invariants I ⊆ Invs
● Compute the best (strongest) invariant(s) in Invs

21 november 2018 Peter Habermehl ANR Codys 14

How to get invariants ?
Abstract interpretation

● Fix a « simple » abstract domain
● Compute an abstract fixpoint

overapproximating Reach
● Example :

x=3 [3..3]

while x > 0 :
x = x*2 – 1 [3..5] → [3..∞] (« widening »)

21 november 2018 Peter Habermehl ANR Codys 15

How to get invariants ?

● A wide range of abstract domains
● Abstract interpretation can be combined with

CEGAR (Counter-example guided abstraction
refinement)
– Start with an abstraction

– Compute invariant

– If too coarse (not strong enough) to prove property,
one gets (a) counter-example(s)

– Refine abstraction and restart

21 november 2018 Peter Habermehl ANR Codys 16

Learning invariants

● The method implemented in DAIKON
● Take a set Invs of potential invariants
● Run the program and throw out successively

candidates which are revealed to be not
invariants

21 november 2018 Peter Habermehl ANR Codys 17

Learning Invariants (2)

● Use of classical machine learning techniques
● Learning from examples

– Learner wants to infer a description of a set from a
teacher

– Teacher produces examples (positive or negative) or
(stronger) Learner can explicitly ask if some
elements are in the set

– Learner hypothesizes a description of the set

– Teacher validates or gives counterexample

21 november 2018 Peter Habermehl ANR Codys 18

Learning invariants (3)

● Teacher can produce positive and negative
examples easily

● In the context of invariants, what is a
counterexample ?

● Hyp is not inductive :
– x in Hyp, but R(x) not in Hyp

● Has lead to a new framework :

ICE (Implication counter-examples) learning

21 november 2018 Peter Habermehl ANR Codys 19

Transition invariants

● Generalisation to transition relations
● R*:= R ∪ R○R ∪ R○R○R ….
● Transition invariant : R* ⊆ Tinv ⊆ C x C
● Typically more difficult to obtain than an

invariant
● Allows for example to prove termination (if Tinv

satisfies some properties)

21 november 2018 Peter Habermehl ANR Codys 20

Is an invariant really an invariant ?

● Real life is not a model
● One has to be careful with theoretical invariants

which are not correct on a machine

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

