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General setting for this talk

X is a compact metric space that is endowed with metric d .

(X ,T ) is a topological dynamical system (TDS).

M(X ,T )= the space of all T -invariant Borel probability
measures on X .This space is a nonempty convex set and is
compact with respect to the weak-∗ topology.

E(X ,T ) ⊂M(X ,T ) = ext(M(X ,T )).
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Birkhoff Theorem

Let f : X → R be a continuous function.

We denote
Snf (x) :=

∑n−1
k=0 f (T k(x)) and call this a Birkhoff sum and we call

lim
n→∞

1

n
Snf (x)

a Birkhoff average.

α(f ) = limn→∞
1
n

infx∈X Snf (x).

β(f ) = limn→∞
1
n

supx∈X Snf (x).

α(f ) and β(f ) are called the minimal and maximal ergodic averages
of f , respectively.
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Ergodic optimization of Birkhoff averages

Since α(f ) = −β(−f ), let us focus the discussion on the quantity β.

It can also be characterized as

β(f ) = sup
µ∈M(X ,T )

∫
fdµ.

Compactness of M(X ,T ) implies the following attainability
property : there exists at least one measure µ ∈M(X ,T ) for which
β(f ) =

∫
fdµ; such measures will be called maximizing measures,

denote Mmax(f ).
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Zero temperature

We study the behavior of the equilibrium measures (µt) for a
potential tf when t →∞.

In the thermodynamic interpretation of the parameter t, it is the
inverse temperature.
The limits t →∞ are called zero temperature limits.
The accumulation points of the measure (µt) as t →∞ are
called ground states.
Zero temperature limits laws are also related to ergodic
optimization, because for t →∞ any accumulation point µ of
the equilibrium measures (µt) will be a maximizing measure f .∫

fdµ = lim
t→∞

∫
fdµt , (1.1)

and
hµ(T ) = lim

t→∞
hµt (T ). (1.2)
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Multifractal formalism of Birkhoff averages

One may ask about the size of the set of points

Ef (α) = {x ∈ X :
1

n
Snf (x)→ α as n→∞},

which we call α-level set of Birkhoff spectrum,

for a given value α
from the set

L = {α ∈ R : ∃x ∈ X and lim
n→∞

1

n
Snf (x) = α},

which we call Birkhoff spectrum. That size is usually calculated in
terms of topological entropy. Let Z ⊂ X , we denote by htop(Z )
topological entropy of T restricted to Z or, simply, the topological
entropy of Z .
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Restricted variational principle

We denote by PΦ(t) the topological pressure for a potential tΦ.

It is
well known that when (X ,T ) is a transitive subshift of finite type
and f is a continuous function, then

Ef (α) 6= ∅ ⇔ α ∈ Ω := {
∫

fdµ : µ ∈M(X ,T )},

and

htop(Ef (α)) = inf
t∈R
{Pf (t)− αt : t ∈ R}

= sup{hµ(T ) : µ ∈M(X ,T ) with

∫
fdµ = α} ∀α ∈ Ω.

(1.3)

(1.3) is called the restricted variational principle.

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 8 / 32



Restricted variational principle

We denote by PΦ(t) the topological pressure for a potential tΦ. It is
well known that when (X ,T ) is a transitive subshift of finite type
and f is a continuous function, then

Ef (α) 6= ∅ ⇔ α ∈ Ω := {
∫

fdµ : µ ∈M(X ,T )},

and

htop(Ef (α)) = inf
t∈R
{Pf (t)− αt : t ∈ R}

= sup{hµ(T ) : µ ∈M(X ,T ) with

∫
fdµ = α} ∀α ∈ Ω.

(1.3)

(1.3) is called the restricted variational principle.

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 8 / 32



Restricted variational principle

We denote by PΦ(t) the topological pressure for a potential tΦ. It is
well known that when (X ,T ) is a transitive subshift of finite type
and f is a continuous function, then

Ef (α) 6= ∅ ⇔ α ∈ Ω := {
∫

fdµ : µ ∈M(X ,T )},

and

htop(Ef (α)) = inf
t∈R
{Pf (t)− αt : t ∈ R}

= sup{hµ(T ) : µ ∈M(X ,T ) with

∫
fdµ = α} ∀α ∈ Ω.

(1.3)

(1.3) is called the restricted variational principle.

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 8 / 32



Restricted variational principle

We denote by PΦ(t) the topological pressure for a potential tΦ. It is
well known that when (X ,T ) is a transitive subshift of finite type
and f is a continuous function, then

Ef (α) 6= ∅ ⇔ α ∈ Ω := {
∫

fdµ : µ ∈M(X ,T )},

and

htop(Ef (α)) = inf
t∈R
{Pf (t)− αt : t ∈ R}

= sup{hµ(T ) : µ ∈M(X ,T ) with

∫
fdµ = α} ∀α ∈ Ω.

(1.3)

(1.3) is called the restricted variational principle.

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 8 / 32



Potentials

Assume that φn is a continuous positive-valued function on X .

We
say that Φ := {log φn}∞n=1 is

a subadditive potential if

0 < φn+m(x) ≤ φn(x)φm(T n(x)) ∀x ∈ X ,m, n ∈ N.

an almost additive potential if ∃C ≥ 1,∀x ∈ X ,m, n ∈ N, we
have

C−1φn(x)φm(T n)(x) ≤ φn+m(x) ≤ Cφn(x)φm(T n(x)) .

an additive potential if

φn+m(x) = φn(x)φm(T n(x)) ∀x ∈ X ,m, n ∈ N.
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Linear cocycles

The natural example of subadditive potentials is matrix cocycles.

More precisely, given a measurable map A : X → GL(d ,R) taking
values into the space d × d invertible matrices. We consider the
products

An(x) = A(T n−1(x)) . . .A(T (x))A(x).

The pair (T ,A) is called a linear cocycle. It induces a skew-product
dynamics F on X × Rd by (x , v) 7→ X × Rd , whose n-th iterate is
therefore

(x , v) 7→ (T n(x),An(x)v).

If T is invertible then so is F . Moreover,
F−n(x) = (T−n(x),A−n(x)v) for each n ≥ 1, where

A−n(x) := A(T−n(x))−1A(T−n+1(x))−1...A(T−1(x))−1.
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An example of linear cocycles: Random matrix

cocycles

A simple class of linear cocycles is one step cocycles which is defined
as follows.

X = {1, ..., k}Z is a symbolic space.

T : X → X is a shift map, i.e. T (xl)l = (xl+1)l

Given a finite set of matrices A = {A1, . . . ,Ak} ⊂ GL(d ,R)

We define the function A : X → GL(d ,R) by

A(x) = Ax0 .

In this case, we say that(T ,A) is a one step cocycle.
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Lyapunov exponents

By Kingman’s subadditive ergodic theorem, for any µ ∈M(X ,T )
and µ almost every x ∈ X such that log+ ‖A‖ ∈ L1(µ), the following
limit, called the top Lyapunov exponent at x , exists:

χ(x ,A) := lim
n→∞

1

n
log ‖An(x)‖, (1.4)

where ‖A‖ the Euclidean operator norm of a matrix A (i.e. the
largest singular value of A), that is subadditive i.e.,

0 < ‖An+m(x)‖ ≤ ‖An(x)‖‖An(Tm(x))‖ ∀x ∈ X ,m, n ∈ N.

Let us denote χ(µ,A) =
∫
χ(.,A)dµ. If the measure µ is ergodic

then χ(x ,A) = χ(µ,A) for µ-almost every x ∈ X .
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Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖

= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures), but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures), but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖

= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures), but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures), but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures),

but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Ergodic optimization of Lyapunov exponents

β(A) := limn→∞
1
n

log supx∈X ‖An(x)‖= supµ∈M(X ,T ) χ(µ,A).

α(A) := limn→∞
1
n

log infx∈X ‖An(x)‖= infµ∈M(X ,T ) χ(µ,A).

β(A) is always attained by at least one measure (which will be called
a Lyapunov maximizing measure, we denote by Mmax(A) the set of
such measures), but that is not necessarily the case for α(A).

Reza Mohammadpour (LaBRI) Lyapunov spectrum properties November 20, 2020 13 / 32



Continuity of the minimal Lyapunov exponent

In the one step cocycles case,

Bochi and Morris proved α(A) is continuous under
1−domination assumption.

Breuillard and Sert extended their result to the joint spectrum
under domination assumption. Moreover, they gave a
counterexample that shows that we have discontinuity of the
minimal Lyapunov exponent for generic cocycles.
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Derivative cocycles

The linear cocycles generated by

a diffemorphism map T : M → M on a closed Riemannian
manifold M and

a family of maps A(x) := DxT : TxM → TT (x)M

are called derivative cocycles. Moreover, when T : X → X is an
Anosov diffemophism (or expanding map), Bowen showed that there
exists a symbolic coding of T by a subshift of finite type. Therefore,
we always assume that

T : Σ→ Σ is a topologically mixing subshift of finite type

and A : X → GL(d ,R) is a Hölder continuous.
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Derivative cocycles

Fix θ ∈ (0, 1) and endow Σ with the metric d defined as follows: for
x = (xi)i∈Z , y = (yi)i∈Z ∈ Σ, we have

d(x , y) = θk

where k is the largest integer such that xi = yi for all |i | < k .
Equipped with such metric, the shift operator T becomes a
hyperbolic homeomorphism of a compact metric space Σ.

In general, we know much more about one step cocycles that about
the more general derivative cocycles, but here are some of the results
known in the derivative cocycles situation.
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Fiber bunched cocycles

A r−Hölder continuous function A is called fiber bunched if for any
x ∈ Σ,

‖A(x)‖‖A(x)−1‖θr < 1,

where θ is the hyperbolicity constant defining the metric on the base
Σ.

We say that the linear cocycle (T ,A) is fiber-bunched if its
generator A is fiber-bunched. We denote by H r

b(Σ,GL(d ,R))) the
family of r-Hölder-continuous and fiber bunched functions.
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Fiber bunched cocycles

Bonatti, Gómez-Mont, and Viana showed that the Hölder continuity
and the fiber bunched assumption A ∈ H r

b(Σ,GL(d ,R)) imply the
convergence of the canonical holonomy H s�u.

That means, for any
y ∈ W s�u

loc (x),

H s
y←x := lim

n→∞
An(y)−1An(x) and Hu

y←x := lim
n→−∞

An(y)−1An(x).
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Generic cocycles

Definition (Bonatti and Viana)

The linear cocycle F satisfies the pinching and twisting condition if
∃X 3 p = T q(p) periodic point such that

P all eigenvalues of Aq(p) have distinct values.

T there exists a homoclinic point z of p such that ψp
z twists the

eigendirections of Aq(p), where

ψp
z := H s

p←z ◦ Hu
z←p.
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Generic cocycles

v2

v1
ψz
p(v1)

p z
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Results

W := {A ∈ H r
b(Σ,GL(d ,R)) : A is pinching and twisting}.

is open and dense.

Level set

E (α) = {x ∈ X : lim
n→∞

1

n
log ‖An(x)‖ = α}.

Lyapunov spectrum

L = {α : ∃x ∈ X such that lim
n→∞

1

n
log ‖An(x)‖ = α}.

ω = {χ(µ,A);µ ∈M(X ,T )}.
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Results

Lyapunov spectrum is closed and convex:

for one step cocycles under irreducibility assumption (Feng).

for generic cocycles W (Park).

for fiber bunched cocycles H r
b(Σ,GL(2,R)) (Mohammadpour).
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Results

Theorem (Mohammadpour)

Let A ∈ W . Then,

L = {α, htop(E (α)) > 0}.

Furthermore, α 7→ htop(E (α)) is concave for α ∈ L̊.

αmin αmax

PΦA

α
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Conjecture

Conjecture (Hunt and Ott)

For typical chaotic systems (X ,T ) and typical smooth functions f ,
the maximizing measure is unique and has low complexity.

In our context, low complexity means either zero topological entropy
or supported on a periodic orbit.

Theorem (Contreras)

If (X ,T ) is an expanding map, then a generic Lipschitz function
f : X → R has a unique maximizing measure, which is supported on
a periodic orbit. Moreover, the zero temperature limit exits.

Now, we have the following open question:

Is the conjecture true for the Lyapunov exponent? (That means, we
replace Birkhoff sums by matrix products.)
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Restricted varitional principle

Denote ΦA = {log ‖An‖}.

Theorem (Mohammadpour)

Assume that T : X → X is a topologically mixing subshift of finite
type on the compact metric space X . Suppose that
A : X → GL(d ,R) belongs to generic cocycles W . Then,

htop(E (α)) = sup{hµ(T ) : µ ∈M(X ,T ), χ(µ,A) = α}
= inf{PΦA(q)− α.q : q ∈ R} ∀α ∈ ω.
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= inf{PΦA(q)− α.q : q ∈ R} ∀α ∈ ω.
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Restricted varitional principle

q q

PΦ(q)

PΦ

htop(E (α)) = hµq(T ) = PΦ(q) + αq

PΦ(q)

Figure: PΦ(.) is a convex function for q ∈ R. The blue line is tangent to
PΦ(.) at q with slope −α = P ′Φ(q).
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Zero temperature limit

Let Φ = {log φn}∞n=1 be a subadditive potential.

χ(µ,Φ) = limn→∞
1
n

∫
log φn(x)dµ(x).

β(Φ) = limn→∞
1
n

log supx∈X φn(x) = supµ∈M(X ,T ) χ(µ,Φ).
Mmax(Φ) = {µ ∈M(X ,T ) : β(Φ) = χ(µ,Φ)}.

Theorem (Mohammadpour)

Let (X ,T ) be a TDS such that the entropy map µ 7→ hµ(T ) is upper
semi-continuous and topological entropy htop(T ) <∞. Suppose that
Φ = {log φn}∞n=1 is a subadditive potential on the compact metric X .
Then any weak∗ accumulation µ of a family of equilibrium measures
(µt) for potentials tΦ, where t > 0, has a Lyapunov maximizing
measure for Φ. Moreover,

(i) χ(µ,Φ) = limti→∞ χ(µti ,Φ),

(ii) hµ(T ) = limti→∞ hµti (T ) = max{hν(T ), ν ∈Mmax(Φ)}.
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Zero temperature limits for Gibbs measures

We denote by Ln the set of admissible words Σ with length n.

We
denote by ΦA the subadditive potential {log ‖An‖}.

Definition
We say that µt has the following Gibbs property for tΦA, where t > 0
: There exists C ≥ 1 such that for any n ∈ N and [J] ∈ Ln, we have

C−1 ≤ µt([J])

e−nPA(t)‖An(x)‖
≤ C ,

for any x ∈ [J].

Theorem (Mohammadpour)

Let A ∈ W . Then the previous theorem holds for Gibbs measures.
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Continuity of entropy spectrum

Theorem (Mohammadpour)

Suppose Al ,A ∈ W with Al → A, and tl , t ∈ R+ such that tl → t.
Let αtl = P

′

ΦAl
(tl) and αt = P

′

ΦA
(t).

Then

lim
l→∞

htop(EAl
(αl)) = htop(EA(α)).

Moreover,

htop(E (αt))→ htop(E (β(A)) when t →∞.
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Continuity of the minimal Lyapunov exponent

Theorem (Mohammadpour)

Let (X ,T ) be a TDS such that the entropy map µ 7→ hµ(T ) is upper
semi-continuous and htop(T ) <∞.

Suppose that A : X → GL(d ,R)
is a matrix cocycle over the TDS (X ,T ) and (Cx)x∈X is an invariant
cone field on X . Then α(A) can be approximated by the Lyapunov
exponents of the equilibrium measures for the almost additive
potential tΦA, where t ∈ R. Moreover, a minimizing measure for A
exists.
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Continuity of the minimal Lyapunov exponent

Theorem (Mohammadpour)

Let (X ,T ) be a topologically mixing subshift of finite type. Suppose
that An,A : X → GL(d ,R) are matrix cocycles over (X ,T ), and ΦA
has bounded distortion.

Assume that (Cx)x∈X is an invariant cone field
on X . Then α(An)→ α(A) when An → A.

Definition (Bochi and Gourmelon)

We say that A is i-dominated if there exist constants C > 1,
0 < τ < 1 such that

σi+1(An(x))

σi(An(x))
≤ Cτ n, ∀n ∈ N, x ∈ X .
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Continuity of the minimal Lyapunov exponent

Theorem (Crovisier and Potrie)

Assume that f ∈ Diffr (M). Let K be an invariant compact set and
fix d+ ≥ 1. Then K is endowed with a Df -contracted cone-field C
with dimension d+ if and only if there exists a dominated splitting
TKM = E ⊕< F with d+ = dim(F ).

Theorem (Mohammadpour)

Let Ak ,A ∈ H r
b(Σ,GL(d ,R)). Assume that Ak and A satisfy

1−domination. Then α(An)→ α(A), when An → A.

Thank You!
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