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Context

I Probabilistic analysis

Object/experiment/execution?

⇒ Models, averages, distribution?
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Plan of the talk

1. Sturmian words
General Sturmian words
Substitutive words

2. Recurrence function
Definition and classical results
Our models and results for generic words

3. Substitutive Sturmian words
Model for quadratic irrationals
Main result

4. Toolbox for the proofs

5. Conclusion



Complexity and Sturmian words

Definition

Complexity function of an infinite word u ∈ AN

pu : N→ N , pu(n) = #{factors of length n in u} .

Important property

u ∈ AN is not eventually periodic

⇐⇒ pu(n+ 1)>pu(n) for all n ∈ N
.

Sturmian words are the “simplest” that are not eventually periodic.

Definition

u ∈ {0, 1}N is Sturmian ⇐⇒ pu(n) = n+ 1 for each n ≥ 0.
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Explicit construction (discrete coding)

Given α, β ∈ [0, 1) we define

Sα,β(n) = b(n+ 1)α+ βc − bnα+ βc ,
Sα,β(n) = d(n+ 1)α+ βe − dnα+ βe ,

for n ≥ 0.

0 0 1 0 0 1 0 1 0 0

Figure: Sequences Sα,β

and Sα,β are discrete
codings of y = αx+ β.

Theorem [Morse & Hedlund ’40]

I u is Sturmian ⇐⇒ there are α, β ∈ [0, 1), α irrational, such that

ui = Sα,β(i) , for all i ≥ 0 , or ui = Sα,β(i) , for all i ≥ 0 .
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Substitutive words

Definition (Substitutive word)

A word u is substitutive iff σ(u) = u for a primitive morphism σ.

Primitivity: σ is primitive iff the associated matrix Mσ is primitive

Mσ =

[ 0 1

0 |σ(0)|0 |σ(0)|1
1 |σ(1)|0 |σ(1)|1

]

Example (Fibonacci word)

Consider the primitive morphism σ : 0 7→ 01, 1 7→ 0

Mσ =

[ 0 1

0 1 1
1 1 0

]
its fixed point f∞ can be constructed by iteration

f0 = 0, f1 = 01, f2 = 010, f3 = 01001, . . . f∞ = 0100101001001 . . . .
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Substitutive Sturmian words
Slope α of a substitutive Sturmian word is a quadratic irrational,

(1) Solution of a quadratic equation over Z determined by Mσ.

(2) Eventually periodic continued fraction expansion (CFE).

Reminder for CFEs

α = [a1, a2, . . .] :=
1

a1 +
1

a2 +
. . .

where a1, a2, . . . ∈ Z>0 are called the quotients.

Theorem (Characterization by continued fractions)

The Sturmian word
S(α, α) is substitutive

⇐⇒
α is qi and preperiod is of

form given here.



Substitutive Sturmian words
Slope α of a substitutive Sturmian word is a quadratic irrational,

(1) Solution of a quadratic equation over Z determined by Mσ.

(2) Eventually periodic continued fraction expansion (CFE).

Reminder for CFEs

α = [a1, a2, . . .] :=
1

a1 +
1

a2 +
. . .

where a1, a2, . . . ∈ Z>0 are called the quotients.

Theorem (Characterization by continued fractions)

The Sturmian word
S(α, α) is substitutive

⇐⇒
α is qi and preperiod is of

form given here.



Substitutive Sturmian words
Slope α of a substitutive Sturmian word is a quadratic irrational,

(1) Solution of a quadratic equation over Z determined by Mσ.

(2) Eventually periodic continued fraction expansion (CFE).

Reminder for CFEs

α = [a1, a2, . . .] :=
1

a1 +
1

a2 +
. . .

where a1, a2, . . . ∈ Z>0 are called the quotients.

Theorem (Characterization by continued fractions)

The Sturmian word
S(α, α) is substitutive

⇐⇒
α is qi and preperiod is of

form given here.



Substitutive Sturmian words
Slope α of a substitutive Sturmian word is a quadratic irrational,

(1) Solution of a quadratic equation over Z determined by Mσ.

(2) Eventually periodic continued fraction expansion (CFE).

Reminder for CFEs

α = [a1, a2, . . .] :=
1

a1 +
1

a2 +
. . .

where a1, a2, . . . ∈ Z>0 are called the quotients.

Theorem (Characterization by continued fractions)

The Sturmian word
S(α, α) is substitutive

⇐⇒
α is qi and preperiod is of

form given here.



Recurrence

Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

Ru(n) = inf {m ∈ N : every factor of length m

contains all the factors of length n} .

I Cost we have to pay to discover the factors if we start from an
arbitrary point in u = u1u2 . . .

I Inequality relating the functions,
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Definition (Recurrence function)

Consider an infinite word u. Its recurrence function is:

Ru(n) = inf {m ∈ N : every factor of length m

contains all the factors of length n} .

I Cost we have to pay to discover the factors if we start from an
arbitrary point in u = u1u2 . . .

I Inequality relating the functions,

Ru(n) ≥ n︸︷︷︸
first factor

+ pu(n)− 1︸ ︷︷ ︸
count +1

for every other factor

.



Recurrence of Sturmian words: a link to arithmetic

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Rα(n) = n− 1 + qk−1(α) + qk(α) , for qk−1(α) ≤ n < qk(α).

Truncating the expansion at depth k we get a convergent

pk(α)

qk(α)
=

1

a1 +
1

a2 +
. . . 1

ak

.

The denominators qk(α) are called the continuants of α and

qk+1(α) = ak+1qk(α) + qk−1(α) .



Recurrence quotient

S(α, n) :=
Rα(n) + 1

n
= 1+

qk−1(α) + qk(α)

n
, qk−1(α) ≤ n < qk(α) .
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Recurrence quotient α = e−1.
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3.5

Rα(n)
n

Recurrence quotient α = φ−2.

Shape depends strongly on α and position of n within [qk−1, qk):

I Worst case. On left S(α, qk−1) = 2 + ak +O(1/ak).

I Best case. On right S(α, qk − 1) = 2 +O(1/ak).
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Studies of the recurrence function

• Previous studies of Rα(n) give

I information about extreme cases.

I results for almost all α.

Thm (Morse & Hedlund ’40) ∀ε > 0, for almost every α

lim sup
n→∞

S(α, n)

log n
=∞ , lim

n→∞

S(α, n)

(log n)1+ε
= 0 .

• In our probabilistic setting we

I fix an integer n (we want n→∞ ...)

I pick an irrational α uniformly at random from
(1) the “generic” reals from [0, 1]
(2) quadratic irrationals of “size” ≤ D and let D →∞.

I study expectations Eα[S(α, n)], distributions Pα (S(α, n) ≤ λ)
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Theorem (uniform α ∈ (0, 1), [R.,Vallée,17])

The random variable α 7→ S(α, n) admits a limiting distribution

lim
n→∞

P(α : S(α, n) ≤ λ) =

∫
[2,λ]

g(y)dy ,

for λ ≥ 2 (and 0 otherwise), where the density g equals

g(λ) =

{
12
π2

1
λ−1 log(1 + λ−2

1 ) if λ ∈ [2, 3]
12
π2

1
λ−1 log(1 + 1

λ−2) if λ ∈ [3,∞)
.

Figure: Histogram with ε = 1/n.
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0

0.1

0.2

0.3

0.4

Figure: Limit density.



For qk−1(α) ≤ n < qk(α),

S(α, n) = 1 +
qk−1(α)+qk(α)

n = 1 + qk(α)
n

(
qk−1(α)
qk(α)

+ 1
)

= f
(
qk−1(α)
qk(α)

, qk(α)n

)
,

with

f(x, y) = 1 + y(1 + x) , (x, y) ∈ D := {(x, y) ∈ R≥0 : xy ≤ 1 < y} .

Theorem (uniform α ∈ (0, 1), [R.,Vallée,17] )

Limit distribution for α 7→ S(α, n) (+ more general class) given by

lim
n→∞

P (α : S(α, n) ≤ λ) =
6

π2

∫∫
Dλ
ω(x, y)dxdy ,

Dλ = {(x, y) ∈ D : f(x, y) ≤ λ}, ω(x, y) = 2
y(1+x) .
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The domain Dλ
λ = 2.5, λ = 3.5.
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D3. 5



For qk−1(α) ≤ n < qk(α),

S(α, n) = 1 +
qk−1(α)+qk(α)

n = 1 + qk(α)
n

(
qk−1(α)
qk(α)

+ 1
)

= f
(
qk−1(α)
qk(α)

, qk(α)n

)
,

with

f(x, y) = 1 + y(1 + x) , (x, y) ∈ D := {(x, y) ∈ R≥0 : xy ≤ 1 < y} .

Theorem (uniform α ∈ (0, 1), [R.,Vallée,17] )

Limit distribution for α 7→ S(α, n) (+ more general class) given by

lim
n→∞

P (α : S(α, n) ≤ λ) =
6

π2

∫∫
Dλ
ω(x, y)dxdy ,

Dλ = {(x, y) ∈ D : f(x, y) ≤ λ}, ω(x, y) = 2
y(1+x) .

0.2 0.4 0.6 0.8 1
x

0.5

1

1.5

2

2.5

3

y

D2. 5

The domain Dλ
λ = 2.5, λ = 3.5.

0.2 0.4 0.6 0.8 1
x

0.5

1

1.5

2

2.5

3

y

D3. 5



Simplifying assumptions for the talk.

I Slopes α that are reduced quadratic irrationals, i.e., corresponding

to purely periodic expansions.

I Periods may be primitive or not. Here we omit this detail.

Thus fix α =
[
m1, . . . ,mp

]
, i.e., period (m1, . . . ,mp).

Definition (`-th tour)

The `-th tour of α is the interval

Γ`(α) :=
(
q`p(α), q(`+1)p(α)

]
.
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Theorem (Rescaling of the tours)

Fix α =
[
m1, . . . ,mp

]
, i.e., period (m1, . . . ,mp).

Then for every fixed r the following limit exists

Qr(α) := lim
`→∞

q`p+r(α)

q`p(α)
,

furthermore convergence is exponential in `.

5 10 15
log(n)

1

2

3

4

5

Rα(n)
n

Figure: Logarithmic plot of the
recurrence quotient S(α, n) for

α = [3, 3, 3, 1, 1] = 5
√

317−63
86
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Model for quadratic irrationals

Quadratic irrationals present two striking features

I Countable and dense subset of [0, 1].

I Periodic structure (after re-scaling) with respect to tours.

Model takes these into account

I Pick α unifomly at random from the finite

SD :=
{
α quadratic irrational : %(α) ≤ D

}
,

I Restriction to `-th tour Γ`(α)

S`(α, n) =[[n ∈ Γ`(α)]]S(α, n) .
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Main result for substitutive Sturmian words

For quadratic irrationals
probabilities are discrete and defined from

RD(`, λ) :=
{

(α, n) : α ∈ SD, n ∈ Γ`(α), S(α, n) ≤ λ
}
,

Main result (R.,Vallée,19)

Limit distribution for α 7→ S(α, n) over quadratic irrationals

lim
D,u,`→∞

∣∣∣RD(`, λ) ∩ { n
q`p
∈ (u, θu)}

∣∣∣
(logD) · |SD| · u · (θ − 1)

=
6

π2

∫∫
Dλ
ω(x, y)dxdy ,

Dλ = {(x, y) ∈ D : f(x, y) ≤ λ}, ω(x, y) = 2
y(1+x) .



An analytic “dictionary”

A prefix (m1, . . . ,mk) of the CFE defines an homography g ∈ Hk

g(x) :=
1

m1 +
1

. . . +
1

mk + x

associated with an operator, its generating function,

H[g],s[f ](x) := |g′(x)|s/2f(g(x)) .

Generating functions.

I Hs :=
∑
g∈HH[g],s describes all prefixes of depth 1.

I Hk
s = Hs ◦ · · · ◦Hs describes all prefixes of depth k.

I and (I−Hs)
−1

= I + Hs + H2
s + . . . describes all prefixes.
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Generating functions.

I Hs :=
∑
g∈HH[g],s describes all prefixes of depth 1.

I Hk
s = Hs ◦ · · · ◦Hs describes all prefixes of depth k.

I and (I−Hs)
−1

= I + Hs + H2
s + . . . describes all prefixes.



Origin of the transfer operator Hs

For the Gauss map T : x = [a1, . . .] 7→ { 1x} = [a2, . . .],

Question: If f ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[f ](x) =
∑
g∈H

∣∣g′(x)
∣∣ f (g(x))

=
∑
m≥0

1

(m+ x)2
f

(
1

m+ x

)
.

=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[f ](x) =
∑
g∈H

∣∣g′(x)
∣∣s f (g(x)) .
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Principles of the proofs

Mellin transform of f : [0,∞)→ C is defined by

f?(ρ) :=

∫ ∞
0

f(u)uρ−1du .

Key properties:

I Singularities of Mellin transform transfer into limits.

f(u) ∼ Res[f?(ρ); s = σ] · u−σ (1 +O(ua)) , u→ 0+ .

I Harmonic sums produce generating functions of Dirichlet type

G(x) :=
∑

λkg(µkx) =⇒ G∗(ρ) =
(∑

λkµ
−ρ
k

)
· g∗(ρ) .
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Inverse branches and mirrors
For α = [m1,m2, . . .], let Seq(α) be the set of prefix homographies

g(x) :=
1

m1 +
1

. . . +
1

mk + x

, b(g)(x) :=
1

m1 +
1

. . . +
1

mk−1 + x

.

Important properties.
I Continuant q(g) := qk(α) is just

|g′(0)|−1/2 .

I Mirror ĝ satisfies

ĝ(0) = q(b(g))
q(g) , ĝ′(0) = g′(0) .

I For Dλ, set Ag(t, n, λ) = 1Dλ

(
ĝ(t), |ĝ

′(t)|−1/2

n

)
,

[[ Λ(α, n) ≤ λ]] =
∑

g∈Seq(α)

Ag(0, n, λ) .
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q(g) , ĝ′(0) = g′(0) .

I For Dλ, set Ag(t, n, λ) = 1Dλ

(
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Scheme for the proof : 3 steps

1. Set up the target GFs:

S`(s) :=
∑
h∈H+

ε(h)−sC`(h) , C`(h) =
∑

g:h`�g≺h`+1

Ag(0,
q[h`]
u , λ) ,

where ε(h) := |h′(h?)|−1/2 is size of h? = [m1, . . . ,mp].

2. To study limit u→ 0, take Mellin transforms

S`(s, ρ) :=
∑
h∈H+

ε(h)−s〈u 7→ C`(h)〉ρ ,

the “taking out the harmonics” comes in handy.

3. As `→∞ generating function (of Mellin transforms!)
related to trace of operators

f 7→ H(s+ρ)/2(I −H(s+ρ)/2)
−1 [Lλ,ρ · (I −Hs/2)

−1[f ]
] ]
.
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Step 2 : Mellin transforms !
Given our cost

C`(h) =
∑

g:h`�g≺h`+1

Ag(0,
q[h`]
u , λ) ,

convenient to write g = h` ◦ g, with g ≺ h,

then

Ag

(
0,
q[h`]

u
, λ

)
= Aĝ

(
ĥ`(0),

1

u
, λ

)
.

Transform expressed in terms of suffix operator

〈C`(h)〉ρ =
∑

v suffix of ĥ
v∈H+

〈
u 7→ Av

(
ĥ`(0), 1u , λ

)〉
ρ

=
∑

v suffix of ĥ
v∈H+

|v′(y)|ρ/2Lλ,ρ(y) = G[ĥ],ρ/2[Lλ,ρ](y) ,

where y = ĥ`(0). ⇒ Note. ĥ`(0)→ ĥ? and ε(h) = ε(ĥ).
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v∈H+

|v′(y)|ρ/2Lλ,ρ(y) = G[ĥ],ρ/2[Lλ,ρ](y) ,
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Step 3 : transfer operators

Consider the GF for ` =∞

S∞(s, ρ) :=
∑
h∈H+

ε(h)−sG[h],ρ/2[Lλ,ρ](h
?)

=
∑
h∈H+

[
H[h],s/2[1] ·G[h],ρ/2[Lλ,ρ]

]
(h?) .

The GF shares the dominant singularities with trace of

Ψs,ρ : F 7→ H(s+ρ)/2(I−H(s+ρ)/2)
−1
[
Lλ,ρ ·

(
I −Hs/2

)−1
[F ]
]
.

Analytical study.

I Two functional spaces: one for trace, one for Mellin.

I Estimates (I −Hs/2)
−1[F ](t) ∼ 2

E
1
s−2ψ(t)I[F ].

I Dolgopyat-Baladi-Vallée estimates for left of s = 2.
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Final remarks

I Strong parallels between the respective models and methods.

I Results hold more generally for what we call Q-functions. We
say Λ(α, n) is a Q-function associated with f when

Λ(α, n) = f

(
qk−1(α)

qk(α)
,
qk(α)

n

)
for k = k(α, n) such that qk−1(α) ≤ n < qk(α).

I Morever, for the n→∞ model, the density for α can be much
more general. ⇒ Independence between pk/qk and qk−1/qk.
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Open questions

I Eliminate averaging of the cost?

lim
D,u,`→∞

∣∣∣RD(`, λ) ∩
((((

(((({ n
q`p
∈ u · (1, θ)}

∣∣∣
(logD) · |SD| ·���

��u · (θ − 1)
=

6

π2

∫∫
Dλ
ω(x, y)dxdy ?

I Make the parameter λ vary with n ?
in our previous work (generic α) we proved

Eα[S(α, n)|x(α, n) ≥ ε(n)] ∼ 12

π2
| log ε(n)| ,

where x(α, n) = qk−1(α)/qk(α), qk−1(α) ≤ n < qk(α).

I Possible to study generic α case with Mellin transform
⇒ but we need a similar averaging !
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Thank you!
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