Discrétisations d'applications linéaires : un outil et quelques applications

Pierre-Antoine Guihéneuf

Réunion de lancement ANR CODYS

- Suite d'applications linéaires $(A_k)_{k\in\mathbb{N}}\in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P : \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

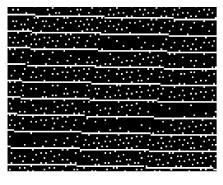
$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n)$$
 ?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?



- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

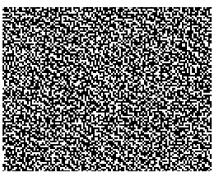
$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

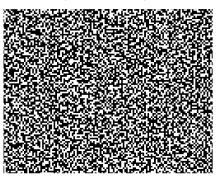


- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

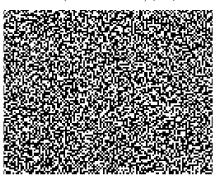


- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

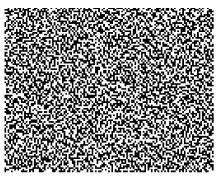


- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?



- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

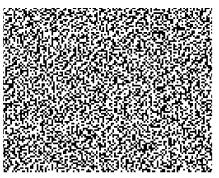
$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
 ?



- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n) ?$$

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n) ?$$

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n)$$
?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n) ?$$

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

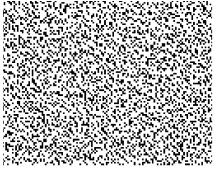
$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
 ?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n)$$
 ?



- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n) ?$$

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
 ?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A_k} \circ \cdots \circ \widehat{A_1})(\mathbf{Z}^n)$$
 ?

- Suite d'applications linéaires $(A_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})$.
- Grille $\mathbf{Z}^n \subset \mathbf{R}^n$ et projection $P: \mathbf{R}^n \to \mathbf{Z}^n$ sur le point le plus proche

$$\widehat{A} = P \circ A : \mathbf{Z}^n \to \mathbf{Z}^n.$$

Question : que dire des ensembles

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbf{Z}^n) ?$$

Questions plus précises

- Presque périodicité de ces ensembles?
- Leur densité décroît-elle?
- Questions plus fines : à quel point ces ensembles sont "loin" de \mathbf{Z}^n ?

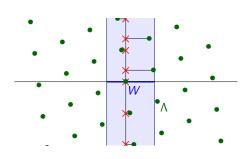
Presque périodicité

Les ensembles image Γ_k sont des ensembles modèle (ou couper/projeter) :

$$M_{A_1,\dots,A_k} = \left(egin{array}{cccc} A_1 & -I_n & & & & & \ & A_2 & -I_n & & & & \ & & \ddots & \ddots & & & \ & & & A_k & -I_n & & \ & & & & I_n \end{array}
ight) \in M_{n(k+1)}(\mathbf{R}),$$

 $\Lambda_k = M_{A_1, \dots, A_k} \mathbf{Z}^{n(k+1)}$ réseau et $W^k =]-1/2, 1/2]^{nk}$ fenêtre. Alors

$$\Gamma_k = p_2(\Lambda_k \cap p_1^{-1}(W^k)),$$



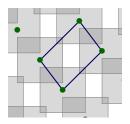
Densité

$$D(\Gamma_k) = \lim_{R \to +\infty} \frac{\operatorname{Card}(\Lambda_k \cap B_R)}{\operatorname{Card}(\mathbf{Z}^n \cap B_R)}.$$

Proposition

Pour une suite de matrices "générique",

$$D(\Gamma_k) = \operatorname{Vol}(W^{k+1} \mod \Lambda_k).$$



Densité

$$D(\Gamma_k) = \lim_{R \to +\infty} \frac{\operatorname{Card}(\Lambda_k \cap B_R)}{\operatorname{Card}(\mathbf{Z}^n \cap B_R)}.$$

Proposition

Pour une suite de matrices "générique",

$$D(\Gamma_k) = \operatorname{Vol}(W^{k+1} \mod \Lambda_k).$$

Théorème (G.)

Pour une suite de matrices "générique",

$$\lim_{k\to+\infty}D(\Gamma_k)=0.$$

Image initiale

Image tournée 5 fois

Image initiale

Image tournée 10 fois

Image initiale

Image tournée 15 fois

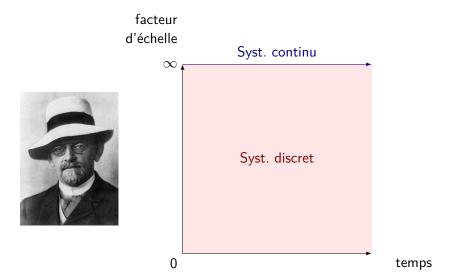
Image initiale

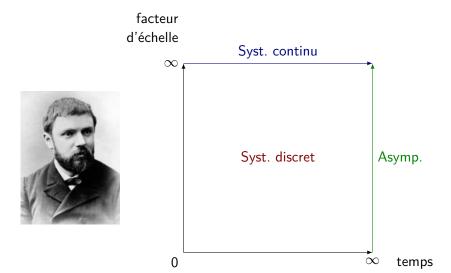
Image tournée 20 fois

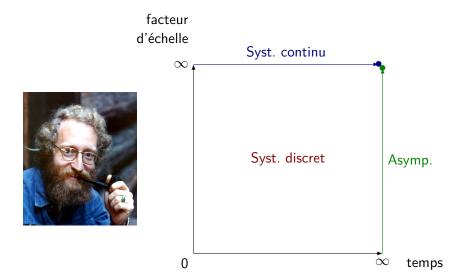
Image initiale

Image tournée 25 fois

Poincaré, Mittag-Leffler, Landau et Runge chez les Hilbert, 1909







Cadre

L'espace des phases est $\mathbf{T}^n = \mathbf{R}^n/\mathbf{Z}^n$.

La dynamique est donnée par $f: \mathbf{T}^n \to \mathbf{T}^n$ un difféomorphisme local.

On a des grilles sur \mathbf{T}^n :

$$E_N = \left\{ \left(\frac{i_1}{N}, \cdots, \frac{i_n}{N} \right) \mid 0 \le i_j < N \right\}$$

et $P_N : \mathbf{T}^n \to E_N$ une projection sur le plus proche voisin. La discrétisation de f est

$$f_N = P_N \circ f_{|E_N}.$$

Difféomorphismes : perte d'information

$$au_N^k(f) = \frac{\mathsf{Card}(f_N^k(E_N))}{\mathsf{Card}\,E_N}.$$

Théorème (Formule local-global, Flockermann, G.)

Soit $n \geq 2$, $r \geq 1$ et $f \in \mathrm{Diff}^r(\mathbf{T}^n)$ un difféomorphisme générique. Alors pour tout $t \geq 1$,

$$\lim_{N\to+\infty} \tau_N^t(f) = \int_{\mathbf{T}^n} D\Big((\widehat{Df_X} \circ \cdots \circ \widehat{Df_{f^{t-1}(X)}}) (\mathbf{Z}^n) \Big) \mathrm{d} x.$$

Théorème (G.)

Soit $n \geq 2$, $r \geq 1$ et $f \in \mathrm{Diff}^r(\mathbf{T}^n, \mathrm{Leb})$ un difféomorphisme générique préservant le volume. Alors

$$\lim_{N\to+\infty}\lim_{t\to+\infty}\tau_N^t(f)=0.$$

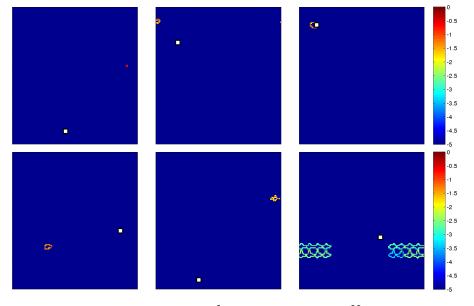
Difféomorphismes : mesures physiques

$$\mu_{\mathsf{x}}^{\mathsf{f}_{\mathsf{N}}} = \lim_{t \to +\infty} \frac{1}{t} \sum_{m=0}^{t-1} \delta_{\mathsf{f}_{\mathsf{N}}^{m}(\mathsf{x})}.$$

Théorème (G.)

Pour $n \geq 2$ et tout $x \in \mathbf{T}^n$, pour $f \in \mathrm{Diff}^1(\mathbf{T}^2, \mathrm{Leb})$ générique, pour toute mesure μ invariante par f, il existe une sous suite $(N_j)_j$ telle que

$$\mu_{\mathsf{x}}^{t_{\mathsf{N}_{j}}} \xrightarrow[k \to +\infty]{} \mu.$$

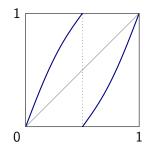


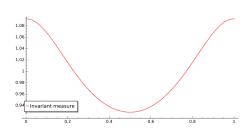
Simulations de $\mu_x^{f_N}$ sur E_N , avec $N=2^{23}$. f diffeo C^1 -proche de ld.

Applications dilatantes

La dynamique est donnée par $f: \mathbf{S}^1 \to \mathbf{S}^1$, avec $f'(x) > 1 \ \forall x$. L'action de f sur les mesures à densité est simple (Ruelle) :

$$(f^t)^*(\text{Leb}) \xrightarrow[t \to +\infty]{exp.} SRB$$





Que dire de $(f_N^t)^*(Leb_N)$ pour t et N grands?

Théorème (G., Monge)

Pour une application dilatante générique sur S^1 , pour tout $t \in N$,

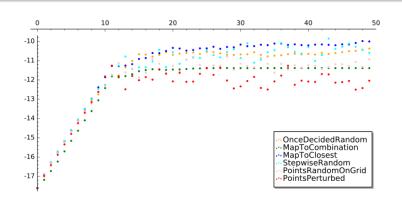
$$\lim_{N\to+\infty} Nd\Big((f^t)^*(\text{Leb})\ ,\ (f_N^t)^*(\text{Leb}_N)\Big) = \frac{1}{12} + \frac{1}{12} \sum_{m=0}^{t-1} \langle f^{(t-m)}, (L_f^m 1)^2 \rangle_{L^2}.$$

- Générique : une famille dénombrable de conditions de non-résononce de codimension 1 sur les dérivées le long des pré-orbites (Thom).
- Le terme de droite est exponentiel en t.
- Formule différente pour des perturbations aléatoires.
- Distance d: discrépance, définition proche de Wasserstein L^2 .

Théorème (G., Monge)

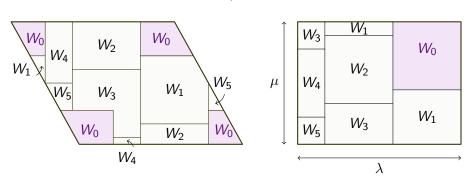
Pour une application dilatante générique sur S^1 , pour tout $t \in N$,

$$\lim_{N\to+\infty} Nd\Big((f^t)^*(\text{Leb})\ ,\ (f_N^t)^*(\text{Leb}_N)\Big) = \frac{1}{12} + \frac{1}{12} \sum_{m=0}^{t-1} \langle f^{(t-m)}, (L_f^m 1)^2 \rangle_{L^2}.$$



Preuve:

- On se ramène à un problème linéaire par DL.
- On transforme le calcul de la distance (version linéaire) en la moyenne de Birkhoff d'une action linéaire sur un tore de grande dimension pour une certaine observable linéaire par morceaux.



Question

Que se passe-t-il pour

$$x \mapsto \frac{1}{x} \mod 1,$$

 $x \mapsto \beta x \mod 1?$

Question

Que se passe-t-il en flottant?