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Subshifts and subshifts of finite type
A finite alphabet:

={lm
A finite number of forbidden
patterns: The family my also be infinite
F= I we then talk about subshifts.
Al A

Subshift of finite type (SFT):
set of configurations avoiding
F.We note Xr :
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Things get interesting in d > 2

[Berger 1964] There exists an SFT containing only
non-periodic points.
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Things get interesting in d > 2
[Berger 1964] There exists an SFT containing only
non-periodic points.

And numerous others:
[Knuth 1968]
[Anderaa & Lewis 1974]
[Kari 1996]

[Ollinger 2008]

[Durand, Romashchenko & Shen 2008]

[Poupet 2010]

[Jeandel & Rao 2015]
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Nothing is easy in d > 2

Theorem [Berger 1964] It is undecidable to know whether X'z
is empty, given F as input.
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Nothing is easy ind > 2

Theorem [Berger 1964] It is undecidable to know whether X'z
is empty, given F as input.
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SFTs without any computable

configuration
10l 11 ol@uﬂ 01| 00| 10
i
]
10 1L1|@ 11| 00| 01| 00| 10
i
T
1.0|@) 1.1 1.1 0.0 0.1 0.0 1.0
) j—
There exists a TM M that does not 10 1-@901 0.0] [01] 00 |10
T
halt only on non computable m@ — = = = 5
oracles: -
— f 0.0 0.1 01 0.0 0.1 0.0 1.0
L

The quarter plane may be tiled iff M
does not halt on x.

Theorem [Hanf-Myers 1974] There exist SFTs containing only non
computable points.
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The right tool

SFTs are dynamical systems, some quantities/concepts are
important:

e Topological Entropy : measure of the growth of the
number of patterns

e Number of periodic points

e Subactions, non-expansive directions, growth-type
invariants...
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The right tool

SFTs are dynamical systems, some quantities/concepts are
important:

e Topological Entropy : measure of the growth of the
number of patterns

[Hochman & Meyerovitch 2010] Entropies of SFTs correspond
to the upper semi-computable real numbers.

e Number of periodic points

The functions counting the number of periodic points are
exactly the functions of #P.

e Subactions, non-expansive directions, growth-type
invariants...
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Turing degrees

e x <7 p if there exists a TM that outputs x with input .

o x=rpifx<rpandx>r .

e A Turing degree is an equivalence class for =1. The
degree of x is noted deg x.

The simplest degree is 0: the degree of computable objects.

e Turing degree of a configuration.

e Turing degree spectrum of a subshift:

Sp(X):{deng|x€X}
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Turing degrees

There exists a degree a® b which is the
smallest above both a and b.

e Every Turing degree contains exactly
No elements.

e There are 2™ Turing degrees.

e There are at most X, degrees below
any degree.

e There are 2% degrees above each
degree.

There exist incomparable degrees a,b:

afrbandb£ra

0

0 the degree of
computable
sequences.

7126



Turing degree spectra of subshifts

Theorem For any effectively closed set of Turing degrees S,
there exists an SFT X with the same spectrum up to 0:
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Turing degree spectra of subshifts

Theorem For any closed set of Turing degrees S, there exists
an subshift X with the same spectrum up to 0:

Sp(S)U{0} =Sp(X)
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Minimality

Definition A subshift X is minimal iff all its configurations
contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

N S e e
Y
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Theorem Every subshift contains a minimal subshift
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Minimality and Turing degrees

Theorem Let X be a non finite minimal subshift, then Sp (X)
contains the cone of degrees above any of its points.

Cone above d:

o e
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Spectra of minimal SFTs

Theorem Let X be a subshift, and x € X be an aperiodic
recurrent point, then Sp (X) contains the cone above degyx.

Proof. We build two computable functions:

e enc:Ax{0,1)N 5 A
e dec: A—{0,1)N

such that (x,p) € A x {O,l}lN:

dec(enc(x,v)) =v
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Spectra of minimal SFTs

Theorem Let X be a subshift, and x € X be an aperiodic
recurrent point, then Sp (X) contains the cone above degyx.
Proof. We build two computable functions:
o enc: Ax{0,1}N - A degy(enc(x,v)) <t degrx®p
o dec: A—{0,1)N degr(dec(x)) <r degpx
such that (x,y) € A x {0, 1}N:
dec(enc(x,v)) =v

So we have this inequality:

degr(y) <t degy(enc(x,y)) <t degr(sup(x,p))
In particular if we choose y such that deg,(y) > deg;(x), then

degy(enc(x,)) = degy ()
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Idea of the proof : in dimension 1

o enc: Ax{0,1}N - A
o dec: A—{0,1}N

By induction: from a word ¢; construct ¢, .
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Idea of the proof : in dimension 1

o enc: Ax{0,1}N - A
o dec: A—{0,1}N

x cannot be periodic since X is non finite.
e< f ore> f, both cases will appear somewhere.
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Idea of the proof : in dimension 1

o enc: Ax{0,1}N - A
o dec: A—{0,1}N

D

o

:3
(N |

¢i;+1 is constructed according to y;:
e ify;,=0,takee<f,
o ify,=1,takee> f.
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Idea of the proof : in dimension 1

o enc: Ax{0,1}N - A
o dec: A—{0,1}N

lim, ¢; = enc(x, )

Start with ¢y = x, and iterate.
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Idea of the proof : in dimension 1

o enc:Ax{0,1N - A
o dec: A—{0,1}N

enc(x,y)

ARl
Y |

£
Nl |

Ci+1

Start with ¢y = x, and look for the first differing lettersee, f.
e ife>ftheny =1
e ife<ftheny; =0

We now know c¢; and can look for ¢, and so on...
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Complexity function

Dimension 1 from now on.

Most results do not translate to higher dimensions.
Definition The complexity function:

cn(X)

counts the number of patterns of size n.
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Linear complexity

The trivial cases

e ¢,(X)<n+1= Only periodic configurations
---123123123123123---
e ¢,(X)=n+k and eventually periodic on both sides

---000000100000000---

Sp(X)=0

14/26



Linear complexity

Sturmian subshifts

e Low complexity : c,(X)=n+1
e No periodic points

e Only aperiodic recurrent points

---1010010010100101001001010---
~—— ~——

w w’

e If w,w’ have the same length then ||w|; —|w'|;| < 1.

Density of 1s tends to {a}.

Sp(X) = CdegTa

15/26



Linear complexity

Theorem If ¢,,(X) ~ tn then, Sp (X) contains at most k isolated
degrees and k cones with k+k’ < t.

Lemma If ¢, X ~ tn then X contains at most ¢ non recurrent
aperiodic configurations.

at most t isolated degrees.

Lemma If ¢,X ~ tn and X contains k non recurrent aperiodic
configurations then X contains at most t — k recurrent
aperiodic configurations with different language.

{L (x) | x aperiodic recurrent}

at most t — k cones.
not directly though...
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Linear complexity

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x 27 L(x)

Theorem [Cassaigne 1995] If x has linear growth, then
Cp41(x) — ¢, (x) is bounded by a constant.

There exists N and M such that for infinitely many n > N:

Cn+l(X) —c(X) =M
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Linear complexity

Aperiodic recurrent configurations

There exists N and M such that for infinitely many n > N:

cnr1(X) —cu(X) =M

Some words can be followed by different letters:

wTZ
/
wo... Wy_1

—
Wy

There are exactly M choices for all words of length #.
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Linear complexity

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x>7 L(x)

Take x as an oracle and output £ (x):
e hardcode N,M

e scan x and find all words of the same length with several
choices: §
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Linear complexity

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x>7 L(x)

Take x as an oracle and output £ (x):
e hardcode N,M

e scan x and find all words of the same length with several
choices: S

e Find all n-letter words:
X —

s b s

e We now have L;(x) for k < n.
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Linear complexity

Last ingredient:

Lemma If x is aperiodic recurrent, there exists y such that

L(x)=L(y) and degyy = degy L (x)

Theorem If ¢,,(X) ~ tn then, Sp (X) contains at most k isolated
degrees and k cones with k+k’ <t.

20/26



Linear complexity

Theorem There exist linear complexity subshifts with k cones
and k’ isolated degrees for any k, k’.

e k cones: union of Sturmians

e k’isolated degrees:

> sefo, 1}

> f computable

» same degree as s
» linear growth
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Exponential complexity: positive entropy

Exponential complexity (=positive entropy):

cp(X) ~a"

Theorem If h(X) > 0, then Sp (X) contains a cone.

Theorem Any spectrum containing a cone can be realized by
a subshift with entropy in this cone.
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The inbetweeners

Slowest Fastest

e Constant Only 0.
e Linear Finite number of cones and isolated degrees.

° Contain a cone.

23/26



The inbetweeners

Slowest Fastest

e Constant Only 0.
e Linear Finite number of cones and isolated degrees.

° Contain a cone.

e Superlinear ?

23/26



Slow superlinear complexity

Theorem For any countable set of degrees, S = {d;,d>,...}
there exists subshifts with arbitrarily slow superlinear
complexity and spectrum | J Cdi-

Proof idea.
Take some increasing unbounded f.
Take (ag)rew and (1 )xen such that

ar > ag and L, (Sak) =Ly, (Sao) and Mgy >n
Define

X = USak its spectrum is Sp (X Ud € SCq
k

itis closed since ay — a(, and hence a subshift.

c,X is bounded by nf(n)

D 24/26



Slow superlinear complexity

Theorem For any countable set of degrees, S = {dy,d>,...}
there exists subshifts with arbitrarily slow superlinear
complexity and spectrum S U {0}.

Proof idea.
For each degree d; € S include s of degree d;:

-20000.102'10%°102°1-..102"1 102" +1+s11 02" +2+527 ...

Limit points:
e ---000010000---
e ---000000000---
e ---0000102'1---1021 - -
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The inbetweeners

Slowest Fastest

Constant Only 0.

Linear Finite number of cones and isolated degrees.

° Contains a cone.
e Superlinear ~ Anything is possible. Tradeoff

» Countable unions, any superlinear growth
» Unions, any superlinear computable growth

e Subexponential ~ Anything is possible

e [he rest ~ Anything is possible

26/26
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