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Tasks

GEN: Genericity and randomness.

PER: study of finite and periodic orbits, it describes their
characteristics, and compares them to the orbits of the initial
system.

DIS: discretization with a view toward simulation.

SIM: simulation directed toward numerical computing but also
toward the study of dynamical systems as computing models.

SPE: algorithmic checkability of properties, together with the
construction of special orbits and invariants for dynamical
systems.
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Discretization of dynamical systems, mathematical aspects of
visualisation.

Peter Habermehl Task GEN, SIM, SPE Program verification,
invariant synthesis.

Pierre Ohlmann Task GEN, SPE Invariant synthesis for linear
dynamical systems.

Löıck Lhote Task GEN, PER, DIS, SIM, SPE Probabilistic
analysis of algorithms, analytical combinatorics, generating
functions, dynamical analysis.
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processes, analysis of random data structures, stochastic
modelling.

Amaury Pouly Task GEN, SIM, SPE Decision, control, and
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combinatorics, dynamical analysis of algorithms, transfer
operators.
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Sébastien Labbé Coordinator All tasks Symbolic dynamics,
discrete geometry, Sage implementation.

Vincent Delecroix Task GEN, PER, DIS, SIM, SPE Dynamical
systems and ergodic theory.

Nathanaël Fijalkow Task GEN, SIM, SPE Probabilistic
computation models around automata theory, invariant
synthesis.

Doctorant.e Task GEN, SIM, SPE



CODYS

• Dynamical systems model physical processes but also numerous
phenomena from the digital world (execution of an algorithm, a
loop in a program as the action of a multidimensional linear map).

• A discrete-time dynamical system (X ,T ) is defined as the action
of a map T acting on a space X (usually assumed to be compact).

• Orbit/trajectory O(x) = {T nx , n ∈ Z}

• Discrete orbits orbits of discrete-time dynamical systems that are
relevant in computer science for computer simulations and for
computational models.



Discrete orbits

Consider the simulation of a dynamical system, e.g. in
floating-point arithmetic. The number of floating points being
finite, then all the points have (ultimately) periodic orbits. The
same applies more generally when the number of points of a
system is finite.

We thus consider two main types of discrete orbits, namely

finite and periodic orbits; these orbits have usually an
arithmetic meaning for the systems we consider and form a
countable set;

orbits for discretizations of dynamical systems with the
discretization usually being performed with respect to a finite
space.



Discrete orbits

Consider the simulation of a dynamical system, e.g. in
floating-point arithmetic. The number of floating points being
finite, then all the points have (ultimately) periodic orbits. The
same applies more generally when the number of points of a
system is finite.

We thus consider two main types of discrete orbits, namely

finite and periodic orbits; these orbits have usually an
arithmetic meaning for the systems we consider and form a
countable set;

orbits for discretizations of dynamical systems with the
discretization usually being performed with respect to a finite
space.



Reachability and statistical properties of orbits

The first question we can ask about a trajectory is

whether it will enter (once or infinitely often) a given
subregion Z of X or even reach a given point z . This is a
reachability problem. It will be handled by focusing on the
construction of special invariants and orbits.

We can also ask about its recurrence and long-term behavior:
how long will it stay in the subregion Z? This type of
questions will be handled through the use of ergodic theory
and probabilistic methods.



Reachability problems and invariants

• Reachability problems often lead to undecidable problems.

• One strategy to tackle them is to consider invariant sets, instead
of orbits (verification or control theory): subsets invariant under
the action of T that contain a point x and not y .

• The viewpoint we develop here is mainly the synthesis of
invariants.

• We are thus interested here in exact properties of the total orbits
and their relations with invariants.

• Affine and algebraic invariants, as well as polyhedral invariants.
We focus here on the case where the system (X ,T ) is given by a
linear map with rational entries.



From discretization to simulation

• The computer simulation of a dynamical system is inherently
partial.

• How distorted is the qualitative behavior of the system (X ,T )
once discretized? What happens when the number of points of
the discretization space tends to infinity? To what extent does the
dynamics of the discretized application reflect the dynamics of the
map T?

• We associate with the dynamical system (X ,T ) a sequence of
discretizations (XN ,TN)N which depend on a parameter N (related
to the number of points of the discretization space).
Is it true that this asymptotic behavior will be close to the one of
the initial system, and reminiscent of it? or, does it completely
forget the initial system and behaves as a random finite dynamical
system?



CODYS

• We focus on the study and comparison of discrete orbits (finite,
periodic, and orbits of discretizations).

• We address the question of the relevance of ergodic and
dynamical methods for their study, and more generally, for
simulation.

• What are the limits of the ergodic theorem? Are methods from
dynamical systems (ergodic and probabilistic) relevant for the
study of discrete orbits and discretizations of discrete-time
dynamical systems?

• We want to develop both a theoretical and practical study of
discretization and simulation for simple systems like expanding
maps of the interval or linear maps.

• We want to construct in an effective way special orbits and
invariants, and to study the asymptotic statistical behavior of a
dynamical system, from a computability and effective perspective.



A trajectory for T : X → X

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)
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Ergodic theorem

B

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)

Among the first N points of the orbit of x , how many of them
enter B?

How often do they visit B?

lim
N→∞

1

N

∑
06n<N

1B(T nx) = µ(P) a.e. x
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Ergodic theorem

B

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)

Let 1B be the characteristic function of B

Among the first N points of the orbit of x , how many of them
enter B?

∑
06n<N 1B(T nx)

How often do they visit B? limN→∞
1
N

∑
06n<N 1B(T nx)

lim
N→∞

1

N

∑
06n<N

1B(T nx) = µ(P) a.e. x



Discrete dynamical system

We are given a dynamical system

T : X → X

Topological dynamics describes the qualitative/topological
asymptotic behaviour of trajectories/orbits
The map T is continuous and the space X is compact

Ergodicity describes the long term statistical behaviour of
orbits
The space X is endowed with a probability measure and T is
measurable (X ,T ,B, µ)

How well are the orbits distributed?

According to which measure?



Ergodic theorem
We are given a dynamical system (X ,T ,B, µ) with T : X → X
An ergodic system is such that the time spent by a system in some
region is proportional to the volume of this region, it has the same
behavior averaged over time as averaged over all the space

Average time values: one particle over the long term

Average space values: all particles at a particular instant

Ergodicity

µ(B) = µ(T−1B) T -invariance

T−1B = B =⇒ µ(B) = 0 or 1 ergodicity

Ergodic theorem space mean= average mean

If f ∈ L1(µ), lim
N

1

N

∑
06n<N

f (T nx) =

∫
f dµ a.e. x



Numeration dynamics

Numeration dynamical systems are simple algorithms that produce
digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}



Numeration dynamics
Numeration dynamical systems are simple algorithms that produce
digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}

x1 = T (x) = 10x − [10x ] = 10x − a1

x =
a1
10

+
x1
10

x2 = T (x1) = T 2(x) a2 = b10T (x)c

x =
a1
10

+
a2

102
+

x2
102

=
∞∑
i=1

ai10−i



Numeration dynamics

Numeration dynamical systems are simple algorithms that produce
digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}

The map T produces the digits

an = b10T n−1(x)c

The action of T can be seen as a shift on the sequence of
digits

x ∼ a1a2a3a4 · · · T (x) ∼ a2a3a4 · · ·



Multiplication by 10 on [0, 1]

X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 6 i 6 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3

0.14159265358979312 · · ·

Codings ⇐⇒ decimal expansions
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Ergodic theorem

We are given a dynamical system (X ,T , µ)

µ(B) = µ(T−1B) T -invariance

T−1B = B =⇒ µ(B) = 0 or 1 ergodicity

Ergodic theorem Let f : X → X be in L1(µ), and µ be
T -invariant. If (X ,T , µ) is ergodic then, for µ-almost all x in X

lim
N→∞

1

N

N−1∑
i=0

f (T i (x)) =

∫
X
f (x)dµ

Unique ergodicity (X ,T ) is uniquely ergodic if it admits a unique
invariant measure µ.

Theorem If (X ,T ) is uniquely ergodic and f and T are continuous,
then the convergence is valid for every x .



Numeration dynamical systems

Numeration T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}

Beta-transformation T : [0, 1]→ [0, 1], x 7→ {βx}

Continued fractions T : [0, 1]→ [0, 1], x 7→ {1/x}

Kronecker dynamics Rα : x 7→ α+ x mod 1 unique ergodicity



From numeration dynamics to symbolic dynamics

Decimal expansion T : [0, 1]→ [0, 1], x 7→ {10x}

Beta-transformation T : [0, 1]→ [0, 1], x 7→ {βx}

Continued fractions T : [0, 1]→ [0, 1], x 7→ {1/x}



From numeration dynamics to symbolic dynamics

Decimal expansion T : [0, 1]→ [0, 1], x 7→ {10x}

Beta-transformation T : [0, 1]→ [0, 1], x 7→ {βx}

β > 1 x =
∞∑
i=1

aiβ
−i

Continued fractions T : [0, 1]→ [0, 1], x 7→ {1/x}

x =
1

a1 + x1
=

1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·



Tasks

GEN: Genericity and randomness.

PER: study of finite and periodic orbits, it describes their
characteristics, and compares them to the orbits of the initial
system.

DIS: discretization with a view toward simulation.

SIM: simulation directed toward numerical computing but also
toward the study of dynamical systems as computing models.

SPE: algorithmic checkability of properties, together with the
construction of special orbits and invariants for dynamical
systems.



Tasks

Task GEN runs during all the project. This is the place where a
common tool and culture is developed.
Task SIM also runs during the whole project: simulations are
needed for all the other tasks, and it will be nourished by
theoretical results from Task DIS.
Task PER and DIS have to start from the beginning of the project.
Task SPE will be started once a common culture will have been
developed in particular through Task GEN.
During year 2 and 3 all the tasks will be conducted.

Task GEN

Task PER

Task DIS

Task SIM

Task SPE

Months0 6 12 18 24 30 36 42 48

Task GEN Task DIS

Task PER

Task SIM

Task SPE



Task GEN

• What is a generic trajectory?

Genericity = most of the initial conditions = a typical orbit, whose
initial condition satisfies the ergodic theorem.

• But since we restrict ourselves to discrete trajectories (i.e.,
periodic orbits of (X ,T ), and orbits of the discretization
(XN ,TN)), a specific notion of genericity has to be formulated.
How to adapt the definition of genericity (defined for continuous
systems) to a discrete genericity?

• Since we work with finite sets XN , reasonable notions of
genericity rely on a notion of convergence (when N tends to
infinity) toward a standard notion of genericity issued from the
continuous world: for all N, the property has to hold on XN , out of
an exceptional set of small size, which tends to 0 with N, and in a
rather fast way.

• What is a generic dynamical system (generic in a class of
dynamical systems having some prescribed property)?



Genericity

• Measure-theoretic genericity Ergodic genericity: an initial point
whose orbit satisfies Birkhoff’s ergodic theorem; it is a typical
orbit. This requires in particular to understand with respect to
which invariant measure.

• Topological genericity in the sense of Baire. A property is generic
if it is satisfied (at least) on a countable intersection of dense open
sets.

• Computational genericity will be well suited to the construction
of effective orbits. It refers to algorithmic randomness (Martin-Löf
randomness, Schnorr randomness, etc.) and to exact computation
models of effective analysis where topological notions are revisited
in an effective way.



Task PER-Finite and periodic orbits for the original system
(X ,T )- V. Berthé

• What are the finite and the periodic expansions of the dynamical
system (X ,T )? How to characterize them?

• Long-term behavior of finite and periodic orbits. Do finite and
periodic expansions for (X ,T ) have a typical behavior? With
respect to which invariant measure?

Toy example: the case of the β-numeration with β being the
golden ratio.

• Transfer operator with the question of the extension of the
application field (which is a priori Euclidean dynamics) for the
methodology of dynamical analysis of algorithms. Is it possible to
give to the transfer operator a generating role even when the
dynamical system is not of homographic type?



Task DIS-Discretization: study of the system
(XN ,TN)-P.-A. Guihéneuf
• Which discretizations to consider?

uniform vs. non-uniform (floating-point arithmetics); finite state
machine simulations of dynamical systems; symbolic dynamical
systems.

• What dynamical properties of T can be read on the (global)
dynamics of the discretizations TN?

• What are the finite or the periodic expansions of the dynamical
system (XN ,TN)? Do the discretizations (XN ,TN) asymptotically
behave as random maps (when the parameter N becomes large)?

• Long-term behavior of orbits of the discretized system (XN ,TN).
Action of the discretization on the invariant measures. Does
discretization detect typical behavior? What is the spatial
distribution of periodic cycles for (XN ,TN)?

• Non-stationary dynamics: the map T can be changed with
respect to time. Ex: (generic) compositions of linear maps, which
is useful for the study of C1-diffeomorphisms.



Task SIM- Simulation-S. Labbé

• Which properties of the original system can be checked by a
computer? What can computers simulate?

• Conceptual aspects of discrete machines: computational power.

• Rounding and truncation errors. What can be said concerning
the roundoff errors when simulating trajectories?

• Convergence of the sequence of discretized systems (XN ,TN)
toward (X ,T ). For each dynamical feature of the
homeomorphism, do its discrete analogues appear on an infinite
number of discretizations? Are periodic orbits of (X ,T ) shadowed
by periodic orbits of (XN ,TN) with the same period for an infinite
number of discretizations?

• Simulation of Zd -actions.

• Numerical simulation for dynamical parameters. Ex: Lyapunov
exponents, and invariant measures.



Task SPE - Construction of special orbits and
invariants-N. Fijalkow

Effective constructions of generic and special orbits together with
the question of the existence and algorithmic synthesis of
invariants, and their related decision problems.

• Invariants for linear dynamical systems. Going beyond the case
of linear dynamical systems on one hand, and beyond
semi-algebraic sets for the invariants on the other hand.

• Constructions of normal points.

• Random generation of generic objects: probabilistic study of
truncations.


