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Abstract
In this paper, we relate the problem of determining the chromatic memory requirements of Muller
conditions with the minimisation of transition-based Rabin automata. Our first contribution is a
proof of the NP-completeness of the minimisation of transition-based Rabin automata. Our second
contribution concerns the memory requirements of games over graphs using Muller conditions. A
memory structure is a finite state machine that implements a strategy and is updated after reading
the edges of the game; the special case of chromatic memories being those structures whose update
function only consider the colours of the edges. We prove that the minimal amount of chromatic
memory required in games using a given Muller condition is exactly the size of a minimal Rabin
automaton recognising this condition. Combining these two results, we deduce that finding the
chromatic memory requirements of a Muller condition is NP-complete. This characterisation also
allows us to prove that chromatic memories cannot be optimal in general, disproving a conjecture
by Kopczyński.
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1 Introduction

Games and memory. Automata on infinite words and infinite duration games over graphs
are well established areas of study in Computer Science, being central tools used to solve
problems such as the synthesis of reactive systems (see for example the Handbook [8]). Games
over graphs are used to model the interaction between a system and the environment, and
winning strategies can be used to synthesize controllers ensuring that the system satisfies
some given specification. The games we will consider are played between two players (Eve
and Adam), that alternatively move a pebble through the edges of a graph forming an
infinite path. In order to define which paths are winning for the first player, Eve, we suppose
that each transition in the game produces a colour in a set Γ, and a winning condition is
defined by a subset W ⊆ Γω. A fundamental parameter of the different winning conditions is
the amount of memory that the players may require in order to define a winning strategy
in games where they can force a victory. This parameter will influence the complexity of
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18:2 Minimisation of Rabin Automata and Chromatic Memory for Muller Conditions

algorithms solving games that use a given winning condition, as well as the resources needed
in a practical implementation of such a strategy as a controller for a reactive system.

A memory structure for Eve for a given game is a finite state machine that implements a
strategy: for every position of the game, each state of the memory determines what move
to perform next. After a transition of the game takes place, the memory state is updated
according to an update function. We consider 3 types of memory structures:

General memories.
Chromatic memories: if the update function only takes as input the colour produced by
the transition of the game.
Arena-independent memories for a condition W: if the memory structure can be used to
implement winning strategies in any game using the condition W.

In this work, we study these three notions of memories for Muller conditions, an important
class of winning conditions that can be used to represent any ω-regular language via some
deterministic automaton. Muller conditions appear naturally, for example, in the synthesis
of reactive systems specified in Linear Temporal Logic [23, 22].

In the seminal paper [12], the authors establish the exact general memory requirements
of Muller conditions, giving matching upper and lower bounds for every Muller condition
in terms of its Zielonka tree. However, the memory structures giving the upper bounds
are not chromatic. In his PhD thesis [18, 19], Kopczyński raised the questions of whether
minimal memory structures for games can always be chosen to be chromatic, and whether
arena-independent memories can be optimal, that is, if for each condition W there is a game
won by Eve where the optimal amount of memory she can use is the size of a minimal
arena-independent memory for W. Another question appearing in [18, 19] concerns the
influence in the memory requirements of allowing or not ε-transitions in games (that is,
transitions that do not produce any colour). In particular, Kopczyński asks whether all
conditions that are half-positionally determined over transition-coloured games without
ε-transitions are also half-positionally determined when allowing ε-transitions (it was already
shown in [29] that it is not the case in state-coloured games).

In this work, we characterise the minimal amount of chromatic memory required by Eve in
games using a Muller condition as the size of a minimal deterministic transition-based Rabin
automaton recognising the Muller condition, that can also be used as an arena-independent
memory (Theorem 27); further motivating the study of the minimisation of transition-based
Rabin automata. We prove that, in general, this quantity is strictly greater than the
general memory requirements of the Muller condition, answering negatively the question by
Kopczyński (Proposition 30). Moreover, we show that the general memory requirements
of a Muller condition are different over ε-free games and over games with ε-transitions
(Proposition 24), but that this is no longer the case when considering the chromatic memory
requirements (Theorem 27). In particular, in order to obtain the lower bounds of [12] we
need to use games with ε-transitions. However, the question stated in [18, 19] of whether
allowing ε-transitions could have an impact on the half-positionality of conditions remains
open, since it cannot be the case for Muller conditions (Lemma 23).

Minimisation of transition-based automata. Minimisation is a well studied problem for
many classes of automata. Automata over finite words can be minimised in polynomial
time [15], and for every regular language there is a canonical minimal automaton recognising
it. For automata over infinite words, the status of the minimisation problem for different
models of ω-automata is less well understood. Traditionally, the acceptance conditions of
ω-automata have been defined over the set of states; however, the use of transition-based
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automata is becoming common in both practical and theoretical applications (see for instance
[13]), and there is evidence that decision problems relating to transition-based models might
be easier than the corresponding problems for state-based ones. The minimisation of state-
based Büchi automata has been proven to be NP-complete by Schewe (therefore implying the
NP-hardness of the minimisation of state-based parity, Rabin and Streett automata), both
for deterministic [26] and Good-For-Games (GFG) automata [27]. However, these reductions
strongly use the fact that the acceptance condition is defined over the states and not over the
transitions. Abu Radi and Kupferman have proven that the minimisation of GFG-transition-
based co-Büchi automata can be done in polynomial time and that a canonical minimal
GFG-transition-based automaton can be defined for co-Büchi languages [1, 2]. This suggests
that transition-based automata might be a more adequate model for ω-automata, raising
many questions about the minimisation of different kinds of transition-based automata
(Büchi, parity, Rabin, GFG-parity, etc). Moreover, Rabin automata are of great interest,
since the determinization of Büchi automata via Safra’s construction naturally provides
deterministic transition-based Rabin automata [24, 25], and, as proven in Theorem 27, these
automata provide minimal arena-independent memories for Muller games.

In Section 2.2, we prove that the minimisation of transition-based Rabin automata is
NP-complete (Theorem 14). The proof consists in a reduction from the chromatic number
problem of graphs. This reduction uses a particularly simple family of ω-regular languages:
languages L ⊆ Σω that correspond to Muller conditions, that is, whether a word w ∈ Σω

belongs to L or not only depends in the set of letters appearing infinitely often in w (we call
these Muller languages). A natural question is whether we can extend this reduction to prove
the NP-hardness of the minimisation of other kinds of transition-based automata, like parity
or generalised Büchi ones. However, we prove in Section 2.3 that the minimisation of parity
and generalised Büchi automata recognising Muller languages can be done in polynomial
time. This is based in the fact that the minimal parity automaton recognising a Muller
language is given by the Zielonka tree of the associated condition [6, 21].

These results allow us to conclude that determining the chromatic memory requirements
of a Muller condition is NP-complete even if the condition is represented by its Zielonka tree
(Theorem 29). This is a surprising result, since the Zielonka tree of a Muller condition allows
to compute in linear time the non-chromatic memory requirements of it [12].

Related work. As already mentioned, the works [12, 18, 29] extensively study the memory
requirements of Muller conditions. In the paper [10], the authors characterise parity conditions
as the only prefix-independent conditions that admit positional strategies over transition-co-
loured infinite graphs. This characterisation does not apply to state-coloured games, which
supports the idea that transition-based systems might present more canonical properties.
Conditions that admit arena-independent memories are characterised in [3], extending the
work of [14] characterising conditions that accept positional strategies over finite games. The
memory requirements of generalised safety conditions have been established in [9]. The use
of Rabin automata as memories for games with ω-regular conditions have been fruitfully
used in [11] in order to obtain theoretical lower bounds on the size of deterministic Rabin
automata obtained by the determinisation of Büchi automata.

Concerning the minimisation of automata over infinite words, beside the aforementioned
results of [26, 27, 1], it is also known that weak automata can be minimised in O(n log n)
[20]. The algorithm minimising a parity automaton recognising a Muller language used in
the proof of Proposition 16 can be seen as a generalisation of the algorithm appearing in [4]
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18:4 Minimisation of Rabin Automata and Chromatic Memory for Muller Conditions

computing the Rabin index of a parity automaton. Both of them have their roots in the
work of Wagner [28].

Organisation of this paper. In Section 2 we discuss the minimisation of transition-based
Rabin and parity automata. We give the necessary definitions in Section 2.1, in Section 2.2
we show the NP-completeness of the minimisation of Rabin automata and in Section 2.3
we prove that we can minimise transition-based parity and generalised Büchi automata
recognising Muller languages in polynomial time.

In Section 3 we introduce the definitions of games and memory structures, and we discuss
the impact on the memory requirements of allowing or not ε-transitions in the games.

In Section 4, the main contributions concerning the chromatic memory requirements of
Muller conditions are presented.

2 Minimising transition-based automata

In this section, we present our main contributions concerning the minimisation of automata.
We start in Section 2.1 by giving some basic definitions and results related to automata used
throughout the paper. In Section 2.2 we show a reduction from the problem of determining
the chromatic number of a graph to the minimisation of Rabin automata, proving the NP-
completeness of the latter. Moreover, the languages used in this proof are Muller languages.
In Section 2.3 we prove that, on the contrary, we can minimise parity and generalised Büchi
automata recognising Muller conditions in polynomial time.

2.1 Automata over infinite words
General notations
The greek letter ω stands for the set {0, 1, 2, . . . }. We write [1, k] to denote the set {1, 2, . . . , k}.
Given a set A, we write P(A) to denote its power set and |A| to denote its cardinality. A
word over an alphabet Σ is a sequence of letters from Σ. We let Σ∗ and Σω be the set of finite
and infinite words over Σ, respectively. For an infinite word w ∈ Σω, we write Inf (w) to
denote the set of letters that appear infinitely often in w. We will extend functions γ : A → Γ
to A∗, Aω and P(A) in the natural way, without explicitly stating it.

A (directed) graph G = (V, E) is given by a set of vertices V and a set of edges
E ⊆ V × V . A graph G = (V, E) is undirected if every pair of vertices (v, u) verifies
(v, u) ∈ E ⇔ (u, v) ∈ E. A graph G = (V, E) is simple if (v, v) /∈ E for any v ∈ V . A coloured
graph G = (V, E) is given by a set of vertices V and a set of edges E ⊆ V × C1 × · · · × Ck × V ,
where C1, . . . , Ck are sets of colours.

Automata
An automaton is a tuple A = (Q, Σ, q0, δ, Γ, Acc), where Q is a finite set of states, Σ is a
finite input alphabet, q0 ∈ Q is an initial state, δ : Q × Σ → Q × Γ is a transition function,
Γ is an output alphabet and Acc is an accepting condition defining a subset W ⊆ Γω (the
conditions will be defined more precisely in the next paragraph). In this paper, all automata
will be deterministic, complete (δ is a function) and transition-based (the output letter that
is produced depends on the transition, and not only on the arrival state). The size of an
automaton is the cardinality of its set of states, |Q|.

Given an input word w = w0w1w2 · · · ∈ Σω, the run over w in A is the only sequence of
pairs (q0, c0), (q1, c1), · · · ∈ Q×Γ verifying that q0 is the initial state and δ(qi, wi) = (qi+1, ci).



A. Casares 18:5

The output produced by w is the word c0c1c2 · · · ∈ Γω. A word w ∈ Σω is accepted by the
automaton A if its output belongs to the set W ⊆ Γω defined by the accepting condition.
The language accepted by an automaton A, written L(A), is the set of words accepted by
A. Given two automata A and B over the same input alphabet Σ, we say that they are
equivalent if L(A) = L(B).

Given an automaton A, the graph associated to A, denoted G(A), is the coloured graph
G(A) = (Q, EA), whose set of vertices is Q, and the set of edges EA ⊆ Q × Σ × Γ × Q is
given by (q, a, c, q′) ∈ EA ⇔ δ(q, a) = (q′, c). We denote ι : EA → Σ the projection over the
second component and γ : EA → Γ the projection over the third one.

A cycle of an automaton A is a subset of edges ℓ ⊆ EA such that there is a state q ∈ Q

and a path in G(A) starting and ending in q passing through exactly the edges in ℓ. We
write γ(ℓ) =

⋃
e∈ℓ γ(e) to denote the set of colours appearing in the cycle ℓ. A state q ∈ Q is

contained in a cycle ℓ ⊆ EA if there is some edge in ℓ whose first component is q. We write
States(ℓ) to denote the set of states contained in ℓ.

Acceptance conditions
Let Γ be a set of colours. We define next some of the acceptance conditions used to define
subsets W ⊆ Γω. All the subsequent conditions verify that the acceptance of a word w ∈ Γω

only depends on the set Inf (w).

Muller. A Muller condition is given by a family of subsets F = {S1, . . . , Sk}, Si ⊆ Γ. A
word w ∈ Γω is accepting if Inf (w) ∈ F .

Rabin. A Rabin condition is represented by a family of Rabin pairs, R = {(E1, F1), . . . ,

(Er, Fr)}, where Ei, Fi ⊆ Γ. A word w ∈ Γω is accepting if Inf (w) ∩ Ei ̸= ∅ and
Inf (w) ∩ Fi = ∅ for some index i ∈ {1, . . . , r}.

Streett. A Streett condition is represented by a family of pairs S = {(E1, F1), . . . , (Er, Fr)},
Ei, Fi ⊆ Γ. A word w ∈ Γω is accepting if Inf (w) ∩ Ei ≠ ∅ → Inf (w) ∩ Fi ≠ ∅ for every
i ∈ {1, . . . , r}.

Parity. To define a parity condition we suppose that Γ is a finite subset of N. A word w ∈ Γω

is accepting if max Inf (w) is even. The elements of Γ are called priorities in this case.
Generalised Büchi. A generalised Büchi condition is represented by a family of subsets

{B1, . . . , Br}, Bi ⊆ Γ. A word w ∈ Γω is accepted if Inf (w) ∩ Bi ≠ ∅ for all i ∈ {1, . . . , r}.
Generalised co-Büchi. A generalised co-Büchi condition is represented by a family of subsets

{B1, . . . , Br}, Bi ⊆ Γ. A word w ∈ Γω is accepted if Inf (w) ∩ Bi = ∅ for some
i ∈ {1, . . . , r}.

An automaton A using a condition of type X will be called an X-automaton.
We remark that all the previous conditions define a family of subsets F ⊆ P(Γ) and

can therefore be represented as Muller conditions (in particular, all automata referred to in
this paper can be regarded as Muller automata). Also, parity conditions can be represented
as Rabin or Streett ones. We say that a language L ⊆ Γω is a Muller language if w1 ∈ L

and w2 /∈ L implies that Inf (w1) ̸= Inf (w2). We associate to each Muller condition F the
language LF = {w ∈ Γω : Inf (w) ∈ F}.

The parity index (also called Rabin index) of an ω-regular language L ⊆ Σω is the
minimal p ∈ N such that there exists a parity automaton recognising L using p priorities in
its condition.

Given an ω-regular language L ⊆ Σω, we write rabin(L) to denote the size of a minimal
Rabin automaton recognising L.

CSL 2022



18:6 Minimisation of Rabin Automata and Chromatic Memory for Muller Conditions

▶ Remark 1. Let A be a Rabin-automaton recognising a language L ⊆ Σω. If we consider the
Streett automaton obtained by regarding the Rabin pairs of A as defining a Streett condition,
we obtain an automaton A′ recognising the language Σω \ L (and vice-versa). Therefore, the
size of a minimal Rabin automaton recognising L coincides with that of a minimal Streett
automaton recognising Σω \ L, and the minimisation problem for both classes of automata is
equivalent. Similarly for generalised Büchi and generalised co-Büchi automata.

Let A be an automaton using some of the acceptance conditions above defining a family
F ⊆ P(Γ). We say that a cycle ℓ of A is accepting if γ(ℓ) ∈ F and that it is rejecting
otherwise.

We are going to be interested in simplifying the acceptance conditions of automata, while
preserving their structure. We say that we can define a condition of type X on top of a
Muller automaton A if we can recolour the transitions of A with colours in a set Γ′ and
define a condition of type X over Γ′ such that the resulting automaton is equivalent to A.
Definition 2 formalises this notion.

▶ Definition 2. Let X be some of the types of conditions defined previously and let A =
(Q, Σ, q0, δ, Γ, F) be a Muller automaton. We say that we can define a condition of type
X on top of A if there is an X-condition over a set of colours Γ′ and an automaton
A′ = (Q, Σ, q0, δ′, Γ′, X) verifying:

A and A′ have the same set of states and the same initial state.
δ(q, a) = (p, c) ⇒ δ′(q, a) = (p, c′), for some c′ ∈ Γ′, for every q ∈ Q and a ∈ Σ (that is,
A and A′ have the same transitions, except for the colours produced).
L(A) = L(A′).

The next proposition, proven in [6], characterises automata that admit Rabin conditions
on top of them. It will be a key property used throughout the paper.

▶ Proposition 3 ([6]). Let A = (Q, Σ, q0, δ, Γ, F) be a Muller automaton. The following
properties are equivalent:
1. We can define a Rabin condition on top of A.
2. Any pair of cycles ℓ1 and ℓ2 in A verifying States(ℓ1) ∩ States(ℓ2) ̸= ∅ satisfies that if

both ℓ1 and ℓ2 are rejecting, then ℓ1 ∪ ℓ2 is also a rejecting cycle.

The Zielonka tree of a Muller condition
In order to study the memory requirements of Muller conditions, Zielonka introduced in [29]
the notion of split trees (later called Zielonka trees) of Muller conditions. The Zielonka tree of
a Muller condition naturally provides a minimal parity automaton recognising the associated
language [6, 21]. We will use this property to show that parity automata recognising Muller
languages can be minimised in polynomial time in Proposition 16. We will come back to
Zielonka trees in Section 4 to discuss the memory requirements of Muller conditions.

▶ Definition 4. Let Γ be a set of labels. We define a Γ-labelled-tree by induction:
T = ⟨A, ⟨∅⟩⟩ is a Γ-labelled-tree for any A ⊆ Γ. In this case, we say that T is a leaf and
A is its label.
If T1, . . . , Tn are Γ-labelled-trees, then T = ⟨A, ⟨T1, . . . , Tn⟩⟩ is a Γ-labelled-tree for any
A ⊆ Γ. In that case, we say that A is the label of T and T1, . . . , Tn are their children.

▶ Definition 5 ([29]). Let F ⊆ P(Γ) be a Muller condition. The Zielonka tree of F , denoted
ZF , is the Γ-labelled-tree defined recursively as follows: let A1, . . . Ak be the maximal subsets
of Γ (with respect to set inclusion) such that Ai ∈ F ⇔ Γ /∈ F (that is, producing an
“alternation of the acceptance condition”).



A. Casares 18:7

If no such subset Ai ⊆ Γ exists, then ZF = ⟨Γ, ⟨∅⟩⟩.
Otherwise, ZF = ⟨Γ, ⟨ZF1 , . . . , ZFk

⟩⟩, where ZFi
is the Zielonka tree for the condition

Fi = F ∩ P(Ai) over the set of colours Ai.
An example of a Zielonka tree can be found in Figure 1 (page 15).

▶ Proposition 6 ([6], [21]). Let F be a Muller condition and ZF its Zielonka tree. We can
build in linear time in the representation of ZF a parity automaton recognising LF that
has as set of states the leaves of ZF . This automaton is minimal, that is, any other parity
automaton recognising LF has at least as many states as the number of leaves of ZF .

2.2 Minimising transition-based Rabin and Streett automata is
NP-complete

This section is devoted to proving the NP-completeness of the minimisation of transition-based
Rabin automata, stated in Theorem 14.

For the containment in NP, we use the fact that we can test language equivalence of Rabin
automata in polynomial time [7].

▶ Proposition 7 ([7]). Let A1 and A2 be two Rabin automata over Σ. We can decide in
polynomial time in the representation of the automata if L(A1) = L(A2). (We recall that all
considered automata are deterministic).

▶ Corollary 8. Given a Rabin automaton A and a positive integer k, we can decide in
non-deterministic polynomial time whether there is an equivalent Rabin automaton of size k.

Proof. A non-deterministic Turing machine just has to guess an equivalent automaton Ak

of size k, and by Proposition 7 it can check in polynomial time whether L(A) = L(Ak). ◀

In order to prove the NP-hardness, we will describe a reduction from the chromatic number
problem (one of 21 Karp’s NP-complete problems) to the minimisation of transition-based
Rabin automata. Moreover, this reduction will only use languages that are Muller languages
of parity index 3.

▶ Definition 9. Let G = (V, E) be a simple undirected graph. A colouring of size k of G

is a function c : V → [1, k] such that for any pair of vertices v, v′ ∈ V , if (v, v′) ∈ E then
c(v) ̸= c(v′). The chromatic number of a simple undirected G, written χ(G), is the smallest
number k such that there exists a colouring of size k of G.

▶ Lemma 10 ([16]). Deciding whether a simple undirected graph has a colouring of size k is
NP-complete.

Let G = (V, E) be a simple undirected graph, n be its number of vertices and m its
number of edges. We consider the language LG over the alphabet V given by:

LG =
⋃

(v,u)∈E

V ∗(v+u+)ω.

That is, a sequence w ∈ V ω is in LG if eventually it alternates between exactly two vertices
connected by an edge in G.

CSL 2022
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▶ Remark 11. For any simple undirected graph G, LG is a Muller language over V , that is,
whether a word w ∈ V ω belongs to LG or not only depends on Inf (w). Moreover, the parity
index of this language is at most 3.

However, we cannot extend this reduction to show NP-hardness of the minimisation of
transition-based parity automata, as we will show in Section 2.3 that we can minimise parity
automata recognising Muller languages in polynomial time.

In order to show that this is indeed a polynomial-time reduction, we have to be able
to build a Rabin automaton recognising LG in polynomial time in the representation of G.
This is indeed the case, since we can consider a Rabin automaton that has as set of states
the vertices of G, and such that, from any state, when reading a letter v ∈ V we go to the
state v. We use the information about the edges of G to define a Rabin condition over this
automaton so that it recognises LG. The details of this construction can be found in the full
version [5].

▶ Lemma 12. We can build a Rabin automaton of size n recognising LG in O(mn2).

▶ Lemma 13. Let G = (V, E) be a simple undirected graph. Then, the size of a minimal
Rabin automaton recognising LG coincides with the chromatic number of G, χ(G).

Proof. rabin(LG) ≤ χ(G): Let c : V → [1, k] be a colouring of size k of G. We will define
a Muller automaton of size k recognising LG and then use Proposition 3 to show that
we can put a Rabin condition on top of it. Let Ac = (Q, V, q0, δ, V, F) be the Muller
automaton defined by:

Q = {1, 2, . . . , k}.
q0 = 1.
δ(q, x) = (c(x), x) for q ∈ Q and x ∈ V .
A set C ⊆ V belongs to F if and only if C = {v, u} for two vertices v, u ∈ V such that
(v, u) ∈ E.

The language recognised by Ac is clearly LG, since the output produced by a word w ∈ V ω

is w itself, and the acceptance condition F is exactly the Muller condition defining the
language LG.
Let G(Ac) = (Q, EAc) be the graph associated to Ac. We will prove that the union of
any pair of rejecting cycles of Ac that have some state in common must be a rejecting
cycle. By Proposition 3 this implies that we can define a Rabin condition on top of Ac.
Let ℓ1, ℓ2 ⊆ EAc

be two cycles such that γ(ℓi) /∈ F for i ∈ {1, 2} and such that
States(ℓ1) ∩ States(ℓ2) ̸= ∅. We distinguish 3 cases:

|γ(ℓi)| ≥ 3 for some i ∈ {1, 2}. In this case, their union also has more than 3 colours,
so it must be rejecting.
γ(ℓi) = {u, v}, (u, v) /∈ E for some i ∈ {1, 2}. In that case, γ(ℓ1 ∪ ℓ2) also contains two
vertices that are not connected by an edge, so it must be rejecting.
γ(ℓ1) = {v1} and γ(ℓ2) = {v2}. In this case, since from every state q of Ac and every
v ∈ V we have that δ(q, v) = (c(v), v), each of the cycles contains only one state:
States(ℓ1) = {c(v1)} and States(ℓ2) = {c(v2)}. As ℓ1 and ℓ2 share some state, we
deduce that c(v1) = c(v2). If v1 = v2, ℓ1 ∪ ℓ2 is rejecting because |γ(ℓ1 ∪ ℓ2)| = 1. If
v1 ̸= v2, it is also rejecting because c(v1) = c(v2), and therefore (v1, v2) /∈ E.

Since γ(ℓi) is rejecting, it does not consist on two vertices connected by some edge and we
are always in some of the cases above. We conclude that we can put a Rabin condition
on top of Ac, obtaining a Rabin automaton recognising LG of size k.
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χ(G) ≤ rabin(LG): Let A = (Q, V, q0, δ, Γ, R) be a Rabin automaton of size k recognising
LG and let G(A) = (Q, EA) be its graph. We will define a colouring of size k of G,
c : V → Q. For each v ∈ V we define a subset Qv ⊆ Q as:

Qv = {q ∈ Q : there is a cycle ℓ containing q and γ(ℓ) = {v}}.

For every v ∈ V , the set Qv is non-empty, as it must exist a (non-accepting) run over
vω in A. For each v ∈ V we pick some qv ∈ Qv, and we define the colouring c : V → Q

given by c(v) = qv.
In order to prove that it is indeed a colouring, we we will show that any two vertices
v, u ∈ V such that (v, u) ∈ E verify that Qv ∩ Qu = ∅, and therefore they also verify
c(v) ̸= c(u). Suppose by contradiction that there is some q ∈ Qv ∩ Qu. We write ℓx for a
cycle containing q labelled with x, for x ∈ {v, u} (they exist by the definition of Qx). By
the definition of LG, both cycles ℓv and ℓu have to be rejecting as xω /∈ LG for any x ∈ V .
However, since (u, v) ∈ E, their union is accepting, contradicting Proposition 3. ◀

We deduce the NP-completeness of the minimisation of Rabin automata.

▶ Theorem 14. Given a Rabin automaton A and a positive integer k, deciding whether there
is an equivalent Rabin automaton of size k is NP-complete.

▶ Corollary 15. Given a Streett automaton A and a positive integer k, deciding whether
there is an equivalent Streett automaton of size k is NP-complete.

2.3 Parity and generalised Büchi automata recognising Muller
languages can be minimised in polynomial time

In Section 2.2 we have proven the NP-hardness of the minimisation of Rabin automata showing
a reduction that uses Muller languages, that is, whether an infinite word w belongs to the
language only depends on Inf (w). We may wonder whether Muller languages could be used
to prove NP-hardness of the minimisation of parity or generalised Büchi automata. We shall
see now that this is not the case.

▶ Proposition 16. Let F ⊆ P(Σ) be a Muller condition. Given a parity automaton recognising
LF , we can build in polynomial time a minimal parity automaton recognising LF .

As stated in Proposition 6, a minimal parity automaton recognising a Muller language
can be obtained in linear time from the Zielonka tree of the condition, so it suffices to give
a polynomial-time algorithm building the Zielonka tree of the Muller condition F from a
parity automaton A recognising LF . The details of this algorithm are included in the full
version [5]. We give next the main ideas of it.

We start by labelling the root of ZF with Σ. Next, we try to find the maximal subsets of
Σ that are alternating (that is, Σ is in F if and only if they are not). To do so, we remove
the transitions of A corresponding to the maximal priority (that we suppose even), and
we compute a decomposition in strongly connected components of the obtained graph. We
keep the ergodic components (that is, those without edges leaving them), and we recursively
repeat this process in those components with a maximal even priority, until obtaining a set of
strongly connected components with maximal odd priorities. For each of these components,
we take the set of input letters that appear on their transitions. The maximal sets of letters
among them will constitute the children of the root of ZF . We continue recursively until we
do not find any new “alternating components”.
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▶ Proposition 17. Let F ⊆ P(Σ) be a Muller condition. If LF can be recognised by a
generalised Büchi (resp. generalised co-Büchi) automaton, then, it can be recognised by
one such automaton with just one state. Moreover, this minimal automaton can be built
in polynomial time from any generalised Büchi (resp. generalised co-Büchi) automaton
recognising LF .

The proof of Proposition 17 appears in the full version [5].

3 Memory in games

In this section, we introduce the definitions of games, memories and chromatic memories for
games, as well as ε-free games. We show in Section 3.4 that the memory requirements for
games where we allow ε-transitions might differ from those for ε-free games.

3.1 Games
A game is a tuple G = (V = VE ⊎ VA, E, v0, γ : E → Γ ∪ {ε}, Acc) where (V, E) is a directed
graph together with a partition of the vertices V = VE ⊎ VA, v0 is an initial vertex, γ is a
colouring of the edges and Acc is a winning condition defining a subset W ⊆ Γω. The letter
ε is a neutral letter, and we impose that there is no cycle in G labelled exclusively with ε.
We say that vertices in VE belong to Eve (also called the existential player) and those in VA

to Adam (universal player). We suppose that each vertex in V has at least one outgoing
edge. A game that uses a winning condition of type X (as defined in Section 2.1) is called
an X-game.

A play in G is an infinite path ϱ ∈ Eω produced by moving a token along edges starting
in v0: the player controlling the current vertex chooses what transition to take. Such a play
produces a word γ(ϱ) ∈ (Γ ∪ {ε})ω. Since no cycle in G consists exclusively of ε-colours, after
removing the occurrences of ε from γ(ϱ) we obtain a word in Γω, that we will call the output
of the play and we will also denote γ(ϱ) whenever no confusion arises. The play is winning
for Eve if the output belongs to the set W defined by the acceptance condition, and winning
for Adam otherwise. A strategy for Eve in G is a function prescribing how Eve should play.
Formally, it is a function σ : E∗ → E that associates to each partial play ending in a vertex
v ∈ VE some outgoing edge from v. A play ϱ ∈ Eω adheres to the strategy σ if for each
partial play ϱ′ ∈ E∗ that is a prefix of ϱ and ends in some state of Eve, the next edge played
coincides with σ(ϱ′). We say that Eve wins the game G if there is some strategy σ for her
such that any play that adheres to σ is a winning play for her (in this case we say that σ is
a winning strategy).

We will also study games without ε-transitions. We say that a game G is ε-free if γ(e) ̸= ε

for all edges e ∈ E.

3.2 Memory structures
We give the definitions of the following notions from the point of view of the existential
player, Eve. Symmetric definitions can be given for the universal player (Adam), and all
results of Section 4 can be dualised to apply to the universal player.

A memory structure for the game G is a tuple MG = (M, m0, µ) where M is a set of
states, m0 ∈ M is an initial state and µ : M × E → M is an update function (where E

denotes the set of edges of the game). Its size is |M |. We extend the function µ to M × E∗

in the natural way. We can use such a memory structure to define a strategy for Eve using a
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function next-move : VE × M → E, verifying that next-move(v, m) is an outgoing edge from
v. After each move of a play on G, the state of the memory MG is updated using µ; and
when a partial play arrives to a vertex v controlled by Eve she plays the edge indicated by
the function next-move(v, m), where m is the current state of the memory. We say that the
memory structure MG sets a winning strategy in G if there exists such a function next-move
defining a winning strategy for Eve.

We say that MG is a chromatic memory if there is some function µ′ : M × Γ → M such
that µ(m, e) = µ′(m, γ(e)) for every edge e ∈ E such that γ(e) ̸= ε, and µ(m, e) = m if
γ(e) = ε. That is, the update function of MG only depends on the colours of the edges of
the game.

Given a winning condition W ⊆ Γω, we say that M = (M, m0, µ : M × Γ → M) is an
arena-independent memory for W if for any W-game G won by Eve, there exists some function
next-moveG : VE × M → E setting a winning strategy in G. We remark that such a memory
is always chromatic.

Given a Muller condition F , we write memgen(F) (resp. memchrom(F)) for the least
number n such that for any F-game that is won by Eve, she can win it using a memory
(resp. a chromatic memory) of size n. We call memgen(F) (resp. memchrom(F)) the general
memory requirements (resp. chromatic memory requirements) of F . We write memind(F) for
the least number n such that there exists an arena-independent memory for F of size n.

We define respectively all these notions for ε-free F-games. We write memε-free
gen (F),

memε-free
chrom(F) and memε-free

ind (F) to denote, respectively, the minimal general memory require-
ments, minimal chromatic memory requirements and minimal size of an arena-independent
memory for ε-free F-games.
▶ Remark 18. We remark that these quantities verify that memgen(F) ≤ memchrom(F) ≤
memind(F) and that memε-free

X (F) ≤ memX(F) for X ∈ {gen, chrom, ind}.
A family of games is half-positionally determined if for every game in the family that is

won by Eve, she can win it using a strategy given by a memory structure of size 1.

▶ Lemma 19 ([17, 29]). Rabin-games are half-positionally determined.

If A is a Rabin automaton recognising the Muller language associated to the condition
F , given an F -game G we can perform a standard product construction G ⋉ A to obtain an
equivalent game using a Rabin condition that is therefore half-positionally determined. This
allows us to use the automaton A as an arena-independent memory for F-games.

▶ Lemma 20 (Folklore). Let F be a Muller condition. We can use a Rabin automaton A
recognising LF as an arena-independent memory for F-games.

3.3 The general memory requirements of Muller conditions
The Zielonka tree (see Definition 5) was introduced by Zielonka in [29], and in [12] it was
used to characterise the general memory requirements of Muller games as we show next.

▶ Definition 21. Let F be a Muller condition and ZF = ⟨Γ, ⟨ZF1 , . . . ZFk
⟩⟩ its Zielonka tree.

We define the number mZF recursively as follows:

mZF =


1 if ZF is a leaf.

max{mZF1
, . . . ,mZFk

} if Γ /∈ F and ZF is not a leaf.
k∑

i=1
mZFi

if Γ ∈ F and ZF is not a leaf.
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▶ Proposition 22 ([12]). For every Muller condition F , memgen(F) = mZF . That is,
1. If Eve wins an F-game, she can win it using a strategy given by a (general) memory

structure of size at most mZF .
2. There exists an F-game (with ε-transitions) won by Eve such that she cannot win it using

a strategy given by a memory structure of size strictly smaller than mZF .

3.4 Memory requirements of ε-free games
In [29] and [18] it was noticed that there can be major differences regarding the memory
requirements of winning conditions depending on the way the games are coloured. We
can differentiate 4 classes of games, corresponding to the combinations of two parameters:
state-coloured or transition-coloured, and allowing or not ε-transitions. In [29], Zielonka
showed that there are Muller conditions that are half-positional over state-coloured ε-free
games, but they are not half-positional over general state-coloured games (that is, games
where some states may be left uncoloured), and he exactly characterises half-positional Muller
conditions in both cases.

However, when considering transition-coloured games, this is no longer the case: in both
general games and ε-free games, half-positional Muller conditions correspond exactly to
Rabin conditions (Lemma 23). Nevertheless, the matching upper bounds for the memory
requirements of Muller conditions appearing in [12] are given by transition-labelled games
using ε-transitions. An interesting question is whether we can produce upper-bound exam-
ples using ε-free games. In this section we answer this question negatively. We show in
Proposition 24 that there are Muller conditions F for which the memory required by Eve
in ε-free F-games is strictly smaller than the memory she needs in general F-games, and
the difference can be arbitrarily large. In Section 4.1 we will see that this is not the case for
chromatic memories: memchrom(F) = memε-free

chrom(F) for any Muller condition F .
The details of the proofs of Lemma 23 and Proposition 24 can be found in the full version

of this paper [5].

▶ Lemma 23. For any Muller condition F ⊆ P(Γ), F is half-positional determined over
transition-coloured ε-free games if and only if F is half-positional determined over general
transition-coloured games. That is, memgen(F) = 1 if and only if memε-free

gen (F) = 1.

▶ Proposition 24. For any integer n ≥ 2, there is a set of colours Γn and a Muller condition
Fn ⊆ P(Γn) such that memε-free

gen (F) = 2 and memgen(F) = n.

Proof. Let us consider the set of colours Γn = {1, . . . , n} and the Muller condition Fn =
{A ⊆ Γn : |A| > 1}. The characterisation of [12] (Proposition 22) gives that memgen(F) = n.
However, if Eve wins some ε-free game G, she can force a victory using only 2 memory states.
The idea is the following: since the game is ε-free, from each position of the game, Eve
can directly produce one colour c ∈ Γn. Moreover, as she wins the game G, she also has a
strategy to force to see a different colour c′ from that position. She just has to remember if
she has to follow the strategy to see c′, or if she can directly produce the colour c. This can
be done with just two memory states, ensuring that the produced play will have at least two
different colours. ◀

▶ Remark 25. The condition of the previous proof also provides an example of a condition
that is half-positional over ε-free state-coloured arenas, but for which we might need memory
n in general state-coloured arenas (other examples for state-coloured games can be found in
[29, 18]).
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However, the question raised in [18] of whether there can be conditions (that cannot be
Muller ones) that are half-positional only over ε-free games remains open.

4 The chromatic memory requirements of Muller conditions

In this section we present the main contributions concerning the chromatic memory require-
ments of Muller conditions. In Section 4.1, we prove that the chromatic memory requirements
of a Muller condition (even for ε-free games) coincide with the size of a minimal Rabin
automaton recognising the Muller condition (Theorem 27). In Section 4.2 we deduce that
determining the chromatic memory requirements of a Muller condition is NP-complete, for
different representations of the condition. Finally, this results allow us to answer in Section 4.3
the question appearing in [18, 19] of whether the chromatic memory requirements coincide
with the general memory requirements of winning conditions.

4.1 Chromatic memory and Rabin automata
In this section we prove Theorem 27, establishing the equivalence between the chromatic
memory requirements of a Muller condition (also for ε-free games) and the size of a minimal
Rabin automaton recognising the associated Muller language.

Lemma 26 appears in Kopczyński’s PhD thesis [19, Proposition 8.9] (unpublished). We
present a similar proof here.

▶ Lemma 26 ([19]). Let F be a Muller condition. Then, memchrom(F) = memind(F). That
is, there is an F-game G won by Eve such that any chromatic memory for G setting a
winning strategy has size at least memind(F), where memind(F) is the minimal size of an
arena-independent memory for F .

The same result holds for ε-free games: memε-free
chrom(F) = memε-free

ind (F).

Proof. We present the proof for memchrom(F) = memind(F), the proof for the ε-free case
being identical, since we do not add any ε-transition to the games we consider.

It is clear that memchrom(F) ≤ memind(F), since any arena-independent memory for F
has to be chromatic. We will prove that it is not the case that memchrom(F) < memind(F).
Let M1, · · · , Mn be an enumeration of all chromatic memory structures of size strictly less
than memind(F). By definition of memind(F), for any of the memories Mj there is some
F -game Gj = (Vj , Ej , v0j

, γj) won by Eve such that no function next-moveGj
: Mj ×Vj → Ej

setting a winning strategy in Gj exists. We define the disjoint union of these games, G =
n⊎

i=1
Gi,

as the game with an initial vertex v0 controlled by Adam, from which he can choose to go to
the initial vertex of any of the games Gi producing the letter a ∈ Γ (for some a ∈ Γ fixed
arbitrarily), and such the rest of vertices and transitions of G is just the disjoint union of
those of the games Gi. Eve can win this game, since no matter the choice of Adam we arrive
to some game where she can win. However, we show that she cannot win using a chromatic
memory strictly smaller than memind(F). Suppose by contradiction that she wins using
a chromatic memory M = (M, m0, µ), |M| < memind(F). We let m′

0 = µ(m0, a), and we
consider the memory structure M′ = (M, m′

0, µ). Since |M′| < memind(F), M′ = Mi for
some i ∈ {1, . . . , n}, and therefore Adam can choose to take the transition leading to Gi,
where Eve cannot win using this memory structure. This contradicts the fact that Eve wins
G using M. ◀

▶ Theorem 27. Let F ⊆ P(Γ) be a Muller condition. The following quantities coincide:
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1. The size of a minimal deterministic Rabin automaton recognising LF , rabin(LF ).
2. The size of a minimal arena-independent memory for F , memind(F).
3. The size of a minimal arena-independent memory for ε-free F-games, memε-free

ind (F).
4. The chromatic memory requirements of F , memchrom(F).
5. The chromatic memory requirements of F for ε-free games, memε-free

chrom(F).

Proof. The previous Lemma 26, together with Lemma 20, prove that

memε-free
ind (F) = memε-free

chrom(F) ≤ memchrom(F) = memind(F) ≤ rabin(LF ).

In order to prove that rabin(LF ) ≤ memε-free
ind (F), we are going to show that we can put a

Rabin condition on top of any arena-independent memory for ε-free F -games M, obtaining
a Rabin automaton recognising LF and having the same size than M.

Let M = (M, m0, µ : M × Γ → M) be an arena-independent memory for ε-free F -games.
First, we remark that we can suppose that every state of M is accessible from m0 by
some sequence of transitions. We define a Muller automaton AM using the underlying
structure of M: AM = (M, Γ, m0, δ, Γ, F), where the transition function δ is defined as
δ(m, a) = (µ(m, a), a), for a ∈ Γ. Since the output produced by any word w ∈ Γω is w itself
and the accepting condition is F , this automaton trivially accepts the language LF . We are
going to show that the Muller automaton AM satisfies the second property in Proposition 3,
that is, that for any pair of cycles in AM with some state in common, if both are rejecting
then their union is also rejecting. This will prove that we can put a Rabin condition on top
of AM.

Let ℓ1 and ℓ2 be two rejecting cycles in AM such that m ∈ M is contained in both ℓ1 and
ℓ2. We suppose by contradiction that their union ℓ1 ∪ ℓ2 is an accepting cycle. We will build
an ε-free F -game that is won by Eve, but where she cannot win using the memory M, leading
to a contradiction. Let a0a1 . . . ak ∈ Γ∗ be a word labelling a path to m from m0 in M, that
is, µ(m0, a0 . . . ak) = m. We define the ε-free F-game G = (V = VE , E, v0, γ : E → Γ, F) as
the game where there is a sequence of transitions labelled with a0 . . . ak from v0 to one vertex
vm controlled by Eve (the only vertex in the game where some player has to make a choice).
From vm, Eve can choose to see all the transitions of ℓ1 before coming back to m (producing
the corresponding colours), or to see all the transitions of ℓ2 before coming back to m.

First, we notice that Eve can win the game G: since ℓ1 ∪ ℓ2 is accepting, she only
has to alternate between the two choices in the state vm. However, there is no function
next-move : M × VE → E setting up a winning strategy for Eve. Indeed, for every partial
play ending in vm and labelled with a0a1 . . . as, it is clear that µ(m0, a0 . . . as) = m (the
memory is at state m). If next-move(m, vm) is the edge leading to the cycle corresponding
to ℓ1, no matter the value next-move takes at the other pairs, all plays will stay in ℓ1, so the
set of colours produced infinitely often would be γ(ℓ1) which is loosing for Eve. The result is
symmetric if next-move(m, vm) is the edge leading to the other cycle. We conclude that M
cannot be used as a memory structure for G, a contradiction. ◀

4.2 The complexity of determining the chromatic memory
requirements of a Muller condition

As shown in [12], the Zielonka tree of a Muller condition directly gives its general memory
requirements. In this section, we see that it follows from the previous results that determining
the chromatic memory requirements of a Muller condition is NP-complete, even if it is
represented by its Zielonka tree. The proofs can be found in the full version [5].
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▶ Proposition 28. Given the Zielonka tree ZF of a Muller condition F (resp. a parity
automaton P recognising LF ), we can compute in O(|ZF |) (resp. polynomial time in |P|)
the memory requirements for F-games, memgen(F).

▶ Theorem 29. Given a positive integer k > 0 and a Muller condition F represented as
either:
a) The Zielonka tree ZF .
b) A parity automaton recognising LF .
c) A Rabin automaton recognising LF .
The problem of deciding whether memchrom(F) ≥ k (or equivalently, memind(F) ≥ k) is
NP-complete.

The proof consists in showing that the reduction presented in Lemma 13 can also be
applied if the Muller condition is given by any of the representations considered in Theorem 29.

4.3 Chromatic memories require more states than general ones
In his PhD Thesis [18, 19], Kopczyński raised the question of whether the general memory
requirements of every winning condition coincides with its chromatic memory requirements.
In this section we prove that this is not the case: Eve needs strictly more memory if she is
restricted to use chromatic memories, and the difference can be arbitrarily large.

▶ Proposition 30. For each integer n ≥ 2, there exists a set of colours Γn and a Muller
condition Fn over Γn such that for any Fn-game won by Eve, she can win it using a memory
of size 2, but there is an Fn-game G where Eve needs a chromatic memory of size n to win.
Moreover, the game G can be chosen to be ε-free.

Proof. Let Γn = {1, 2, . . . , n} be a set of n colours, and let us define the Muller condition
Fn = {A ⊆ Γn : |A| = 2}. The Zielonka tree of Fn is depicted in Figure 1, where round
nodes represent nodes whose label is an accepting set, and rectangular ones, nodes whose
label is a rejecting set.

1, 2, . . . , n

1, 2 1, 3 . . . n − 1, n

1 2 1 3 . . . n − 1 n

Figure 1 Zielonka tree for the condition Fn = {A ⊆ {1, 2, . . . , n} : |A| = 2}. Square nodes are
associated with rejecting sets (A /∈ Fn) and round nodes with accepting ones (A ∈ Fn).

The characterisation of the memory requirements of Muller conditions from Proposition 22
gives that memgen(Fn) = 2.

On the other hand, the language LFn
associated to this condition coincides with the

language LG (defined in Section 2.2) associated to a graph G that is a clique of size n.
By Lemma 13, the size of a minimal Rabin automaton recognising LFn (and therefore, by
Theorem 27, the chromatic memory requirements of Fn) coincides with the chromatic number
of G. Since G is a clique of size n, its chromatic number is n. ◀

In the full version [5] we provide an explicit example of such a game.
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5 Conclusions and open questions

In this work, we have fully characterised the chromatic memory requirements of Muller
conditions, proving that arena-independent memory structures for a given Muller condition
correspond to Rabin automata recognising that condition. We have also answered several
open questions concerning the memory requirements of Muller conditions when restricting
ourselves to chromatic memories or to ε-free games. We have proven the NP-completeness
of the minimisation of transition-based Rabin automata and that we can minimise parity
automata recognising Muller languages in polynomial time, advancing in our understanding
on the complexity of decision problems related to transition-based automata.

The question of whether we can minimise transition-based parity or Büchi automata in
polynomial time remains open. The contrast between the results of Abu Radi and Kupferman
[1, 2], showing that we can minimise GFG transition-based co-Büchi automata in polynomial
time and those of Schewe [27], showing that minimising GFG state-based co-Büchi automata
is NP-complete; as well as the contrast between Theorem 14 and Proposition 16, make of this
question a very intriguing one.

Regarding the memory requirements of games, we have shown that forbidding ε-transitions
might cause a reduction in the memory requirements of Muller conditions. However, the
question raised by Kopczyński in [18] remains open: are there prefix-independent winning
conditions that are half-positional when restricted to ε-free games, but not when allowing
ε-transitions?
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