
The Nesting-Depth of Disjunctive µ-calculus for

Tree Languages and the Limitedness Problem

Thomas Colcombet1 and Christof Löding2

1
Liafa, Cnrs and Université Paris Diderot, Case 7014, 75205 Paris Cedex 13, France

thomas.colcombet@liafa.jussieu.fr
2 RWTH Aachen, Informatik 7, 52056 Aachen, Germany

loeding@cs.rwth-aachen.de

Abstract. In this paper we lift the result of Hashiguchi of decidability
of the restricted star-height problem for words to the level of finite trees.
Formally, we show that it is decidable, given a regular tree language L

and a natural number k whether L can be described by a disjunctive
µ-calculus formula with at most k nesting of fixpoints. We show the
same result for disjunctive µ-formulas allowing substitution. The latter
result is equivalent to deciding if the language is definable by a regular
expression with nesting depth at most k of Kleene-stars.
The proof, following the approach of Kirsten in the word case, goes
by reduction to the decidability of the limitedness problem for non-
deterministic nested distance desert automata over trees. We solve this
problem in the more general framework of alternating tree automata.

1 Introduction

For regular languages of finite words, the star-height problem is to determine
for a given language the minimal number of nestings of Kleene-stars required
in a regular expression describing this language. The star-height can be seen as
a measure for the complexity of a regular language. This problem was raised
by Eggan in [6] who showed that the star-height of languages induces a strict
hierarchy.

The problem was solved 25 years later by Hashiguchi [7] with a very complex
proof. Recently, Kirsten has given a new proof [8] using the notion of nested
distance desert automata. These automata compute a value (a natural num-
ber) for each accepted input. Kirsten showed that the star-height problem can
be reduced to the limitedness problem for nested distance desert automata. A
nested distance desert automaton is called limited if the mapping it computes is
bounded. This problem is solved in [8] using an algebraic approach.

In this paper we lift Kirsten’s result from words to trees. The theory of regular
languages of finite trees has been initiated in [9, 5] and since then it has turned
out that a lot of concepts can be generalized from words to the more general
setting of trees (see [4] for an overview). Similar to the case of words, regular
languages of finite trees can be described by several formalisms, including finite
automata and regular expressions. The definition of regular expressions for trees

is very similar to the one for words using the operations of union, concatenation,
and iteration (Kleene-star). So the star-height problem for regular tree languages
is posed in the same way as for words. However it is more convenient to refer
to the nesting-depth problem for disjunctive µ-calculus. Disjunctive µ-calculus
is another way of defining regular languages of trees. This formalism uses a fix
point operator µ in place of the Kleene-star, and comes in two variants: with
substitution and without substitution. In both cases, the number of nestings of µ-
fix-points induces a strict hierarchy of languages. In the case with substitution,
this hierarchy coincides with the star-height hierarchy.

As mentioned above, the proof of Kirsten consists of two main steps: a reduc-
tion of the star-height problem to the limitedness problem for nested distance
desert automata, and the decidability proof for the limitedness problem. Our
proof is along the same lines. The first step is very similar to the one presented
in [8]. We define a natural extension of distance desert automata from words to
trees (but we prefer to call them cost automata) and reduce the nesting-depth
problem (both with and without substitution) for tree languages to the limit-
edness problem for cost automata. One should note here that in [8] a specific
construction is used to obtain an automaton for the given language that has
some good properties making the reduction work. We introduce here the notion
of subset automata as an abstract notion for capturing the properties of an au-
tomaton required for the reduction. Then we show that every regular language
of trees can be accepted by such a subset automaton.

The main obstacle for the second step of the proof is that the algebraic
objects required for dealing with languages of trees are more complex than the
ones that can be used when dealing with words. To describe the behavior of a
tree automaton one has to capture the fact that it runs in parallel over many
branches of the tree. We solve this problem by reducing the limitedness problem
for cost automata to the same problem for the much simpler class of purely
non-deterministic automata. These automata, started at the root of the tree,
only move to one of the successors of the current node. In this way each of their
computations corresponds to a single path through the tree. This reduction uses
game-theoretic arguments and even works if we start from an alternating cost
automaton instead of a non-deterministic one. Then, proving the decidability
of the limitedness problem for purely non-deterministic automata is a technical
work that relies on algebraic arguments similar to the proof of Kirsten. New
ideas inspired from [2] are required for making the proof compatible with the
branching nature of trees.

To sum up, the contributions of this paper are the following:

1. We show the reduction of the nesting-depth problem for tree languages to
the limitedness problem for cost automata (Lemma 5). This reduction is
done twice, in the case of disjunctive µ-calculus with substitution, as well as
without substitution. The new notion of subset automata – that we believe
to be of independent interest – is used.

2. We prove the decidability of the limitedness problem in the more general
framework of alternating cost automata (Theorem 2). This requires new

2

game-theoretic arguments for a first reduction to the case of purely non-
deterministic automata, as well as an involved variant of the proof of Kirsten.

Combining these results we obtain our main theorem:

Theorem 1. Given a regular language L of trees the following values and cor-
responding formulas or expressions can be computed.

1. The minimal nesting-depth of a disjunctive µ-calculus formula for L.
2. The minimal nesting-depth of a disjunctive µ-calculus formula with substi-

tution for L.
3. The minimal star-height of a regular expression for L.

The paper is organized as follows. In Section 2 we give the main definitions
concerning tree automata, disjunctive µ-calculus, and cost automata. Section 3
presents the reduction of the nesting-depth problem to the limitedness problem
for cost automata on trees. In Section 4 we show that the limitedness problem
for alternating cost automata on trees is decidable.

2 Definitions

In this section we introduce the basics on trees, tree automata, µ-calculus, and
regular expressions. The reader not familiar with the subject of regular tree
languages is referred to [4] for an introduction.

2.1 Trees and Patterns

We fix from now a ranked alphabet A, i.e., a finite set of symbols, together
with an arity |a| for every a ∈ A. The set of (finite) trees T is the least set
such that for all a ∈ A and all t1, . . . , t|a| ∈ T , a(t1, . . . , t|a|) ∈ T . In case
of |a| = 0 we simply write a instead of a(). If we want to make the alphabet
of labels explicit we also refer to a tree as an A-tree. Given a finite set X of
variables disjoint from A, the set ofX-patterns T [X] is the least set containingX
and such that for all a ∈ A and all t1, . . . , t|a| ∈ T [X], a(t1, . . . , t|a|) ∈ T [X].
Hence trees are just ∅-patterns. Sets of trees and sets of patterns are called
languages. For languages L1, . . . , L|a| we denote by a(L1, . . . , La) the language
{a(t1, . . . , t|a|) : t1 ∈ L1, . . . , t|a| ∈ L|a|}.

As usual, the domain dom(t) ⊆ N
∗ of a tree or pattern t = a(t1, . . . , t|a|)

is defined inductively as dom(t) = {ε} ∪
⋃|a|

i=1 i · dom(ti), and we view t as a
mapping from its domain to the alphabet A (and X in the case of patterns).
The elements of the domain are called nodes. We refer to nodes that are labeled
by some x ∈ X as variables nodes. Nodes that are labeled with symbols of arity
0 or variables are called leaves. The other ones are called inner nodes.

Given two sets X,Y disjoint from A, a mapping v from X to languages of
Y -patterns, and an X-pattern t, we denote by t[v] the language of Y -patterns
obtained by replacing every x ∈ X appearing in t by some t′ ∈ v(x). We lift
this notation to languages of X-patterns, K[v] =

⋃

t∈K t[v]. By K[x := K ′] we
denote the set of patterns that is obtained by taking a pattern from K and
replacing each x with some pattern from K ′.

3

2.2 Automata

A non-deterministic tree automaton is of the form A = (Q,A, In, ∆), where Q
is a finite set of states disjoint from A, A is the ranked alphabet, In ⊆ Q is the
set of initial states, ∆ ⊆ ∪a∈AQ × {a} × Q|a| ∪ Q × {ǫ} × Q is the transition
relation. Transitions of the form (q, ǫ, r) are called ǫ-transitions, and transitions
for symbols of arity 0 are written as (q, a). Given a state q of A we denote by
Aq the automaton A with q as only initial state.

To define acceptance of an automaton we use the notion of run. If the au-
tomaton does not have ǫ-transitions, then a run ρ on a tree t is a Q-tree (in which
states can have any arity) with the same domain as t that starts in an initial
state and respects the transitions. But as we are working with automata with
ǫ-transitions, the domain of a run can be different from the domain of the input
tree. Therefore we adopt an inductive definition of runs. Let t be an A-tree.

– If t = a and (q, a) ∈ ∆, then q is a run of A on t.
– If t = a(t1, . . . , t|a|) and (q, a, q1, . . . , q|a|) ∈ ∆, then q(ρ1, . . . , ρ|a|) is a run

of A on t, where each ρi is a run of A on ti with state qi at the root.
– If (p, ǫ, q) ∈ ∆ and ρ′ is a run of A on t with state q at the root, then p(ρ′)

is also a run of A on t.

A tree t is accepted by A if there is a run of A on t that starts in an initial state.
The language L(A) is the set of all trees that are accepted by A. A regular
language is a language that is accepted by some automaton.

If we want an automaton A to read X-patterns instead of solely trees, then
we explicitly specify the transitions that the automaton can use at leaves labeled
with a variable. This is done by giving a relation between states and variables.
If R is such a relation, then A[R] denotes the automaton A with the additional
transitions (q, x) for (q, x) ∈ R.

2.3 Disjunctive µ-Calculus

In this section, we introduce two other formalisms for describing regular lan-
guages of trees, namely the disjunctive µ-calculus and regular expressions.

A disjunctive µ-calculus formula with substitution (simply µ-formula with
substitution from now) has the following syntax:

φ ::= ⊥ | a(φ, . . . , φ
︸ ︷︷ ︸

|a|

) | φ+ φ | x | µx.φ | φ[x := φ] ,

in which a ∈ A, and x is a variable. If |a| = 0 we just write a instead of a(). If a
µ-formula with substitution does not use the rule φ[x := φ], it is simply called a
µ-formula. One defines the free variables of a µ-formula as usual. A µ-formula
with no free variables is closed.

The semantics [[φ]] of a µ-formula is the language of patterns defined by:

– [[⊥]] = ∅, [[x]] = {x},

4

– [[a(ψ1, . . . , ψ|a|)]] = a([[ψ1]], . . . , [[ψ|a|]]), [[ψ + ψ′]] = [[ψ]] ∪ [[ψ′]],
– [[φ[x := ψ]]] = [[φ]][x := [[ψ]]],
– [[µx.ψ]] =

⋃

n∈N
Ln, in which L0 = ∅ and Ln+1 = Ln ∪ [[ψ]][x := Ln].

A closed µ-formula with substitution defines a regular language of trees.
Reciprocally, every regular language of trees is the semantics of a µ-formula.

The nesting-depth of a µ-formula φ (with or without substitution) is the
maximal number of nestings of fixpoint operators:

– nd(⊥) = nd(x) = 0,
– nd(φ+ φ′) = nd(φ[x := φ′]) = max(nd(φ), nd(φ′)),
– nd(a(φ1, . . . , φ|a|)) = max(nd(φ1), . . . , nd(φ|a|)),
– nd(µx.φ) = 1 + nd(φ).

Remark 1. Regular expressions over words have be extended to trees, see e.g.,
[4], Chapter 2. Star-height can be defined in this framework as for word lan-
guages. This parameter is linked to the nesting-depth as follows: Each regular
tree language can be defined by a µ-formula with substitution of nesting-depth
k iff it can be defined by a regular expression of star-height k. Hence solving the
nesting-depth problem also solves the star-height problem.

2.4 Cost Automata

We now extend the model of tree automata such that trees are not just accepted
or rejected but furthermore a cost is computed. For this purpose, we add a func-
tion that assigns to each state a priority from a set D. This set D is totally
ordered and partitioned into increments and resets. We can view such an au-
tomaton as having as many counters as there are increments. Whenever a state
is visited that is assigned an increment, then the corresponding counter is incre-
mented, and all counters for smaller increments (recall that D is ordered) are
reset. If the automaton visits a state that is assigned a reset, then all counters
for increments that are smaller than this reset are set to 0. If we consider a run
of such an automaton, then the cost along a path through the run corresponds
to the maximal value of one of the counters. The cost of a run is the maximal
cost of all the paths. The cost of a tree is the minimal cost over all runs for this
tree.

Formally, a cost tree automaton is of the form A = (Q,A, In, ∆, pri), where
the first four components are as before, and pri : Q → D is a priority function.
The set D of priorities is totally ordered, and the elements of D are referred to as
increments and resets. Usually, it is of the form D = {I1, R1, . . . , Ik, Rk} where
the Ii are increments, the Ri are resets, and the order is I1 < R1 < · · · < Ik < Rk.
The same notation is used in [1] for hierarchical B-automata, which work in
the same way as our cost automata but on words and not on trees. In [8] the
increments are called ∠i (péage) and the resets gi (source).

A run ρ on a tree t is defined as for standard tree automata. The lan-
guage L(A) is also defined as if no counters where involved. The difference is that
a cost is associated to each run, each tree, and each language by the automaton.

5

We start by defining the cost of a sequence of states. Let σ = p0p1 · · · pn ∈ Q∗.
If all priorities in σ are at most Ii, then we write |σ|Ii

for the number of states
with priority Ii in σ:

|σ|Ii
=

{

0 if pri(pj) > Ii for some j,

|{j : pri(pj) = Ii}| otherwise.

Intuitively, this corresponds to the number of increments to the counter for Ii.
The condition that no priority higher that Ii occurs means that the counter is
not reset. The cost of σ is defined as

val(σ) = max{|σ′|Ii
: i ∈ [k] and σ′ is a factor of σ},

where σ′ is a factor of σ if σ = σ1σ
′σ2 for some σ1, σ2. The cost val(ρ) of a run

ρ is defined as the maximal cost of all the state sequences along paths through
ρ. The cost assigned to a tree t by the automaton A is:

A(t) = min{val(ρ) : ρ is a run of A on t} (and ω if t 6∈ L(A)).

Given a language of trees K, we define its cost for the automaton A as:

A(K) = sup{A(t) : t ∈ K} (and 0 if K = ∅).

This value A(K) can be ω, and this for two reasons: either if K 6⊆ L(A), or K ⊆
L(A) but K contains trees of arbitrary high costs.

A cost automaton A is limited if A(L(A)) < ω. It is uniformly universal
if A(T) < ω. Those two notions are tightly related as follows:

Remark 2. A cost automaton is uniformly universal iff it is both universal (as
a standard tree automaton) and limited. Conversely, given a tree automaton C
accepting the language complement of L(A), one can see it as a cost tree au-
tomaton of single priority R1. Then A is limited iff A+C is uniformly universal,
in which A + C is the disjoint union of the automata A and C (as the standard
construction for the union of languages).

When we reduce the problems of determining the star-height or the nesting-
depth of a language to the uniform universality problem for cost automata, then
we use automata with ǫ-transitions. The solution of the uniform universality
problem is presented for automata without ǫ-transitions. To justify this we now
present a result that allows to remove ǫ-transitions while preserving uniform uni-
versality. The proof uses a construction that replaces sequences of ǫ-transitions
by a single state whose priority is the maximal priority occurring in this sequence.

Lemma 1. For each cost automaton A there exists a cost automaton B without
ǫ-transitions such that for each language K of trees we have A(K) < ω iff
B(K) < ω.

6

3 From Nesting-Depth to Limitedness

In this section we describe how it is possible to reduce the nesting-depth problem
for regular tree languages to the the limitedness problem for non-deterministic
cost automata. We present this reduction for the case of µ-formulas with substi-
tution. The case without substitution follows the same lines.

The reduction consists of two parts. In the first one we present subset au-
tomata, which are non-deterministic tree automata that have special properties
with respect to the subset ordering of languages. In the second part we construct
a cost tree automaton and present our main Lemma 6 relating the nesting-depth
to the limitedness problem for this automaton.

3.1 Subset Automata

We define in this section the notion of a subset-automaton. Though we do not
develop this aspect in the present abstract, we point out that this notion is
purely driven by algebraic considerations.

Given a tree automaton A = (QA, A, InA, ∆A), the transitions in ∆A are
partitioned into ǫ-transitions ∆ǫ

A and non-ǫ-transitions ∆¬ǫ
A . The automaton is

a subset-automaton if it satisfies the following items:

1. A¬ǫ = (QA, A, InA, ∆
¬ǫ
A) is (bottom-up) deterministic and complete, i.e., for

all a ∈ A and p1, . . . , p|a| ∈ QA, the set {p : (p, a, p1, . . . , p|a|) ∈ ∆¬ǫ
A } is a

singleton; we denote by aA(p1, . . . , p|A|) its sole element.
2. The relation p ≤ q if (q, ǫ, p) ∈ ∆ǫ

A equips QA with a complete sup-semi-
lattice structure, i.e, ≤ is an order, and every subset P of QA has a least
upper bound ∨P for the order ≤ (in particular, there exists a minimum
element ⊥A = ∨∅ and a maximal element ⊤A = ∨QA).

3. For all a ∈ A, the mapping aA is continuous with respect to the sup-semi-
lattice (QA,≤), i.e., for every P1, . . . , P|a| ⊆ QA,

aA(∨P1, . . . ,∨P|a|) = ∨{aA(p1, . . . , p|a|) : p1 ∈ P1, . . . , p|a| ∈ P|a|} .

4. InA = {q ∈ QA : q ≤ q0} for some q0 in QA.

Since A¬ǫ is deterministic and complete, given a tree t, there exists a unique
state f(t) such that A¬ǫ

f(t) has a run over t. Remark that in an algebraic frame-
work, Item 1 means that the mappings aA equip QA with a tree algebra struc-
ture. The mapping f is nothing but the unique tree algebra morphism from the
free algebra of trees to this algebra. As f depends on the automaton A, it should
rather be called fA. However, we drop the subscript to simplify the notation.

Consider now a tree language K, define:

f(K) =
∨

t∈K

f(t) , and F (K) = L(Af(K)) .

7

This extended mapping f is nothing but the extension of the previous morphism
to the setting of tree algebras equipped with a complete sup-semi-lattice struc-
ture. The corresponding free algebra is the set of tree languages equipped with
the inclusion ordering. With this equivalence in mind the following lemmas are
natural. Our first lemma makes the morphism properties of f explicit.

Lemma 2. For all sets of tree languages Z ⊆ 2T , f
(⋃

Y ∈Z Y
)

=
∨

Y ∈Z f(Y) .
For all a ∈ A and tree languages K1, . . . ,K|a|,

f(a(K1, . . . ,K|a|)) = aA(f(K1), . . . , f(K|a|)) .

The second lemma shows how f is related to the semantics of the automaton A.

Lemma 3. For all states q ∈ QA, all trees t, and all tree language K:

– t ∈ L(Aq) iff f(t) ≤ q,
– K ⊆ L(Aq) iff F (K) ⊆ L(Aq) iff f(K) ≤ q.

The first item of the lemma characterizes the language accepted from state q.
The second statement shows that this equivalence can be raised to the level of
languages. More precisely, there is a very simple way to check if a language K
is included in some L(Aq) (this is not symmetric and does not work for the
superset relation), hence the name of a subset-automaton.

Finally, we need the following:

Lemma 4. Every regular language is accepted by a subset-automaton.

There are several ways for proving this lemma, each one of different interest.
Here we sketch two possibilities. Let L the tree language for which we want to
find a subset automaton.

An adapted version of the construction used by Kirsten [8] starts from an
automaton C (with state set QC) accepting the complement language of L. Then
one constructs a non-deterministic automaton A with state set 2QC in such a way
that for all P ⊆ QC and for all trees t: t ∈ L(AP) iff ∀q ∈ P, t 6∈ L(Cq) . Such
an automaton accepts L with initial states {P ⊆ QC : InC ⊆ P} (in which InC is
the set of initial states of C). The states are equipped with a complete sup-semi-
lattice structure by P ≤ R iff R ⊆ P . The automaton obtained by adding the
corresponding transitions (R, ǫ, P) to A yields a subset automaton accepting L.
This construction yields an exponential upper bound in the size of an automaton
that accepts the complement of the language.

Second, the language theoretic construction consists in considering the set of
residuals of L (a language is a residual if it is of the form {t : s[x := t] ∈ L}
in which s is an {x}-pattern with a single unique occurrence of x). It is classical
that every regular tree language L has finitely many residuals. One constructs
an automaton that has intersections of residuals as states. Those intersections
induce a complete sup-semi-lattice structure for the inclusion. The property of
residuals makes the remaining of the construction unique from this point. Once
more this construction yields a subset automaton; more precisely, the minimal
one.

8

3.2 Reduction of the Nesting-Depth Problem to Limitedness

The reduction is stated in the following lemma.

Lemma 5. Given a regular tree language L and a natural number k, there exists
effectively a cost tree automaton that is limited iff L can be defined by a µ-
formula of nesting-depth at most k. The same statement holds for µ-formulas
with substitution.

We sketch the proof here for the case with substitution. Consider a regular
tree language L, a subset automaton A for the language L, and the corre-
sponding mapping f . We construct for every k ∈ N a cost automaton Bk =
(Qk, A, Ink, ∆k, prik) and a mapping π from Qk to QA as follows:

– Qk is the set of nonempty words over QA of length up to k+ 1, we set π(u)
to be the last letter of u.

– Ink is InA, i.e., words consisting of a single initial state of A.
– ∆k contains all transitions of the form:

1. (up, a, up1, . . . , up|a|) whenever (p, a, p1, . . . , p|a|) ∈ ∆A,
(up, ǫ, ur) whenever (p, ǫ, r) ∈ ∆A,

2. (up, ǫ, upp),
3. (uqp, ǫ, up).

– prik(u) =

{

Rk+2−|u| if u = vpp for some p ∈ QA

Ik+2−|u| else.

It should be rather clear that L(Bk) = L(A) = L. Indeed, every run of A can
be seen as a run of Bk, and conversely every run of Bk is mapped by π to a run
of A with the same initial state. The key lemma is the following:

Lemma 6. The cost automaton Bk is limited iff L is the evaluation of a µ-
formula with substitution of nesting-depth at most k. In this case, the µ-formula
with substitution can be effectively given.

Let us give some ideas about the proof. From left to right: this part does not
require A to be a subset automaton. Assuming that Bk is limited, one obtains a
valueN = Bk(L) < ω. The principle is to construct a µ-formula with substitution
that is able to ‘simulate’ the behavior of the automaton Bk up to the value N
of counters.

From right to left. The idea is to prove that for all µ-formulas with substitu-
tion φ of nesting-depth at most k, every tree in [[φ]] is accepted by a run of Bk

of cost at most |φ| (i.e., the size of φ) from state f([[φ]]). In practice, this is done
via an induction on the structure of φ. This means that one has to deal with
non-closed formulas and free variables. Hence, our induction hypothesis is more
technical: given a µ-formula with substitution φ of nesting-depth at most k and
free variables X , given a mapping v from X to tree languages,

Bk
f([[φ]][v])[{(x, f(v(x))) : x ∈ X}]([[φ]]) ≤ |φ|.

9

There is no special difficulty in the proof itself. It of course relies heavily on
the properties of A and f that we have presented above.

If φ has no free variables and evaluates to L, we get that Bk
f(L)(L) ≤ |φ| < ω.

Recall that Bk accepts the language L. Since all trees in L are accepted by Bk,
this means by Lemma 3 that f(L) ∈ Ink. Hence Bk(L(Bk)) < ω: the cost
automaton Bk is limited.

4 Decidability of the Limitedness Problem

The aim of this section is to show the following theorem.

Theorem 2. The limitedness for alternating cost tree automata is decidable.

In our proof we work with the uniform universality problem according to Re-
mark 2. The proof goes in two steps: first we show how to reduce the uni-
form universality problem of alternating cost tree automata to the one of purely
non-deterministic automata, a very weak form of non-deterministic automata
(Lemma 10). We then show the decidability of the latter problem (Lemma 11).
Among those two parts, we emphasize on the first one which is completely new,
while the first one, though more involved, roughly follows the algebraic argu-
ments of [8] in combination with ideas from [2] for handling trees.

The rest of this section is divided as follows. We first introduce in Section 4.1
cost games (a game theoretic counterpart to cost automata) and establish a
result on positional strategies for them (Lemma 7). We then use in Section 4.2
cost games in a proof for Lemma 10. In Section 4.3 we present Lemma 11, the
decidability of uniform universality for purely non-deterministic automata.

4.1 Cost Games

The semantics of alternating cost automata, which we introduce below, is defined
by means of a game. For this reason we first introduce the general terminology
for games that we need later.

A cost game is of the form G = (VE , VA, v0, E, pri , F) with the following
components:

– V := VE ∪ VA is the finite set of vertices, where VE are the vertices of Eva
and VA are the vertices of Adam (the sets VE and VA are disjoint).

– v0 is the initial vertex.
– E ⊆ V × V is the set of edges. We require that the graph (V,E) is acyclic.
– pri : V → D is a priority function where D is as for cost tree automata.
– F is a subset of states that Eva should avoid.

A play σ is a finite sequence of vertices such that successive vertices in the
sequence are connected by an edge (note that we consider finite and acyclic
games and therefore only finite plays are possible). The cost val(σ) of a play σ

10

is defined as for automata with the only difference that the cost is ω if the play
contains a vertex from F :

val(σ) =

{

ω if σ contains a vertex from F ,

max{|σ′|Ii
: i ∈ [k] and σ′ is a factor of σ} otherwise.

The notion of strategy for Eva or Adam is defined as usual, it is a function
that takes a play ending in a node of the respective player and maps it to one
of the possible moves (if such a move exists, otherwise it is undefined). Given
two strategies fE for Eva and fA for Adam, they define a unique play σ(fE , fA)
from the initial vertex v0.

The goal of Eva is to minimize the cost of the play while Adam tries to
maximize it. If we fix a threshold for the cost, then we can talk about winning
strategies: We call a strategy fE for Eva a winning strategy in (G, val , N) if
maxfA

val(σ(fE , fA)) ≤ N (where fA ranges over strategies for Adam). Sim-
ilarly, a strategy fA for Adam is called a winning strategy in (G, val , N) if
minfE

val(σ(fE , fA)) > N . As the plays of G are of finite duration, for each N

the game (G, val , N) is determined.

Proposition 1. For each N , either Adam or Eva has a winning strategy in
(G, val , N).

From this proposition one can easily deduce that the following equality holds:

min
fE

max
fA

val (σ(fE , fA)) = max
fA

min
fE

val(σ(fE , fA))

where fE and fA range over strategies for Eva and Adam. We call the corre-
sponding value the value of the game.

In the reduction from the uniform universality problem for alternating au-
tomata to the one for purely non-deterministic ones we want to annotate input
trees with strategies of Adam. For this purpose we need positional strategies,
i.e., strategies that make their choice only depending on the current vertex and
not on the whole history of the play.

Unfortunately, positional strategies are not sufficient for Adam. But for our
reduction it is enough if we can guarantee a positional winning strategy for a
smaller value. In the following we show that this is indeed possible.

Formally, a positional strategy for Adam is a function fA : VA → V such that
(v, fA(v)) ∈ E for all v ∈ VA that have an E-successor, and fA(v) is undefined
otherwise.

Lemma 7. Let G be a cost game with k increments, and let N ≥ 1. If Adam
has a winning strategy in (G, val , Nk − 1), then Adam has a positional winning
strategy in (G, val , N − 1).

To prove the lemma we want to compute optimal values for Adam at each
vertex of the game, and at the same time construct positional strategies in a
bottom-up fashion, starting at the nodes without successor. The problem is that

11

the way the value of a play is defined, the optimal choice for Adam at a position
might depend on how the play arrived at this position. To avoid this problem
we first define a new valuation pval (“p” for positional), show that val and pval
are related as indicated in Lemma 7, and prove that this new valuation allows
optimal positional strategies for Adam.

The formal definition of pval is parameterized by N , i.e., the function should
be called pvalN to be more precise. To avoid the subscript we fix some value N
for the remainder of this section.

The idea for pval is the following. To allow a backward construction (starting
from the leaves of the game) we evaluate the plays by reading them right to left.
As before, when reading an increment Ii, the corresponding counter is increased
and all the smaller ones are reset. But now we view the sequence of the counters
as the digits of a single number encoded in base N . In particular, if a counter
reaches value N , then it is set back to 0 and the next higher digit (counter) is
increased by 1. The goal of Adam is to reach the value Nk, i.e., to exceed the
highest value that can be represented with k digits in base N .

Formally, pval is a function pval : V ∗ → {0, . . . , N − 1}k ∪ {ω}. The set
{0, . . . , N − 1}k ∪ {ω} is denoted as Nk

ω . We define pval by induction on the
length of a play using the operator ⊕ : D ×Nk

ω → Nk
ω defined as follows (using

infix notation) according to the informal description above:

c⊕ (nk, . . . , n1) =







(nk, . . . , ni+1, 0, . . . , 0) if c = Ri,

ω if c = Ii and nj = N − 1 for all j ≥ i,

(nk, . . . , nj+1, nj + 1, 0, . . . , 0) for c = Ii and the

smallest j ≥ i with nj < N − 1.

and c⊕ ω = ω. Now we can define pval inductively by pval (ε) = (0, . . . , 0) and

pval (vσ) =

{

ω if v ∈ F ,

pri(v) ⊕ pval (σ) otherwise.

Our first lemma relates the values computed by val and pval . The proof is based
on a simple analysis of the definitions of the the two measures.

Lemma 8. Let σ be a play.

(a) If val(σ) ≥ Nk, then pval (σ) = ω.
(b) If pval(σ) = ω, then val(σ) ≥ N .

Having established this relation we now look at strategies for Adam when he
tries to reach the pval -value of ω. We say that a strategy fA for Adam in G is a
winning strategy in (G, pval) if minfE

pval (σ(fE , fA)) = ω. Note that according
to Lemma 8 such a winning strategy is also a winning strategy in (G, val , N−1).

For (G, pval) a positional strategy can be constructed inductively starting at
the leaves by always picking the optimal successor.

Lemma 9. If Adam has a winning strategy in (G, pval), then Adam has a po-
sitional winning strategy for (G, pval).

Lemma 7 is then a direct consequence of Lemmas 8 and 9.

12

4.2 Alternating and Purely Non-Deterministic Automata

An alternating automaton in general does not send exactly one state to each
successor of a node in a tree but it can send several states into the same direction
and also no state at all in certain directions. For the formal definition we let
Γ = {1, . . . , r}, where r is the maximal rank of a letter in the alphabet A. An
alternating cost automaton is of the form A = (Q,A, In, δ, pri), where

– Q is a finite set of states,
– A is the alphabet,
– In ⊆ Q is the set of initial states,
– δ : Q × A → B+(Γ × Q) is the transition function, mapping Q × A to

positive boolean combinations over Γ × Q, such that δ(q, a) is an element
of B+({1, . . . , |a|} ×Q). If |a| = 0, then this set contains only the formulas
true and false.

– pri : Q→ D is a priority function.

A cost automaton is called purely non-deterministic if the formulas in the tran-
sition function only use disjunctions for symbols of arity at least 1.

Often it is convenient to view the transition function of an alternating au-

tomaton as a mapping δ : Q × A → 22Γ×Q

, where δ(q, a) = {P1, . . . , Pn} cor-
responds to the following formula in DNF:

∨n

i=1

∧

(h,p)∈Pi
(h, p) . Whenever we

write P ∈ δ(q, a), then we refer to this representation of automata.
The semantics of a cost automaton is defined by means of a cost game GA,t

that we describe in the following.

– The vertices or positions of the game are V = VE ∪ VA with

VE = (Q× dom(t)) ∪ {v0} and
VA = {(u, P) : u is an inner node of t and P ∈ δ(q, t(u)) for some q ∈ Q}.

– The initial position is v0.
– The edges are defined as follows:

• From v0 there are edges to (q, ε) for all q ∈ In.
• From a position (q, u) where u is not a leaf, Eva can move to all positions

(u, P) with P ∈ δ(q, t(u)), i.e., she chooses one of the sets specified by
the transition function for state q at node u. (At positions (q, u) where
u is a leaf the game stops.)

• From position (u, P) Adam can move to all positions (p, uh) with (h, p) ∈
P , i.e., Adam chooses one pair of direction and state from P and then
moves correspondingly in the tree.

– The priority function is defined by extending pri of A to the vertices of the
game by setting pri(q, u) = pri(q) and pri(u, P) to be some reset smaller
than all other elements of D (the vertices of the form (u, P) do not have any
influence on the cost of the play).

– The set F contains all vertices (q, u) such that u is a leaf and δ(q, t(u)) =
false .

13

The cost of t is defined as the value of the game:

A(t) = min
fE

max
fA

val(σ(fE , fA))

[

= max
fA

min
fE

val(σ(fE , fA))

]

where fE and fA range over strategies for Eva and Adam. One can note that for
the case of non-deterministic automata this value is the same as the one defined
using runs. Strategies of Eva correspond to runs and strategies of Adam select a
path through the run. As before we extend the definition to languages of trees:
A(K) = sup{A(t) : t ∈ K}.

We now come to the reduction from alternating to purely non-deterministic
automata, which is based on the following idea: An alternating automaton A is
uniformly universal if there exists an N such that for each t Eva has a winning
strategy in (GA,t, val , N). If the game is won by Eva this means that Adam does
not have a winning strategy. The purely non-deterministic automaton B that
we construct works over trees that are annotated with strategies for Adam. The
aim is to check that the strategy of Adam fails, which can be done in a purely
non-deterministic way. If A is uniformly universal, then all strategies of Adam
fail and hence B is also uniformly universal.

Lemma 10. For each alternating cost automaton A one can construct a purely
non-deterministic cost automaton B such that A is uniformly universal iff B is
uniformly universal.

4.3 Uniform Universality of Purely Non-Deterministic Tree

Automata

What remains to be shown is the following lemma:

Lemma 11. It is possible, given a purely non-deterministic cost tree automaton,
to decide whether it is uniformly universal or not.

The reduction done so far, to purely non-deterministic automata, has led us to
an almost word-theoretic problem. The proof of Lemma 11 relies on word-related
considerations. In particular the proof heavily relies on the theory of semigroups,
in a way similar to the proof of Kirsten [8]. The principal difficulty is to make
the proof of Kirsten compatible with the tree nature of the problem. This is done
using ideas originating from [2]. The proof itself is long and technical.

5 Conclusion

We have shown that the problems of nesting-depth of the disjunctive µ-calculus
(with and without substitution) for regular tree languages are decidable. The
proof uses cost tree automata, a tree version of the model of nested distance
desert automata used by Kirsten in [8] for deciding the star-height of regular
word languages. The main new contributions are the notion of subset automata,

14

an abstract description of tree automata that allow the reduction of the star-
height or nesting-depth problem to the limitedness of cost automata, the reduc-
tion of the uniform universality problem for alternating cost automata to the
same problem for purely non-deterministic automata, and the adaption of the
algebraic methods from [8] to the tree setting.

Possible future work includes the study of other complexity measures for
tree languages. The most natural one is the nesting-depth for µ-calculus (that is
for formulas allowing furthermore the intersection). This problem is open in the
word case, and is referred to as the semi-restricted star-height in the framework
of word languages (the restricted star-height being the one posed by Eggan and
studied by Hashigushi, Kirsten, and in this work, and the generalized star-height
corresponding to regular expressions with complementation, for which we do not
even know if the hierarchy is strict). Another complexity measure concerns the
number of distinct variables used in µ-formulas or regular expressions, and more
precisely the number of variables used in fix-points (as opposed to variables
used for substitutions). For those different problems, reduction to limitedness
questions seems the natural path to follow.

Furthermore, we hope to be able to adapt the game-theoretic framework
presented in Section 4 also to the setting of infinite trees (the remaining of the
proof of limitedness being easy to adapt to this framework). This would be a
major step for solving the problem of parity rank for regular languages of infinite
trees [3], i.e., the problem of finding the minimal number of priorities required
for a parity automaton that accepts a given regular language of infinite trees (a
parameter also known as Mostowski index and tightly connected to the Rabin
index).

References

1. M. Bojanczyk and T. Colcombet. Bounds in ω-regularity. In Proceedings of LICS

2006, pages 285–296. IEEE Computer Society Press, 2006.

2. T. Colcombet. A combinatorial theorem for trees. In Proceedings of ICALP 2007,
volume 4596 of LNCS, pages 901–912. Springer, 2007.

3. T. Colcombet and C. Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In Proceedings of ICALP 2008, volume 5126 of LNCS,
pages 398–409. Springer, 2008.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
(http://tata.gforge.inria.fr), 2007.

5. J. Doner. Tree acceptors and some of their applications. Journal of Computer and

System Sciences, 4:406–451, 1970.

6. L. C. Eggan. Transition graphs and the star-height of regular events. Michigan

Math. J., 10(4):385–397, 1963.

7. K. Hashiguchi. Algorithms for determining relative star height and star height. Inf.

Comput., 78(2):124–169, 1988.

8. D. Kirsten. Distance desert automata and the star height problem. RAIRO,
3(39):455–509, 2005.

15

9. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

16

