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Abstract
Weakly definable languages of infinite trees are an expressive subclass of regular tree languages
definable in terms of weak monadic second-order logic, or equivalently weak alternating automata.
Our main result is that given a Büchi automaton, it is decidable whether the language is weakly
definable. We also show that given a parity automaton, it is decidable whether the language is
recognizable by a nondeterministic co-Büchi automaton.

The decidability proofs build on recent results about cost automata over infinite trees. These
automata use counters to define functions from infinite trees to the natural numbers extended
with infinity. We reduce to testing whether the functions defined by certain “quasi-weak” cost
automata are bounded by a finite value.
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1 Introduction

Infinite trees are often used as a model for representing the possible behaviours of a system.
Various classes of automata and logic have been introduced in order to reason effectively
about the properties of such systems. In particular, regular tree languages capture a rich class
of properties which can be defined using logic (monadic second-order logic, or a fixpoint logic
called the modal mu-calculus) and automata (including nondeterministic parity automata).

The weakly definable languages are a proper subclass of regular tree languages. These
languages can be expressed in weak monadic second-order logic (in which second-order
quantification is restricted only to finite sets), but they can be described in many other
ways. For instance, Rabin [19] proved that they are precisely the languages for which the
language and its complement are recognizable by nondeterministic Büchi automata. Arnold
and Niwiński [2] showed that they can also be defined using the alternation-free mu-calculus.
Muller et al. [14] showed that these languages can be equivalently defined by a form of
alternating automata, called weak automata.
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2 Deciding the weak definability of Büchi definable tree languages

One reason these languages are so well studied is that they subsume temporal logics
like CTL but still admit efficient (linear time) model-checking. Hence, they represent an
expressive class of languages with good computational properties.

Given some regular language of infinite trees in the form of, say, an arbitrary parity
automaton, it would be helpful to be able to decide whether it is weakly definable. We call
this the weak definability problem.

Related work
The weak definability problem is related to the nondeterministic parity index problem or
Mostowski index problem, which asks, given a regular language L of infinite trees and a
finite set of priorities P , is there a nondeterministic parity automaton using only priorities P
that recognizes L.1 A nondeterministic parity automaton assigns to each state a priority.
A run is a labelling of the tree with states, and a run is accepting if the highest priority
occurring infinitely often on each branch is even. We say that a language L is P definable if
there is a nondeterministic parity automaton using priorities P accepting exactly the trees
in L. In the special case that P = {1, 2} (respectively, P = {0, 1}), we say the language is
Büchi definable (respectively, co-Büchi definable), since a nondeterministic parity automaton
using priorities P can be viewed as a nondeterministic Büchi automaton (respectively,
nondeterministic co-Büchi automaton).

Decidability of the nondeterministic parity index problem is known when P is restricted
to a single priority (see [12]). More interesting, Niwiński and Walukiewicz [17] established
decidability for any P as long as the input language is a deterministic tree language (a proper
decidable subclass of regular tree languages).

This parity index problem is connected to the weak definability problem because of
Rabin’s characterization of weakly definable languages: a regular tree language is weakly
definable if and only if the language and its complement are Büchi definable [19]. Since
an automaton recognizing the complement of a regular language can be found effectively
[18, 6], the weak definability problem reduces to determining whether the language and
its complement are Büchi definable. Hence, one route to proving the decidability of weak
definability would be to prove the decidability of Büchi definability. Although Karpiński
reported such a solution already in the 1970s, there is no known written proof [8]. Hence,
the weak definability problem is decidable when the input is a deterministic tree language,
but is open in general.

Colcombet and Löding [5] proposed an alternative approach to solving this problem using
cost automata. Cost automata are traditional finite state automata enriched with a finite
set of counters. Instead of only accepting or rejecting some input structure, cost automata
assign a value based on the evolution of counter values during the run. A cost automaton
A can be viewed as defining a function [[A]] from the set of structures under consideration
to the natural numbers (extended with a special infinity symbol ∞). The idea is that cost
automata can count some behaviour within the input.

The exact values of the function defined by a cost automaton do not matter. Instead, the
functions are only considered up to an equivalence relation ≈ called the boundedness relation
which ignores exact values but preserves all boundedness properties of the function.

Variants of these automata were famously used by Hashiguchi [7], and later Kirsten [9],

1 This is called the nondeterministic parity index problem since the desired automaton is nondeterministic.
There are variants of this problem for different models of automata. See [12] for an overview.
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to show the decidability of the star height problem over finite words. The idea is that a
question about language theory like the star height problem is reduced to deciding whether
the function defined by a cost automaton is limited, i.e. whether there is a natural number
bounding the output over all accepted inputs. This is a special case of deciding whether
two functions defined by cost automata are equivalent up to ≈. Because the boundedness
relation is decidable for functions defined using cost automata over finite words ([3, 4]), this
work on cost automata provided another proof of the decidability of the star height problem.

In this paper, we are dealing with cost automata working over infinite trees rather than
finite words. Colcombet and Löding [5] provided a reduction of the decidability of the
nondeterministic parity index problem to the decidability of ≈ for cost-parity automata:
parity automata over infinite trees enriched with counters. Unfortunately, the decidability
of ≈ for this richer class of cost-parity automata over infinite trees is open, so the general
parity index problem remains open.

Independently, Afshari and Quickert also gave a reduction of the weak definability problem
for Büchi definable languages to a question of boundedness, but decidability is also open
using their approach [1].

Contributions
Our contribution is to show that recent results developed for the cost automata over infinite
trees can be applied to solving a special case of the weak definability problem when the
input language (or its complement) is Büchi definable. This subsumes the previously known
decidability result for deterministic input. Along the way, we also point out an application
to deciding whether a language is co-Büchi definable.

In other words, we show that the following problems are decidable:
Given an alternating parity automaton over infinite trees, is there a nondeterministic
co-Büchi automaton recognizing the same language? (Theorem 9)
Given an alternating Büchi automaton, alternating co-Büchi automaton, or deterministic
parity automaton over infinite trees, is there a weak automaton recognizing the same
language? (Theorem 10)

The constructions make use of quasi-weak cost automata, which were introduced in [10].
This form of automaton is a new variant of weak automaton with counters, and we believe
this application demonstrates the utility of this new automaton model.

Notation and Conventions
We write N for the set of non-negative integers and N∞ for the set N ∪ {∞}, ordered by
0 < 1 < · · · <∞.

We work with an arbitrary finite alphabet A. The set of finite (respectively, infinite)
words over A is A∗ (respectively, Aω) and the empty word is ε. For notational simplicity we
work only with infinite binary trees. Let T = {0, 1}∗ be the unlabelled infinite binary tree.
The set TA of complete A-labelled binary trees is composed of mappings t : T → A. A branch
π is a word {0, 1}ω. A frontier E is a set of positions in T such that for all branches π in
T , E ∩ π is a singleton. For frontiers E and E′, we write E < E′ if for every branch π, if
x = E ∩ π and x′ = E′ ∩ π, then x is a strict ancestor of x′. If x, y are nodes in T , with x a
strict ancestor of y, we write [x, y) for the set of nodes that are strict ancestors of y and a
descendant of x, including x itself.
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2 Cost automata and cost functions

The automata that we consider are traditional automata over infinite trees equipped with
a finite set of counters Γ which can be incremented ic, reset r, or left unchanged ε (but
cannot be used to affect the flow of the automaton). Let B := {ic, r, ε} denote this alphabet
of counter actions. Each counter starts with value zero, and the value of a sequence of
actions is the supremum of the values achieved during this sequence. For instance the finite
sequence (ic)(ic)rε(ic)ε has value 2, the infinite sequence ((ic)r)ω has value 1, and the
infinite sequence (ic)r(ic)2r(ic)3r . . . has value ∞. If there are several counters, only the
sequence with the maximal value is taken into account.

Formally, an (alternating) B-Büchi automaton 〈Q,A, q0,Γ, F, δ〉 on infinite trees has a
finite set of statesQ, alphabet A, initial state q0 ∈ Q, a finite set Γ of counters, accepting states
F ⊆ Q, and transition function δ : Q×A→ B+({0, 1}×BΓ×Q), where B+({0, 1}×BΓ×Q)
is the set of positive boolean combinations, written as a disjunction of conjunctions, of
elements (d, ν, q) ∈ {0, 1} × BΓ ×Q.

We view running a B-automaton A on an input tree t as a game A × t between two
players: Eve is in charge of the disjunctive choices and tries to minimize counter values while
satisfying the acceptance condition, and Adam is in charge of the conjunctive choices and
tries to maximize counter values or show the acceptance condition is not satisfied. Because
the transition function is given as a disjunction of conjunctions, we can consider that at each
position, Eve first chooses a disjunct, and then Adam chooses a single tuple (d, ν, q) in this
disjunct.

A play of A on input t is a sequence q0, (d1, ν1, q1), (d2, ν2, q2), . . . compatible with t and
δ, i.e. q0 is initial, and for all i ∈ N, (di+1, νi+1, qi+1) appears in δ(qi, t(d1 . . . di)).

A strategy for Eve (respectively, Adam) in the game A× t is a function that fixes the
next choice of Eve (respectively, Adam), based on the history of the play (respectively, the
history of the play and Eve’s choice of disjunct). Notice that choosing a strategy for Eve and
a strategy for Adam fixes a play in A× t. We say a play π is compatible with a strategy σ
for Eve if there is some strategy σ′ for Adam such that σ and σ′ yield the play π.

A play π is accepting for the Büchi condition specified by F if there is q ∈ F appearing
infinitely often in π. Given a play π from a B-automaton A, the value of π is ∞ if π is not
accepting and is the supremum of the counter values achieved during the play otherwise.

We assign a value to a strategy σ for Eve by taking

value(σ) := sup {value(π) : π is compatible with σ} .

Likewise, the value assigned to the game A× t is

value(A× t) := inf {value(σ) : σ is a strategy for Eve in the game A× t} .

We view A as defining a function [[A]] : TA → N∞ such that [[A]](t) := value(A× t). Hence, in
a B-automaton like this, Eve’s goal is to satisfy the acceptance condition while minimizing
the counter values.

If for all (q, a) ∈ Q× A, δ(q, a) is of the form
∨
i(0, ν0

i , q
0
i ) ∧ (1, ν1

i , q
1
i ), then we say the

automaton is nondeterministic. We define a run to be the set of possible plays compatible
with some fixed strategy of Eve. Since the only choices of Adam are in the branching, a run
labels the entire binary tree with states, and choosing a branch yields a unique play of the
automaton. A run is accepting if it is accepting on all branches, and the value assigned to a
run of a B-automaton is the supremum of the values across all branches. For nondeterministic
automata, the choices of Eve and Adam in the game described above can be viewed as
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Eve picking some (0, ν0
i , q

0
i ) ∧ (1, ν1

i , q
1
i ), and Adam choosing a direction (which uniquely

determines which atom Adam picks from the conjunction). Note that unless otherwise
indicated, we assume automata are alternating.

We can define other types of cost automata simply by varying the acceptance condition.
Given a set F ⊆ Q, a play is accepting for a co-Büchi condition specified by F if states from
F occur only finitely often on the play. Given a set of priorities P and a mapping Ω : Q→ P

assigning a priority to every state, a play is accepting for the parity condition specified by Ω
if the maximum priority occurring infinitely often on the play is even. B-automata with these
acceptance conditions will be called B-parity or B-co-Büchi automata as expected. Cost
automata is a more general term that includes all of these types of automata with counters.

I Example 1. Let A = {a, b, c}. We describe an alternating B-Büchi automaton A which
computes the function g : TA → N∞ defined by g(t) = 0 if some branch of t has infinitely
many a, and g(t) = sup {|π|b : π is a branch of t} otherwise, where |π|b denotes the number
of b-labelled nodes on the branch π.

Informally, Eve has an initial choice between trying to find a branch with infinitely
many a’s, or counting the number of b’s on a branch chosen by Adam. Formally, let
A = 〈{q0, qa, fa, fb} ,A, q0, {γ} , {fa, fb} , δ〉. For any letter x ∈ A, we have δ(q0, x) =
[(0, ε, qa) ∨ (1, ε, qa)] ∨ [(0, ε, fb) ∧ (1, ε, fb)].

Then, one of the following automata is deterministically executed, the first one on a
branch chosen by Eve, the second one on a branch chosen by Adam.

qa fa fb

b, c : ε
a : ε

a : ε

b, c : ε

a, c : ε

b : ic

For instance, δ(qa, a) = (0, ε, fa) ∨ (1, ε, fa), and δ(fb, b) = (0, ic, fb) ∧ (1, ic, fb).
Notice that if the letter labelling the root is b, the counter is not incremented. This can

result in a difference of 1 between g(t) and [[A]](t). We will see in Section 2.2 that we can
still consider that A defines g, up to some equivalence relation between functions (noted
[[A]] ≈ g).

2.1 Variants of weakness for cost automata
Traditional weak automata are alternating Büchi automata with a restriction that no cycle of
the automaton visits both accepting and rejecting states (in [14], this is enforced by saying
that there is a partition of the state set and an ordering of these partitions such that the
transition function is non-increasing with respect to this ordering).

In the cost setting, there are two natural variants of weakness. We say an alternating
B-Büchi automaton is

B-weak if in all cycles, either all states are accepting or all states are rejecting;
B-quasi-weak if in all cycles that contain both an accepting state and a rejecting state,
there is a counter that is incremented but not reset.

The weakness property is the traditional notion of weakness, and implies that every play
in the game associated with this automaton has to eventually stabilise, either in a strongly
connected component where all states are accepting (so the play is winning for Eve), or in a
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strongly connected component where no state is accepting (so the play is winning for Adam).
In fact, this stabilisation occurs after at most |Q|-many changes of mode between accepting
states and rejecting states (where Q is the set of states of the automaton). B-weak automata
were studied in [21].

Similarly, the quasi-weakness property implies that any play that does not stabilise after
kn-changes of mode (for some constant k depending on the automaton) has a counter with
value greater than n. Hence, a play with some bounded value n ∈ N must have stabilised in
accepting states. B-quasi-weak automata were introduced in [10] where they were shown to
be strictly more expressive than B-weak automata, but not as expressive as general B-parity
automata.

Thus, the difference between these models is in the number of allowed mode changes:
unrestricted for B-Büchi automata; bounded by some function of the value for B-quasi-weak
automata; and bounded by some constant for B-weak automata.
I Remark. By definition, a B-weak or B-quasi-weak automaton is a special type of alternating
B-Büchi automaton. However, a B-weak or B-quasi-weak automaton can always be converted
to a B-co-Büchi automaton defining the same function. This can be accomplished by simply
complementing the set F of accepting states in the original B-quasi-weak automaton, and
then viewing the automaton as an alternating B-co-Büchi automaton; the transition function
does not change at all.

We can switch so easily between the Büchi form and co-Büchi form because the only
difference between the Büchi and co-Büchi semantics occurs when the play switches infinitely
many times between accepting and rejecting states. This is impossible in B-weak automata,
and occurs only in plays of infinite counter value in B-quasi-weak automata (when the value
of the play is ∞, regardless of the acceptance condition).

2.2 Cost function equivalence
Let D be some domain of input structures, and FD the set of functions : D → N∞. We
say a function f : D→ N∞ is bounded on some set U ⊆ D if there is some n ∈ N such that
f(u) ≤ n for all u ∈ U .

The domination relation 4 and boundedness relation ≈ are defined as follows. Given
f, g : D→ N∞,

f 4 g if for all U ⊆ D, if g is bounded on U then f is bounded on U.

Likewise, f ≈ g if f 4 g and g 4 f . In other words,

f ≈ g if for all U ⊆ D, f is bounded on U if and only if g is bounded on U.

This means that f and g satisfying f ≈ g may not agree on exact values but do agree on
boundedness properties across all subsets of the domain of input structures.

I Example 2. Let D = TA for A = {a, b, c}.
Consider the functions |·|a and |·|b mapping a tree t ∈ TA to the number of a-labelled nodes
and b-labelled nodes, respectively, in t. Then | · |a ≈ 2| · |a since a set of trees has bounded
output via | · |a iff it has bounded output via the function 2| · |a. However, | · |a 6≈ | · |b
since the family of trees (ti)i∈N where ti has no occurrences of a and i occurrences of b
has a bounded output via | · |a but unbounded output via | · |b. We can also take the
singleton {tb} as a witness, where tb is the full binary tree labelled only with b’s: | · |a is
bounded on {tb} but | · |b is not, since value ∞ is considered unbounded.
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Given L ⊆ TA, let χL denote the characteristic function that maps everything in L to 0
and everything else to ∞. Then for K,L ⊆ TA, we have χL 4 χK iff K ⊆ L. Likewise,
for L ⊆ TA and f : TA → N∞, f ≈ χL iff f is bounded on L and f(t) =∞ for all t /∈ L.

A cost function over D is an equivalence class of FD/≈, so we also refer to ≈ as cost
function equivalence. In practice, a cost function (denoted f, g, . . .) will be represented by
one of its elements in FD. In this paper, D will usually be TA. The function [[A]] defined by a
cost automaton A will always be considered as a cost function, i.e. only considered up to ≈.

3 Expressivity of traditional automata

For readers who are unfamiliar with regular tree languages, we briefly review in this section
some results about traditional automata over infinite trees. We refer the reader to [20] for
more information.

By setting Γ = ∅, the definitions in the previous section correspond to the traditional
definitions of automata over infinite trees. In this case, L(A) ⊆ TA denotes the set of trees
t for which there exists a strategy for Eve in A× t such that every play π in this strategy
satisfies the acceptance condition. We say A recognizes the language L(A). The function
[[A]] defined by A is χL(A), the characteristic function of L(A) mapping every tree in L(A)
to 0 and everything else to ∞. Given some language L ⊆ TA, we write L for the complement
TA \ L of L.

In terms of expressivity, parity automata (in either their alternating or nondeterministic
form) capture all regular languages of infinite trees. Languages recognized by alternating
and nondeterministic Büchi and co-Büchi automata are strict subclasses of the regular tree
languages. However, thanks to the so-called “breakpoint construction” [13], alternating
Büchi automata are expressively equivalent to nondeterministic Büchi automata. Therefore,
a tree language is Büchi definable if it is recognizable using either a nondeterministic or
alternating Büchi automaton. On the other hand, alternating co-Büchi automata are strictly
more expressive than nondeterministic co-Büchi automata (what we call co-Büchi definable).

The complement of a co-Büchi definable language is Büchi definable. The complement of
a Büchi definable language can be recognized by an alternating co-Büchi automaton but is
not necessarily co-Büchi definable.

A language is weakly definable if it is recognizable by a weak automaton, i.e. an alternating
Büchi automaton satisfying the weakness condition described earlier. Equivalently, a language
L is weakly definable iff L and L are Büchi definable [19, 11]. Weakly definable languages
are closed under complement.

We pause to mention some well-known examples of weakly definable and Büchi definable
languages.

I Example 3. Let A = {a, b}. Consider L1, L2 ⊆ TA such that L1 is the language of trees
with infinitely many a’s on every branch and L2 is the language of trees with infinitely many
a’s on some branch.

L1 and L1 are weakly definable and Büchi definable.
L2 is Büchi definable but not weakly definable.
L2 is neither Büchi definable nor weakly definable, but is co-Büchi definable.

4 Reducing to cost function equivalence

We seek to reduce questions about language definability to deciding cost function equivalence
for functions defined by cost automata.
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Colcombet and Löding [5] provided such a reduction for the parity index problem.

I Theorem 4 ([5]2). Given a parity automaton A and a desired set of priorities P , there
exists effectively a nondeterministic B-parity automaton E using priorities P such that the
following are equivalent:

L(A) is recognizable by a nondeterministic parity automaton using priorities P ,
[[E ]] ≈ χL(A).

The rough idea behind the construction is that the automaton E “guesses” a run of A
(in fact, a run of a special normalized form for A) and tries to map the priorities in A to
the desired set of priorities P . The counters are used as a way to measure mistakes in this
mapping, and it turns out that the function defined by E has a bounded value for all t ∈ L(A)
iff L(A) is actually recognizable by a nondeterministic parity automaton using priorities P .

Our main contribution in this paper is to provide a reduction of the weak definability
problem for Büchi definable languages to the decidability of ≈ for B-quasi-weak automata.

I Theorem 5. Given a nondeterministic Büchi automaton U with L = L(U), there exists
effectively a B-quasi-weak automaton B such that the following are equivalent:

L is weakly definable,
[[B]] ≈ χL.

Recall that early work by Rabin [19] characterized weak definability in terms of Büchi
definability of the language and its complement. Kupferman and Vardi [11] built on Rabin’s
work by providing an explicit construction of a weak automaton from two complementary
nondeterministic Büchi automata.

Our construction is derived from this work. However, here we are only given a single
Büchi automaton to start, so the constructed cost automaton “guesses” information about the
complementary automaton, and uses the counters to determine whether this complementary
automaton is also Büchi (and therefore if the language is weak). Although this reduction
was inspired by Theorem 4, it does not rely on it and the proof ideas are quite different.

We start by giving a brief description of the construction in [11], before proceeding to
our reduction.

4.1 Proof from Kupferman and Vardi
The proofs in [19] and [11] begin with an analysis of composed runs of two nondeterministic Bü-
chi automata U = 〈QU ,A, qU0 , FU , δU 〉 and U ′ = 〈QU ′ ,A, qU ′

0 , FU ′ , δU ′〉. LetM := |QU | · |QU ′ |.
Recall that a frontier E is a set of nodes of t such that for any branch π of t, E ∩ π is a

singleton. Frontiers can be compared: we write E < E′ if for any branch π, the only node in
π ∩ E is a strict ancestor of the one in π ∩ E′. Kupferman and Vardi [11] define a trap for
U and U ′ to be a strictly increasing sequence of frontiers {ε} = E0 < E1 < · · · < EM such
that there exists a tree t, a run R of U on t, and a run R′ of U ′ on t satisfying the following
properties: for all 0 ≤ i < M and for all branches π in t, there exists x, x′ ∈ [eπi , eπi+1) such
that R(x) ∈ FU and R′(x′) ∈ FU ′ where eπ0 < · · · < eπM is the set of nodes from E0, . . . , EM

2 The notation and terminology used in [5] is different than in this paper. The “distance-parity” automata
in that work are B-parity automata here. The reduction is to the uniform universality problem of an
automaton Uij , which asks whether [[Uij ]] is equivalent to the constant function 0 (i.e. whether it is
universal, and has a bounded value across all inputs). The construction of Uij uses an automaton Aij ,
which corresponds to E here.
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induced by π. The set of positions [eπi , eπi+1) can be viewed as an accepting block that
witnesses an accepting state from both U and U ′.

A pumping argument from [19] shows that the existence of a trap implies L(U) ∩ L(U ′) 6= ∅.
We use this property in our proof below and therefore state it as a lemma.

I Lemma 6 ([19],[11]). If there is a trap for two nondeterministic Büchi automata U and
U ′, then L(U) ∩ L(U ′) 6= ∅.

Now assume that U and U ′ are nondeterministic Büchi automata such that L(U ′) is the
complement of L(U). In this case, the existence of a trap implies a contradiction (which is
why it is called a trap in [11]).

By taking advantage of this trap condition, Kuperfman and Vardi [11] show how to use
the complementary nondeterministic Büchi automata U and U ′ in order to construct a weak
automaton W recognizing L(U). The general idea is that Eve (respectively, Adam) selects
a run of U (respectively, U ′). The acceptance condition in W requires that any time an
accepting state from U ′ is seen, an accepting state from U is eventually seen. Because the
existence of a trap is impossible, these accepting blocks only need to be counted up to M
times before the automaton is allowed to enter an accepting sink state. Hence, the automaton
W keeps track of the number of blocks (up to M) in the state. Since each block contains at
most two changes of mode between accepting and rejecting states, this means there is no
cycle visiting both accepting and rejecting states, so W is weak.

The idea for the proof of correctness is that if t ∈ L(U), then Eve has a strategy to play
in the game W × t (i.e. play the accepting run of U). On the other hand, if t ∈ L(U ′) and we
assume for the sake of contradiction that Eve has a winning strategy in W × t, then this
strategy and the accepting run of U ′ can be used to build a trap, which is impossible.

We now turn to our construction and the proof of Theorem 5.

4.2 Construction
The construction for B is similar to the construction in [11]. However, the construction from
[11] explicitly uses a Büchi automaton U ′ for the complement of U , and furthermore uses an
explicit counter in the state space to count up to value M (the value used in the definition
of a trap, see above). We only use the existence of such an automaton U ′ in one direction of
the correctness proof, and replace the explicit counting by a single B-counter.

Let U = 〈QU ,A, qU0 , FU , δU 〉 be a nondeterministic Büchi automaton without counters. Let
Ũ be the dual of U , obtained by exchanging conjunctions and disjunctions in the transition
formulas of U , and changing the acceptance condition from a Büchi condition specified
by F to a co-Büchi condition specified by the same F . The automaton Ũ recognizes the
complement of U [15]. Note that dualization of an automaton U also results in the dualization
of the game U × t: the roles of Adam and Eve exchange (we use this fact in the proof below).

The construction of B can roughly be described as follows. It consists of two copies
of Ũ , the states of the first of these copies are non-accepting, the states of the second
copy are accepting. In the first copy, the transition function of Ũ is extended to allow a
nondeterministic choice between staying inside the first copy or jumping to the second copy
(so each transition of Ũ is doubled in a nondeterministic way). In the second copy, the
transitions from states in FU go back to the first copy and perform an increment on the
counter. The other transitions of the second copy, from states not in FU , stay in the second
copy and do not increment the counter.

Formally, define the B-Büchi automaton B := 〈QB,A, qB0 , {γalt}, FB, δB〉 with the following
components. QB = QU × {R,A} (R and A for rejecting and accepting), qB0 = 〈qU0 , R〉, and
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FB = QU × {A}.
For q ∈ QU and a ∈ A with δU (q, a) =

∨nq

i=0(0, q0
i ) ∧ (1, q1

i ), we define δB as follows:

δB(〈q,R〉, a) =
∧nq

i=0(0, ε, 〈q0
i , R〉) ∨ (0, ε, 〈q0

i , A〉) ∨ (1, ε, 〈q1
i , R〉) ∨ (1, ε, 〈q1

i , A〉).

If q /∈ FU then

δB(〈q, A〉, a) =
∧nq

i=0(0, ε, 〈q0
i , A〉) ∨ (1, ε, 〈q1

i , A〉)

and if q ∈ FU then

δB(〈q, A〉, a) =
∧nq

i=0(0, ic, 〈q0
i , R〉) ∨ (1, ic, 〈q1

i , R〉).

Note that the two copies of U that are used in B have the structure of Ũ with the additional
branching between the two copies, as described above. We use this fact in the proof below to
copy strategies of Eve or Adam in Ũ × t to B × t.

4.3 Proof of correctness
It is easy to see that B is quasi-weak: any cycle going through both accepting and rejecting
states has to take a transition from the second copy of Ũ to the first one, thereby incrementing
the single counter γalt of B (which is never reset). It remains to prove that B has the property
claimed in Theorem 5, namely that [[B]] ≈ χL if and only if L is weakly definable.

For one direction, assume that [[B]] ≈ χL. Then there exists N ∈ N such that for all t ∈ L,
there is an accepting run ρ of B on t with value(ρ) ≤ N . Hence, there is a weak automaton
B′ based on B that simulates γalt in the state up to value N , and enters a special rejecting
state as soon as it would exceed this bound. Then L(B′) = L, and the dual of B′ is a weak
automaton defining L. Notice that this part does not depend on how B is built: the existence
of any quasi-weak automaton A with [[A]] ≈ χL or [[A]] ≈ χL would imply that L is weakly
definable.

For the other direction, assume that L is weakly definable. We first show that B has
value ∞ on all trees from L (this does not use the fact that L is weakly definable). So let
t ∈ L be a tree. Then Eve has a strategy in U × t that ensures that FU is visited infinitely
often. It follows that in the dual game Ũ × t Adam has a strategy σ that ensures that FU
is visited infinitely often. Adam can use this strategy in B × t, regardless of which copy is
currently used. Note that if the current copy is R, it is Eve who can choose to stay in R or
to switch to A. However when the current copy is A, the plays goes back to R as soon as a
state from FU is seen, which depends on Adam’s choices. A resulting play will either stay in
R eventually, or it alternates infinitely often between A and R because σ ensures that FU is
visited infinitely often. In both cases, the value of the resulting play is ∞.

We now finish the correctness proof by showing that B is bounded on L. Since L is weakly
definable, there is a nondeterministic Büchi automaton U ′ for L. Let M := |QU | · |QU ′ |.

Fix some t ∈ L. We consider a game that in some sense corresponds to the game
(U ′ × Ũ)× t. Accordingly, the positions of the game are QU ′ ×QU × {0, 1}∗. One round of
the game consists of the following moves, assuming the current position is (q′, q, x):

1. Eve chooses a transition of U ′, that is, a conjunction (0, p′0) ∧ (1, p′1) that appears in
δU ′(q′, t(x)).

2. Adam chooses a transition of U , that is, a conjunction (0, p0) ∧ (1, p1) that appears in
δU (q, t(x)).

3. Eve chooses a direction d ∈ {0, 1}.
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As usual, the game continues from (p′d, pd, xd). Note that the moves 2 and 3 are the
moves from U × t with the roles of Eve and Adam exchanged, and thus correspond to the
moves in Ũ × t.

Because t ∈ L, Eve has a strategy σ to ensure that FU ′ is visited infinitely often. Assume
that Adam has a strategy τ against such a σ that enforces in each compatible play more
than M many alternations between FU ′ and FU . Since Eve is choosing the directions, τ
works along all branches of t, and therefore would define a trap for U , U ′, and t. Since
L(U) ∩ L(U ′) = ∅, this would contradict Lemma 6. We can conclude that Eve has a strategy
σ that visits FU ′ infinitely often and at the same time keeps the number of alternations
between FU ′ and FU bounded by M (here, we use the determinacy of the game with the
corresponding winning condition for Eve).

From σ we can derive a strategy in B × t for Eve that accepts t with value bounded by
M . Recall that the moves 2 and 3 correspond to the game Ũ × t and thus Eve can use σ in B
(keeping track of her moves in U ′ in her memory). We only have to define when Eve switches
from QU × {R} to QU × {A}. She does this whenever the state of U ′ in the original game is
in FU ′ . If she plays according to this strategy, then each play switches from QU × {R} to
QU × {A} eventually, because σ ensures infinitely many visits to FU ′ . Furthermore, Adam
can switch back to QU × {R} at most M times, because σ ensures at most M alternations
between FU ′ and FU . Hence, each play eventually remains in QU × {A} and has value at
most M ∈ N . Since this is true for all t ∈ L, B is bounded on L as desired.

This finishes the correctness proof for the construction of B and thus the proof of
Theorem 5.

5 Deciding special cases of cost function equivalence

Although we cannot decide 4 for all cost functions over infinite trees, we can show it is
decidable in some cases.

I Theorem 7. Let f, g be cost functions over infinite trees. Then f 4 g is decidable if these
two conditions are satisfied:

f is given by a parity automaton (without counters) or a B-co-Büchi automaton;
g is given by a parity automaton (without counters), B-Büchi automaton, or nondetermin-
istic B-parity automaton.

This is a slight extension of the decidability of cost function equivalence reported in
[21] and [10], but the proof method is the same. The procedure tries to find a witness
showing f 64 g. Such a witness is a family of trees with bounded value via g but unbounded
value via f . In order to do this, the automata are first converted into nondeterministic
forms (so these witnesses can be ‘guessed’). B-automata are good for g because a single run
of a nondeterministic B-automaton can witness a low value. There is a dual form called
S-automata which are good for f since they can witness a high value with a single run.
We will not describe this dual form in this paper (for the reviewers: see appendix for some
details on this model). The types of automata appearing in Theorem 7 describe when we
know when we can convert alternating cost automata into these required forms. From there,
deciding 4 can be reduced to solving parity games on finite graphs. We refer the interested
reader to [22] for more information.

Because B-quasi-weak automata can be viewed as either B-co-Büchi or B-Büchi automata
(see the Remark at the end of Section 2.1), this means that f ≈ g is decidable when f and g
are given by B-quasi-weak automata.
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I Corollary 8. Let f, g be cost functions over infinite trees. Then f ≈ g is decidable if
each function is given by either a parity automaton (without counters) or a B-quasi-weak
automaton.

In the remainder of this section, we state the decidability results that follow from
Theorem 7 and Corollary 8 and the reductions given in Theorem 4 and Theorem 5.

5.1 Deciding co-Büchi definability
In this section we show that it is decidable for a given parity automaton whether there exists
an equivalent nondeterministic co-Büchi automaton.

The decidability of co-Büchi definability is a corollary of Theorem 7 and Theorem 4.

I Theorem 9. Given a parity automaton A over infinite trees, it is decidable whether or
not there is a nondeterministic co-Büchi automaton A′ such that L(A) = L(A′).

Proof. Given A we apply Theorem 4 with P = {0, 1} to obtain a nondeterministic B-
co-Büchi automaton E such that [[E ]] ≈ χL(A) if and only if L(A) is recognizable by a
nondeterministic co-Büchi automaton. According to Theorem 7 it is decidable whether
[[E ]] ≈ χL(A) because the types of the automata A and E are such that both directions,
[[E ]] 4 χL(A) and χL(A) 4 [[E ]] can be decided. J

One route to proving the decidability of the full parity index problem would be to prove
a more general decidability result for ≈, for arbitrary alternating B-parity automata, but
this problem remains open.

5.2 Deciding weak definability of Büchi definable languages
We now turn to the main result, deciding weakness for Büchi definable languages. This
follows from Corollary 8 and the reduction in Theorem 5.

I Theorem 10. Given an alternating Büchi automaton, alternating co-Büchi automaton,
or deterministic parity automaton A with L = L(A), it is decidable whether there is a weak
automaton W such that L(W) = L, or equivalently whether L is definable in weak monadic
second-order logic.

Proof. Note that Corollary 8 implies that [[B]] ≈ χL is decidable when B is B-quasi-weak.
Hence, Theorem 5 implies the decidability of the weak definability problem when the input
is a nondeterministic Büchi automaton. The other inputs can all be transformed into a
nondeterministic Büchi automaton for the language or its complement.

If the input is an alternating Büchi automaton, then an equivalent nondeterministic Büchi
automaton can be constructed ([13, 16]), and Theorem 5 can be applied. If the input is an
alternating co-Büchi automaton, then the complement is an alternating Büchi automaton and
we can use the previous case to decide whether L is weak. Since weakly definable languages
are closed under complement, L is weak if and only if L is weak.

Finally, if the input is a deterministic parity automaton (not necessarily Büchi), then we
reduce to other cases since a nondeterministic Büchi automaton can be constructed for the
complement language: the nondeterministic Büchi automaton guesses a branch in the run of
the deterministic parity automaton and checks that it is rejecting. As mentioned earlier, the
decidability of this case was known already from [17] using different methods. J
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6 Conclusion

We showed that given a Büchi automaton, it is decidable whether the language it recognizes
is weak. We also showed that it is decidable whether a regular tree language is recognizable
by a nondeterministic co-Büchi automaton, for arbitrary input. These are particular cases of
the Mostowski index problem, for which very few intermediate results are known.

We used the recent formalism of quasi-weak automata to prove these results. We believe
this shows that this model is flexible and well-suited for the weak definability problem.
Moreover, it provides additional motivation to develop the theory of cost functions, since we
demonstrated that it can give rise to new decidability procedures.

The current understanding of the theory of cost functions over infinite trees does not
allow us to state a more general theorem, because decidability of the boundedness problem
for such cost functions is still open in general. The inherent difficulty of this problem can
be explained by the complex interplay between classic acceptance conditions and counter
behaviour.
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A Appendix

There is another form of cost automata called S-automata that is dual to B-automata. Many
of the results cited in this paper (like Theorem 7) were phrased in their original form in
terms of this dual notion. For completeness, we briefly recall the definition of S-automata
and show how the statements used here are related to the statements in the cited papers.

A.1 S-automata
S-automata have atomic actions increment i, no change ε, reset r, and check-reset cr.
Let S := {i, ε, cr, r}. Given a sequence of counter actions u ∈ Sω, let C(u) denote the
values of the counter at the moment(s) when a check-reset cr occurs. For instance, if
u = i100criεicr(ir)ω, then C(u) = {2, 100}. Likewise, for a set of counters Γ, and a word
u ∈ (SΓ)ω, let C(u) =

⋃
γ∈Γ C(uγ) where uγ is the γ-projection of u. The S-value of such a

sequence is inf C(u) (the minimum checked counter value).
An (alternating) S-Büchi automaton 〈Q,A, q0,Γ, F, δ〉 on infinite trees has a finite set of

states Q, alphabet A, initial state q0 ∈ Q, accepting states F , finite set Γ of counters, and
transition function δ : Q × A → B+({0, 1} × SΓ × Q). S-automata with other acceptance
conditions can be defined as expected. The notion of plays and strategies is the same as in
B-automata.

Given a play π from a S-automaton A, the value of π is 0 if π is not accepting and
inf C(u) otherwise, where u is the sequence of counter actions from π. For a strategy σ for
Eve, value(σ) is the infimum over the values from all plays consistent with the strategy. For
the corresponding game A× t, value(A× t) is

sup {value(σ) : σ is a strategy for Eve in the game A× t}

and [[A]](t) = value(A× t). The idea is that in an S-automaton Eve is trying to satisfy the
acceptance condition while maximizing the values of the counters (whereas, in a B-automaton
Eve is trying to satisfy the acceptance condition and minimize the values of the counters).

A.2 Duality and simulation
Switching between the B and S forms of cost automata takes the place of complementing
classical automata.

Indeed, let L be the language recognized by some traditional automaton A without
counters. If we view this automaton as a B-automaton then it defines the function χL (the
characteristic function for the language), and if we view it as an S-automaton, then it defines
the function χL (the characteristic function for the complement of the language). This means
that we can always find both a B and S form for cost functions of the form χL for L a
regular language recognized by some automaton A (the S-form for χL can be obtained by
complementing A).

Using alternating cost automata, we can switch between B and S forms too.

I Theorem 11 ([21]). Alternating B-parity and alternating S-parity automata are effectively
equivalent.

A closer examination of the proof shows that in the conversion between B-parity and
S-parity automata, the priorities are shifted by one (see [22] for more information), which
parallels the classical complementation procedure for alternating parity automata. This
means that Büchi automata become co-Büchi automata, and vice versa.
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I Corollary 12. Alternating B-Büchi and alternating S-co-Büchi automata are effectively
equivalent.

Alternating S-Büchi automata and alternating B-co-Büchi automata are effectively equi-
valent.

Alternating B-Büchi and alternating S-Büchi automata can also be simulated with
nondeterministic versions. This parallels the classical result that alternating Büchi automata
are equivalent to nondeterministic Büchi automata. The B-part of this result was stated
in [21]. The S-part was not stated clearly there, but the proof technique is the same. The
details of both of these proofs can be found in [22].

I Theorem 13 ([21],[22]). Alternating B-Büchi and nondeterministic B-Büchi automata
are effectively equivalent.

Alternating S-Büchi and nondeterministic S-Büchi automata are effectively equivalent.

The following corollary summarizes these results.

I Corollary 14. Alternating B-co-Büchi automata, alternating S-Büchi automata, and
nondeterministic S-Büchi automata are effectively equivalent.

Alternating S-co-Büchi automata, alternating B-Büchi automata, and nondeterministic
B-Büchi automata are effectively equivalent.

In [10], B-quasi-weak automata were characterized as precisely the cost functions that
are definable by both nondeterministic B-Büchi and nondeterministic S-Büchi automata.

A.3 Decidability
Similarly, the decidability of cost function equivalence over infinite trees was originally stated
in terms of B and S automata.

I Theorem 15 ([21]). For cost functions f and g over infinite trees, the relation f 4 g is
decidable if

f is given by a nondeterministic S-parity automaton, and
g is given by a nondeterministic B-parity automaton.

Theorem 7 can be viewed as a restatement of these results, using Corollary 14 to write it
in terms of B-automata only.
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