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Abstract. The theorem of factorisation forests shows the existence of nested factorisations — a
la Ramsey — for finite words. This theorem has important applications in semigroup theory, and
beyond. The purpose of this paper is to illustrate the importance of this approach in the context
of automata over infinite words and trees.
We extend the theorem of factorisation forest in two directions: we show that it is still valid for any
word indexed by a linear ordering; and we show that it admits a deterministic variant for words
indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds
for the original result.
We apply the first variant for giving a simplified proof of the closure under complementation of
rational sets of words indexed by countable scattered linear orderings. We apply the second variant
in the analysis of monadic second-order logic over trees, yielding new results on monadic interpre-
tations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and
of the Caucal hierarchy.

1 Introduction

Factorisation forests were introduced by Simon [24]. The associated theorem — which we call the
theorem of factorisation forests below — states that for every semigroup morphism from words
to a finite semigroup S, every word has a ramseyan factorisation tree of height linearly bounded
by |S| (see below). An alternative presentation states that for every morphism ϕ from A+ to
some finite semigroup S, there exists a regular expression evaluating to A+ in which the Kleene
exponent L∗ is allowed only when ϕ(L) = {e} for some e = e2 ∈ S; i.e. the kleene star is allowed
only if it produces a ramseyan factorisation of the word.

The theorem of factorisation forests provides a very deep insight on the structure of finite
semigroups, and has therefore many applications. Let us cite some of them. Distance automata
are nondeterministic finite automata mapping words to naturals. An important question con-
cerning them is the limitedness problem: decide whether this mapping is bounded or not. It has
been shown decidable by Simon using the theorem of factorisation forests [24]. This theorem
also allows a constructive proof of Brown’s lemma on locally finite semigroups [6]. It is also
used in the caracterisation of subfamilies of the regular languages, for instance the polynomial
closure of varieties in [17]. Or to give general caracterisations of finite semigroups [20]. In this
last paper, the result is applied for proving McNaughton’s determinisation results of automata
over infinite words [15]. In the context of languages of infinite words indexed by ω, it has also
been used in a complemetation procedure [5] extending Buchi’s lemma [1].

The present paper aims first at advertising the theorem of factorisation forest which, though
already used in many papers, is in fact known only to a quite limited community. The reason
for this is that all of its proofs rely on the use of Green’s relations: Green’s relations form an
extremely important tool in semigroup theory, but are technical and uncomfortable to work
with. The merit of the factorisation forest theorem is that it is usable without any significant



knowledge of semigroup theory, while it encapsulates nontrivial parts of this theory. Further-
more, as briefly mentionned above and also in this paper, this theorem as already important
applications to automata theory. This is why this theorem is worth being advertised outside the
semigroup community as a major tool in automata theory.

The technical contribution of the paper is an investigation of the potential use of factorisation
forests in broader contexts than finite words. An important objective is to be able to apply this
theorem on infinite words, and on trees instead of words. Those attempts are incarnated by
two new variants of the theorem. As a byproduct we improve the known bounds of the original
result (in particular on the previous improvement [13]).

We also provide some applications of those results. We give a new proof of the result of
Carton and Rispal showing the closure under comlementation of rational languages of words
with countable scattered linear domain [10]. We use the other variant of the theorem for proving
a decomposition result for monadic interpretations (in fact the application of a technique that
we call compaction). This yields new caracterisations of prefix recognisable structures and of
the Caucal hierarchy.

However, the applications of those results go beyond the one proposed here. In paricular,
let us mention the work of Blumensath [4] who applies the deterministic variant of the theorem
presented here for giving a new proof of Rabin’s theorem [21]. The theorem of Rabin states that
the monadic theory of the infinite binary tree is decidable. Different proofs have been proposed
for this result so far, all relying on the use of automata theory, and most of them on the use of
parity games (see [25] for a survey). For the simpler theory of the naturals with successor —
originally proved by Buchi [1] — another proof technique is known: the compositional method of
Shelah [23]. In this seminal paper, Shelah asks whether there exists a proof of Rabin’s theorem
along the same lines. Blumensath [4] answers to this longstanding open question positively.

The content of the paper is organised as follows. Section 2 is dedicated to definitions. Sec-
tion 3 present the original theorem of factorisation forests as well as two less standard presen-
tations of it. We also introduce in this section the notion of a ramseyan split, which is central
in the remainder of the paper. In Section 4 we provide the first extension of the theorem, the
extension to all complete linear orderings. Section 5 is dedicated to the application of this exten-
sion to the complementation of automata over countable scattered linear orderings. In Section 6
we provide the second extension of the theorem, to ordinals only this time, but with an extra
property of determinism. Finally, in Section 7, we develop the technique of compaction and use
it for providing a new decomposition result for monadic interpretations applied to trees. We
also show how this impacts on the theory of infinite structures.

2 Definitions

In this section, we successively present linear orderings, words indexed by them, semigroups and
additive labellings.

2.1 Linear orderings

A linear ordering α = (L,<) is a set L equipped with a total ordering relation <; i.e. an
irreflexive, antisymmetric and transitive relation such that for every distinct elements x, y in L,
either x < y or y < x. A subordering β of α is a subset of L equipped with the same ordering
relation; i.e. β = (L′, <) with L′ ⊆ L. We write β ⊆ α. We omit the ordering relation <
below unless necessary, and just say that L is a linear ordering. An convex subset of α is
a subset S of α such that for all x, y ∈ S and x < z < y, z ∈ S. We use the notations
[x, y], [x, y[, ]x, y], ]x, y[, ]−∞, y], ]−∞, y[, [x,+∞[ and ]x,+∞[ for denoting the usual intervals.
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Intervals are convex, but the converse does not hold in general. Given two subsets X,Y of a
linear ordering, X < Y holds if for all x ∈ X and y ∈ Y , x < y.

The sum of two linear orderings α1 = (L1, <1) and α2 = (L2, <2) (up to renaming, assume L1

and L2 disjoint), denoted α1 + α2, is the linear ordering (L1 ∪ L2, <) with < coinciding to <1

on L1, to <2 on L2 and such that L1 < L2. More generally, given a linear ordering α = (L,<)
and for each x ∈ L a linear ordering βx = (Kx, <x) (the Kx are assumed disjoint), we denote
by

∑

x∈α βx the linear (∪x∈LKx, <′) with x′ <′ y′ if x < y or x = y and x′ <x y′, where x′ ∈ Kx

and y′ ∈ Ky.
A linear ordering α is well ordered if every nonempty subset has a minimal element. It is

complete if every nonempty subset of α with an upper bound has a least upper bound in α, and
every nonempty subset of α with a lower bound has a greatest lower bound in α.

A cut in a linear ordering α = (L,<) is a couple (E,F ) where {E,F } is a partition of L,
and E < F . Cuts are totally ordered by (E,F ) < (E′, F ′) if E ( E′. This order has a minimal
element ⊥ = (∅, L) and a maximal element ⊤ = (L, ∅). We denote by α the set of cuts over L and
by α∗ the set α \ {⊥,⊤}. An important remark is that α and α∗ are complete linear orderings.

Cuts can be thought as new elements located between the elements of L: given x ∈ L,
x− = (]−∞, x[, [x,+∞[) represents the cut placed just before x, while x+ = (]−∞, x], ]x,+∞[)
is the cut placed just after x. We say in this case that x+ is the successor of x− through x. But
not all cuts are successors or predecessors of another cut. A cut c is a right limit (resp. a left
limit) if it is not the minimal element and not of the form x+ for some x in L (resp. not the
maximal element and not of the form x−).

Two linear orderings α = (L,<) and β = (L′, <′) are isomorphic if there exists a bijection f
from L onto L′ such that for every x, y in L, x < y iff f(x) <′ f(y). In this case, we also say
that (L,<) and (L′, <′) have the same order type. This is an equivalence relation on the class
of linear orderings. We denote by ω, ω∗, ζ the order types of respectively (N, <) (the naturals),
(−N, <) (the nonpositive integers) and (Z, <) (the integers). The order type of a well-ordering
is called an ordinal. Below, we do often not distinguish between a linear ordering and its type.
This is safe since all the construction we perform are isomorphism invariant.

The interested reader can find in [22] additional material on linear orderings.

2.2 Words

We use a generalized version of words: words indexed by a linear ordering. Given a linear
ordering α = (L,<) and a finite alphabet A, an α-word u over the alphabet A is a mapping
from L to A. We also say that α is the domain of the word u, or that u is a word indexed by α.
Standard finite words are simply the words indexed by finite linear orderings. Given a word u
of domain α and β ⊆ α, we denote by u|β the word u restricted to its positions in β.

Given an α-word u and a β-word v, uv represents the (α + β)-word defined by (uv)(x) is
u(x) if x belongs to α and v(x) if x belongs to β. This construction is naturally generalized to
the infinite product

∏

i∈α ui, where α is an order type and ui are linear βi-words; the resulting
being a

∑

i∈α βi-word.

2.3 Semigroups and additive labellings

For a thorough introduction to semigroups, we refer the reader to [14,18,19]. A semigroup (S, .)
is a set S equipped with an associative binary operator written multiplicatively. Groups and
monoids are particular instances of semigroups. The set of nonempty finite words A+ over an
alphabet A is a semigroup – it is the semigroup freely generated by A. A morphism of semigroups
from a semigroup (S, .) to a semigroup (S′, .′) is a mapping ϕ from S to S′ such that for all x, y
in S, ϕ(x.y) = ϕ(x).′ϕ(y). An idempotent in a semigroup is an element e such that e2 = e.
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Let α be a linear ordering and (S, .) be a semigroup. A mapping σ from couples (x, y)
with x, y ∈ α and x < y to S is called an additive labelling if for every x < y < z in α,
σ(x, y).σ(y, z) = σ(x, z).

Given a semigroup morphism ϕ from (A⋄, .) to some semigroup (S, .) and a word u in A⋄

of domain α, there is a natural way to construct an additive labelling φu from α to (S, .): for
every two cuts x < y in α, set ϕu(x, y) is ϕ(u|]x,y[). I.e. ϕu(x, y) is the image by ϕ of the factor
of u located between x and y. We denote by ϕ∗u the mapping ϕu restricted to α∗.

2.4 Structures, graphs, trees, logics

Relational structures Let us first remark that the definitions presented here are useless before
Section 6, have marginal consequences in Section 6, and are of real interest only for Section 7.

A relational structure (U , R1, . . . , Rn) is a set U , called the universe, together with relations
R1, . . . , Rn of fixed finite arity over U . Each relation R has a name that we write R itself. The
signature of a structure contains the names involved together their arity. A graph is a relational
structure for which the relations have arity 1 and one relation of arity 2. The elements of the
universe are called vertices, the unary relations are called label relations, and the binary relations
is called the edge relation. A path is a finite sequence of vertices such that two successive vertices
are in relation by the edge relation. The first vertex is called the origin of the path, and the
last vertex the destination.

Linear orderings can be naturally represented as graphs: (L,<) can be seen as a graph of
vertices L, with an edge between x and y iff x < y. For a linear ordering α = (L,<) and a finite
alphabet A = {a1, . . . , an}, an α-word u is the graph (L,<, a1, . . . , an) obtained from the graph
of the linear ordering by setting ai to be interpreted as u−1(ai); the set of positions in the word
corresponding to letter ai.

A tree t is a graph such that there is only one edge relation, called the ancestor relation and
denoted ⊑, satisfying:

– the relation ⊑ is an order,
– there is a minimal element for ⊑, called the root,

– for every u, the set {v : v ⊑ u} is an ordinal of length at most ω.

The vertices of a tree are called nodes. Maximal chains of nodes in a tree are called branches.

Warning: The trees are not defined by a ‘direct successor’ relation, but rather by the
ancestor relation. This has major impact on the logical side: all the logics we use below can refer
to the ancestor relation, and it is well-known that first-order logic using this ancestor relation
is significantly more expressive over trees than first-order logic with access to the successor of a
node only. The results would fail if the ancestor relation was not used.

A particular tree will play a special role below. The complete binary tree has as universe
{0, 1}∗, as ancestor relation the prefix relation, and has two unary relations, 0 = {0, 1}∗0
and 1 = {0, 1}∗1. We call the relation 0 the left-child relation, while 1 is the right-child relation.
We denote by ∆2 the complete binary tree.

One constructs a tree from a graph by unfolding. Given a graph G and one of its vertices v,
the unfolding of G from v is the tree which has as nodes the all paths with origin v, as ancestor
relation the prefix relation over paths, and such that a path π is labelled by a in the unfolding
iff its destination is labelled by a in the graph.

Logics For defining first-order logic, we need to have at our disposal a countable set of first-order
variables x, y, . . . to pick from. The atomic formulæ are R(x1, . . . , xn) for x1, . . . , xn first-order
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variables and R the name of relation of arity n; given two first-order variables x, y, x = y
is also an atomic formula. First-order logic formulæ are made out of these atomic formulæ,
combined with the boolean connectives ∨,∧,¬, and the first-order quantifiers ∃x and ∀x. For
monadic logic, we need furthermore a countable set of monadic variables X,Y, . . . Monadic
(second-order) formulæ are defined as first-order formulæ, but further allow the use of monadic
quantifiers ∃X, ∀X, and of a membership atomic formula x ∈ X, where x is a first-order variable
and X a monadic one. For first-order as well as monadic formulæ we use the standard notion
of free variables. A formula without free variables is called a closed formula.

We denote by S |= φ the fact, for a closed formula φ and a structure S, that the formula is
true over the structure S. The formal definition uses the standard semantic, the value of first-
order variables ranging over elements of the universe of the structure, while monadic variables
take as values subsets of the universe. We say that S is a model of φ, or that φ is satisfied
over S. When the structure is obvious from the context, we simply state that φ is satisfied. We
also allow ourselves to use formulæ like φ(x1, . . . , xn) to denote that the free-variables of φ are
among {x1, . . . , xn}. Then given elements u1, . . . , un in the universe of a structure S, we write
S |= φ(u1, . . . , un) if the formula φ is true over the structure S, using the valuation which to
each xi associates ui.

A relational structure S has a decidable L-theory (where L is either first-order or monadic),
if there is an algorithm which, given a formula φ of the logic L, answers whether S |= φ or not.

Interpretations An interpretation is an operation defined by logic formulæ that defines a
structure inside another one. An interpretation is given as a tuple

I = (δ(x), φ1(x1, . . . , x|R1|), . . . , φk(x1, . . . , x|RK |))

where δ(x), φ1(x1, . . . , x|R1|), . . . , φk(x1, . . . , x|RK |) are formulæ of corresponding free variables.
The interpretation is first-order if the formulæ are first-order and monadic if the formulæ are
monadic.

Given a structure S of universe U , I(S) is the structure of universe

UI(S) = {u ∈ U : S |= δ(u)} ,

and such that the interpretation of Ri is

{(u1, . . . , u|Ri|) ∈ U
|Ri|
I(S) : S |= φi(u1, . . . , u|Ri|)}.

A special case of interpretation is the marking. A marking replicates the structure, and adds
some new unary relations on it.

3 Factorisation forest theorem: various presentations for the standard case

In this section, we present the theorem of factorisation forest. We first give the original statement
in Section 3.1. The in Section 3.2, we provide another equivalent presentation in terms of regular
expressions; possibly the most natural one. In Section 3.3, we introduce the notion of a split,
and use it for a third formalisation of the result. This notion is the one used in the extensions
of the factorisation forest theorem we provide below.

3.1 Factorisation forest theorem

Fix an alphabet A and a semigroup morphism ϕ from A+ to a finite semigroup (S, .). A fac-
torisation tree of a word u ∈ A+ is an ordered unranked tree in which each node is either a leaf
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2 1 0 2 3 2 3 0 0 3 2 2 0 0 0 2

Fig. 1. A factorisation tree

labeled by a letter, or an internal node, and such that the word obtained by reading the leaves
from left to right (the yield) is u. The height of the tree is defined as usual, with the convention
that the height of a tree restricted to a single leaf is 0. A factorisation tree is ramseyan (for ϕ)
if every node 1) is a leaf, or 2) has two children, or, 3) the values of its children are all mapped
by ϕ to the same idempotent of S.

Example 1. Fix A = {0, 1, 2, 3, 4}, (S, .) = (Z/5Z,+) and ϕ to be the only semigroup morphism
from A+ to (S, .) mapping each letter to its value. Figure 1 presents a ramseyan factorisation tree
for the word u = 210232300322002 (u is the yield of the tree). In this drawing, internal nodes
appear as horizontal lines. Double line correspond to case 3 in the description of ramseyanity.

The theorem of factorisation forests is then the following.

Theorem 1 (factorisation forests). For every alphabet A, finite semigroup (S, .), semigroup
morphism ϕ from A+ to S and word u in A+, u has a ramseyan factorisation tree of height at
most 3|S|.

The original theorem is due to Simon [24], with a bound of 9|S|. An improved bound of 7|S| is
provided by Chalopin and Leung [13]. The value of 3|S| is a byproduct of the present work.

3.2 A variant via regular expressions

The use of factorisation trees gave the name of factorisation forests to the theorem. But it is
sometime very convenient to use another formalisation in terms of regular expressions. This
presentation is new (to the knowledge of the author), but its simplicity makes it worth to be
advertised. Let A be an alphabet, ϕ a semigroup morphism from A+ to some semigroup S, and
E be a regular expression over the alphabet A. E is ϕ-ramseyan if for each occurence L∗ of the
Kleene star in E, L is mapped to {e} by ϕ, for e an idempotent in S.

Example 2. Let S be Z/2Z with the addition, A be {0, 1} and ϕ be the morphism from A+

to S sending each letter to its value modulo 2. The expression 0(0 + 10∗1)∗ + 10∗1(0 + 10∗1)∗

is ϕ-ramseyan and evaluates to ϕ−1(0).

Theorem 2 (variant of factorisation forests). For every alphabet A, finite semigroup (S, .),
semigroup morphism ϕ from A+ to S and x in S, there exists a ϕ-ramseyan regular expression
Ex evaluating to ϕ−1(x).

Proof. By induction on k, for every x in S, let the ϕ-ramseyan regular expression Ek
x be:

E0
x = ϕ−1(x) ∩ A , Ek+1

x = Ek
x +

∑

yz=x

Ek
y Ek

z +
∑

e2=e=x

(Ek
e )∗ .

On can show by induction on k that for all x ∈ S, Ek
x evaluates to the set of words in ϕ−1(x)

possessing a factorisation tree of height k. This proof, for both directions of the inclusion, is a

direct application of the definitions. Then, by Theorem 1, E
3|S|
x evaluates to ϕ−1(x). ⊓⊔
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The interest of Theorem 2 is that it allows to perform proofs by induction on the structure
of ramseyan regular expressions. By the following refinement, we can derive complexities when
using this technique.

Property 1 (refinement of Theorem 2). The height of the regular expression Ex is at most
3|S| + 1, counting 0 for the operator +, and 1 for the concatenation, the Kleene star and
constants. The regular expression Ex contains at most 6|S|2 distinct subexpressions, at most
3|S|2 distinct subexpressions without the +-operator at the root.

Those bounds are obtained from the last variant, Theorem 3.

3.3 A variant via ramseyan splits

The third equivalent presentation to the theorem of factorisation forests uses the notion of
ramseyan splits. One way to see a split is as a form of presentation of a tree. This formal-
isation naturally extends to infinite words, and is very natural to use in automata theoretic
constructions. The extensions of the theorem proposed in the remaining of the paper use this
definition.

A split of height N of a linear ordering α is a mapping s from α to [1, N ]. Given a split, two
elements x and y in α such that s(x) = s(y) = k are k-neighbours if s(z) ≥ k for all z ∈ [x, y].
k-neighbourhood is an equivalence relation over s−1(k). Fix an additive labelling from α to some
finite semigroup S. A split of α is ramseyan for σ — we also say a ramseyan split for (α, σ)
— if for every k ∈ [1, N ], every x < y and x′ < y′ such that all the elements x, y, x′, y′ are
k-neighbours, then σ(x, y) = σ(x′, y′) = (σ(x, y))2; Equivalently, for all k, every class of k-
neighbourhood is mapped by σ to a single idempotent of the semigroup.

Example 3. Let S be Z/5Z equipped with the addition +. Consider the linear ordering of 17
elements and the additive labelling σ defined by:

| 3 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

Each symbol ‘|’ represents an element, the elements being ordered from left to right. Between
two consecutive elements x and y is represented the value of σ(x, y) ∈ S. In this situation, the
value of σ(x, y) for every x < y is uniquely defined according to the additivity of σ: it is obtained
by summing all the values between x and y modulo 5.

A split s of height 3 is the following, where we have written above each element x the value
of s(x):

1 3 2 2 1 2 1 2 2 2 3 2 1 1 1 1 2
| 2 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

In particular, if you choose x < y such that s(x) = s(y) = 1, then the sum of elements between
them is 0 modulo 5. If you choose x < y such that s(x) = s(y) = 2 but there is no element z in
between with s(z) = 1 — i.e. x and y are 2-neighbours — the sum of values separating them is
also 0 modulo 5. Finally, it is impossible to find two distinct 3-neighbours in our example.

Theorem 3. For every finite linear ordering α, every finite semigroup (S, .) and additive la-
belling σ from α to S, there exists a ramseyan split for α of height at most |S|.

The proof of this result is postponed to Section 4.2, as the proof is a simplification of the proof
of its extension Theorem 4.

Let us state the link between ramseyan splits and factorisation trees. Fix an alphabet A,
a semigroup S, a morphism ϕ from A+ to S and a word u ∈ A+. The following is easy to
establish:
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– every ramseyan factorisation tree of height k of u can be turned into a ramseyan split of
height at most k of ϕ∗u,

– every ramseyan split of height k of ϕ∗u can be turned into a factorisation tree of height at
most 3k of u.

Using this last argument and Theorem 3, we directly obtain a proof of Theorem 1 with the
announced bound of 3|S|. Using similar arguments, one obtains the bounds of Property 1.

4 Extension of the factorisation forest theorem to infinite words

The contribution of this section is an extension of Theorem 3 to complete linear orderings.

Theorem 4. For every complete linear ordering α, every finite semigroup (S, .) and additive
labelling σ from α to S, there exists a ramseyan split for (α, σ) of height at most 3|S| (|S| if α
is an ordinal).

Compared to Theorem 3, we trade the finiteness — which is replaced by the completeness —
for a bound of 3|S| — which replaces a bound of |S|. The special case of α being an ordinal,
proves Theorem 3.

The remaining of the section is devoted to the proof of Theorem 4, as well as its ordinal
version, Theorem 3. We start in Section 4.1 by establishing some elementary topological lemmas
relative to complete linear orderings. Then, in Section 4.2, we give successively a proof of both
Theorems 3 and 4.

4.1 On linear orderings

The subject of this section is to provide preparatory lemmas on linear orderings. Namely Lem-
mas 1 and 3. This Section is not relevant for the simpler proof of Theorem 3.

We consider here a binary relation R over a linear ordering α. The statement R(x, y) can be
thought as meaningful only for x < y, in the sense that we do not take into account the value of
R elsewhere. We say that a binary relation R over α is upward closed if for every x ≤ x′ < y′ ≤ y,
R(x′, y′) implies R(x, y).

Lemma 1. Let α be a complete linear ordering, and R be an upward closed relation over α.
There exists γ ⊆ α such that for every x < y in α,

– if R(x, y) then [x, y] ∩ γ is nonempty,
– if ]x, y[∩γ contains two distinct elements, then R(x, y).

Let us first remark that if Lemma 1 holds for some linear ordering α, then it is also true
for every convex subset of α. For this reason, we can safely add a new minimal element ⊥′

and maximal element ⊤′ to α, such that for every x in α, R(⊥′, x) and R(x,⊤′). Define now
for x ∈ α,

l(x) = sup{y : ∀z > x. R(y, z)} ,

and r(x) = inf{z : ∀y < x. R(y, z)} .

Thanks to the adjunction of ⊥′ and ⊤′, l and r are defined everywhere but for the minimal and
maximal elements respectively.

Fact 2. The following holds.

1. Both l and r are nondecreasing.
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2. For every x, l(x) ≤ x ≤ r(x).

3. For every x, l(x) = x iff r(x) = x.

4. For every x, rω(x) = sup{rn(x) : n ∈ N} and lω(x) = inf{ln(x) : n ∈ N} are fixpoints of
both l and r.

5. For every x, y, z, if x < z ≤ r(z) < y then R(x, y).

6. For every x, y, z, if z < x < y < r(z) then ¬R(x, y).

Proof. Items 1,2,5 and 6 follow from the definition.

For item 3. By upward closure of R, l(x) = x iff for every y < x and z > x, R(y, z), iff
r(x) = x.

For item 4. Let y = rω(x). By item 2, we have y ≤ r(y). We have to prove r(y) ≤ y. Let xn

be rn(x). If xn+1 = xn for some n, then y = xn = r(xn) = r(y). Else x0 < x1 < · · · < y. It
follows by definition of r that for all n, R(xn, y). This implies r(y) = y. ⊓⊔

We can now prove Lemma 1.

Proof. Set Fix to be the set of fixpoints of r (equivalently, l). Define the equivalence relation ∼
by x ∼ y if x = y ∈ Fix or [x, y] ∩ Fix is empty. This relation induces two kind of equivalence
classes: singletons consisting of a single fixpoint, or maximal intervals containing no fixpoint.

Let C be an equivalence class of ∼. If C = {x} for x ∈ Fix, set γ(C) to be C. Else, C is an
interval. Fix an element xC in C, set xn

C to be rn(xC) for n ≥ 0 and x−n
C be ln(x) for n ≥ 0 (both

definitions coincide for n = 0 with x0
C = xC). By induction and using fact 2, one easily shows

that for every n, both xn
C and x−n

C belong to Fix ∪ C. Let γ(C) be {xn
C : n ∈ Z, xn

C 6∈ Fix}.
According to the previous remark γ(C) ⊆ C.

We now define γ to be the union of γ(C) for C ranging over equivalence classes of ∼. Let
us prove that this γ satisfies the conclusion of the lemma.

Let x < y be in α such that ]x, y[∩γ contains two distinct elements. If ]x, y[ contains two
elements x′ < y′ nonequivalent for ∼, there is a fixpoint in [x′, y′] ⊆]x, y[. It follows by Fact 2
that R(x, y). Else ]x, y[ is included in some equivalence class C of ∼. Thus, the two elements
in ]x, y[ are of the form xn

C and xm
C for n < m. Since xn

C < xn+1
C ≤ xm

C , xn+1
C = r(xn

C) belongs
to ]x, y[. By Fact 2, R(x, y).

Let x < y be in L such that R(x, y). If x 6∼ y then by definition Fix ∩ [x, y] is nonempty.
And since Fix ⊆ γ, [x, y]∩ γ is nonempty. Else x ∼ y. Let C be the equivalence class containing
both x and y. If xC ∈ [x, y], then xC witnesses the nonemptyness of γ∩ [x, y]. Else either x > xC

or y < xC . The two cases are symmetric. Let us treat the case x > xC . By Fact 2, rω(xC) ∈ Fix,
and as xC ∼ x, x < rω(xC). Hence, there exists some n in N such that xn

C = rn(XC) ≥ x.
Let n be the least such natural. We have xn−1

C < x, and by monotonicity (Fact 2) xn
C ≤ r(x).

Overall xn
C ∈ [x, r(x)]. Furthermore by Fact 2, r(x) ≤ y. This witnesses xn

C ∈ γ ∩ [x, y]. ⊓⊔

We will also require the following lemma1.

Lemma 3. For every linear ordering α and every natural k, there exists a mapping c : α →
{0, . . . , k − 1} such that for every x < y in α with c(x) = c(y), c([x, y]) = {0, . . . , k − 1}.

Proof. Let [k] denote {0, . . . , k − 1} We first show the result for a dense linear ordering β.
Consider the set M of partial mappings c from β to [k] such that for every x < y with c(x) = c(y)
defined, either c is injective when restricted to [x, y[, or c([x, y]) = [k]. Those mappings are
ordered by c ⊆ c′ if the domain of c′ contains the domain of c, and c coincides with c′ over
its domain. Consider now a chain (ci)i∈I of elements in M . It has an upper bound b defined

1 In fact, the weaker result needed is the existence of a mapping c : α → {0, . . . , k − 1} such that for all x < y

in α with c(x) = c(y) = 0, c([x, y]) = {0, . . . , k − 1}. It happens to be much easier to establish than Lemma 3.
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by b(x) = ci(x) if there is some i such that ci(x) is defined, else b(x) is undefined. It is easy
to check that b belongs also to M . By Zorn’s lemma, there exists a maximal element m in M .
Assume m is not defined in say, x. Let Y be the set of elements y such that m is not defined
over [min(x, y),max(x, y)]. By definition, x ∈ Y . There are four cases depending on whether x
is the minimal (resp. the maximal) element of Y . If x is neither the minimal nor the maximal
element, this means there exists y < x < z in Y . By density, we can construct a ζ-indexed
growing sequence (xi)i∈Z included in Y . Define then m′ to coincide everywhere with m, but
over the xi’s, where m′(xi) is set to be the remainder of i modulo k. By construction m′ belongs
to M , contradicting the maximality of m. If Y is [x], set m′ to coincide everywhere with m but
for x, where m′(x) = 0. Once more, m′ belongs to M , this time by remarking that every value
in [k] is mapped by m infinitely close to the left and to the right of x. This contradicts the
maximality of m. The other possibilities for Y are just combinations of the two above. Hence m
has to be defined everywhere, which means by density of β that the conclusion of the lemma
holds for every dense linear ordering.

At this point, the easiest way to conclude the proof is to prove for every n in [k] and every
scattered nonempty linear ordering β, that there exists a mapping cβ,n satisfying the conclusion
of the lemma, such that c−1

β,n(n) is nonempty. This can be easily done with the help of Hausdorff’s
theorem (see e.g. chapter 5 in [22]). Then, one uses the fact that every linear ordering α is a
dense sum of scattered linear orderings (Theorem 4.9 in [22]), i.e:

α =
∑

x∈γ

βx with γ dense, and all the βx are scattered and pairwise disjoint.

Then, using the case of a dense linear ordering above, we have a mapping d from γ to [k]
satisfying the conclusion of the lemma. Define now c over α by c(x) = cβ,d(β)(x) for β ∈ γ
with x ∈ β. This mapping c fulfills the conclusion of the lemma. ⊓⊔

4.2 Proof of the statement

We assume here the reader used to standard semigroup theory, and in particular Green’s rela-
tions. The reader can refer to [14,18,19] for a presentation of the subject. Some definitions and
facts are presented below.

Below, σ denotes the additive labelling from the complete linear ordering α to the finite
semigroup (S, .) of Theorem 4. We denote by β a subordering of α. We slightly abuse the nota-
tion, and write (β, σ) for (β, σ|β) in which σ|β is the additive labelling obtained by restricting σ
to β. We also denote by σ(β) the set {σ(x, y) : x < y, x, y ∈ β}.

Facts about finite semigroups and Green’s relations

We recall some definitions here, and gather some standard facts concerning finite semigroups.
Given a semigroup S, S1 denotes the monoid S itself if S is a monoid, or the monoid S

augmented with a new neutral element 1 otherwise, thus making S a monoid.
The Green’s relation are defined by:

a ≤L b if a = cb for some c in S1 a L b if a ≤L b and b ≤L a

a ≤R b if a = bc for some c in S1 a R b if a ≤R b and b ≤R a

a ≤J b if a = cbc′ for some c, c′ in S1 a J b if a ≤J y and b ≤J a

a ≤H b if a ≤L b and a ≤R b a H b if a L b and a R b

Fact 4. Let a, b, c be in S. If a L b then ac L bc. If a R b then ca R cb. For every a, b in S,
a L c R b for some c iff a R c′ L b for some c′.
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As a consequence of the last equivalence, one defines the last of Green’s relations:

a D b if a L c R b for some c in S

if a R c′ L b for some c′ in S

The key result being (here the hypothesis of finiteness of S is mandatory):

Fact 5. D=J .

For this reason, we refer from now on only to D and not J . However, we will use the preorder ≤J
(which is an order over the D-classes).

An elemement a in S is called regular if asa = a for some s in S. A D-class is regular if all
its elements are regular.

Fact 6. A D-class D is regular, iff it contains an idempotent, iff every L-class in D contains
an idempotent, iff every R-class in D contains an idempotent, iff there exists a, b in D such
that ab ∈ D.

Fact 7. For every a, b in D such that ab ∈ D, a R ab and b L ab. Furthermore, there is an
idempotent e in D such that a L e and b R e.

Fact 8 (from Green’s lemma). All H-classes in a D-class have the same cardinality.

Fact 9. Let H be an H-class in S. Either for all a, b in H, ab 6∈ H; or for all a, b in H, ab ∈ H,
and furthermore (H, .) is a group.

Case of a group H-class.

Lemma 10. Let H be an H-class in S such that (H, .) is a group, and β be such that σ(β) ⊆ H.
Then there exists a ramseyan split of height at most |H| of (β, σ).

Proof. Since (H, .) is a group, it is natural to extend the definition of σ over β in the following
way. For every x, let σ(x, x) be 1H , the neutral element of the group (H, .); for every y < x
in β, let σ(x, y) be σ(y, x)−1, the inverse of σ(x, y) in H. As expected, this extended version
of σ satisfies for every x, y, z in β, σ(x, z) = σ(x, y)σ(y, z). Let n be a mapping numbering the
elements of H from 1 to |H|. Fix an element x0 in β. Let s be defined for all x by s(x) =
n(σ(x0, x)).

Let us show that s defined this way is indeed a ramseyan split for σ. Let x < y be
such that s(x) = s(y), then σ(x0, x) = σ(x0, y) since n is a bijection from H onto [1, |H|].
Hence σ(x, y) = σ(x, x0)σ(x0, y) = σ(x0, x)−1σ(x0, y) = 1H . Hence, given x < y and x′ < y′

pairwise k-neighbours, then σ(x, y) = 1H = σ(x′, y′) = 12
H . ⊓⊔

Case of a regular D-class.

Lemma 11. Let D be a regular D-class in S, and β be such that σ(β) ⊆ D. Then there exists
a ramseyan split of height at most |D| of (β, σ).

Proof. For every x ∈ β nonmaximal, set r(x) to be the R-class of σ(x, z) for some z > x;
this value is independant of the choice of z according to Fact 7. Similarly, for every x in β
nonminimal, set l(x) to be the L-class of σ(y, x) for some y < x. If β has a maximal element M ,
choose r(M) to be such that l(M)∩r(M) is a subgroup of S; this is possible according to Fact 6.
Similarly if β has a minimal element m, choose l(m) such that l(m) ∩ r(m) is a subgroup of S.
Set for all x in β, h(x) = l(x) ∩ r(x).
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We claim that for every x in β, h(x) is a subgroup of S. Indeed, if x is either the minimal or
the maximal element of β, this follows from the definition of r(M) and l(m). Else, there exists
y, z such that y < x < z. Let a be σ(y, x) ∈ l(x) and b be σ(x, z) ∈ r(x). By Fact 7, since
ab = σ(y, z) ∈ D, there exists an idempotent e in D such that a L e and b R e; i.e. e ∈ h(x).
And by Fact 9, h(x) is a subgroup of S. The claim holds.

According to Fact 8, there is a natural number N such that all H-classes included in D have
cardinal N . Let H1, . . . ,Hd be the H-classes included in D which are subgroups of S. For k
in {1, . . . , d}, set βk to be {x ∈ β : h(x) = Hk}. By fact 7, σ(βk) ⊆ Hk. By Lemma 10, there
exists a ramseyan split sk for (βk, σ) of height at most |Hk| = N .

We set now for all x in β, s(x) to be kN + sk(x) where k is such that x ∈ βk. Let us
establish that s is a ramseyan split for (β, σ). Let x < y and x′ < y′ be such that s(x) =
s(y) = s(x′) = s(y′). By definition of s, x, y, x′, y′ belong to the same βk. Furthermore, since
s(x) = s(y) = s(x′) = s(y′), we have sk(x) = sk(y) = sk(x

′) = sk(y
′). Hence, by ramseyanity

of sk over (βk, σ), σ(x, y) = σ(x′, y′) = σ(x, y)2. We conclude that the mapping s is a ramseyan
split for (β, σ). Its height is bounded by dN ≤ |D|. ⊓⊔

The general case for ordinals: proof of Theorem 3.
For this last part of the proof, one has to provide factorisations on ordinals where the

minimal value has ben removed. Without this, one does not obtain the bound of |S| announced.
Hence, given a linear well-ordering β, one denotes by β̇ the linear ordering β \ {0β}.

Lemma 12. Let E ⊆ S be a D-closed subset of S and β ⊆ α be such that σ(β) ⊆ E. Then
there exists a ramseyan split of height at most |E| of (β̇, σ).

Proof. The proof is done by induction on the size of E. If E is empty, then β contains at most
one element. Hence β̇ is empty. We can give a split of height 0 over the empty linear ordering.

Else, let D be a minimal D-class in E (for the ≤J -order). Let γ ⊆ β be the least set
satisfying:

– 0β ∈ γ, where 0β is the minimal element of β,
– if x ∈ γ then min{y > x : σ(x, y) ∈ D} ∈ γ.

It is not difficult to check that the following fact holds.

Fact 13. For every x, y in β, if ]x, y] ∩ γ is empty, then σ(x, y) 6∈ D. If [x, y] ∩ γ contains two
elements, then σ(x, y) ∈ D.

Define the equivalence relation ∼ over β by x ∼ y, if ]x, y] ∩ γ = ∅ for x < y and closed under
reflexivity and symmetry. Let η be an equivalence class for ∼. By Fact 13, σ(η)∩D = ∅. Hence,
one can apply the induction hypothesis and obtain a ramseyan split sη̇ for (η̇, σ) of height at
most |E| − |D|. Remark that η̇ = η \ γ.

At this point, two cases may happen depending on the regularity of D. If D is not regular,
then γ contains at most 2 elements, Indeed, assume x < y < z in γ, then σ(x, y), σ(y, z)
and σ(x, y)σ(y, z) = σ(x, z) belong to D. By Fact 6, D would be regular. A contradiction.
Define s

β̇
over β̇ by s(x) = 1 for x ∈ γ, else s(x) = sη̇(x) + 1 for η the equivalence class of x.

This split is ramseyan since the value 1 is used at most once (in γ̇), and the ramseyanity is
inherited from the induction hypothesis elsewhere. By induction hypothesis, this split has height
at most |E| − |D| + 1 ≤ |E|.

Finally, if D is regular. We have σ(γ) ⊆ D. By Lemma 11 we obtain ramseyan split sγ of
height at most |D| for (γ, σ). Then define s over β̇ by s(x) = sγ(x) for x ∈ γ, else s(x) =
|D| + sη(x) for η the equivalence class of x. It follows from the definition that s is a ramseyan
split of (β̇, σ) of height at most |E| − |D| + |D| = |E|. ⊓⊔
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We can now conclude the proof of Theorem 3.

Proof. Given an ordinal α, and an additive labelling σ from α to S. Fix a value a0 in S, construct
the linear ordering α′ = 1 + α, where 1 is a linear ordering containing the single element 0.
Set σ′(x, y) for x < y in α to be σ(x, y), and set σ′(0, y) to be a0.σ(0α, y). Defined like this, σ′

is an additive labelling from α′ to S. By Lemma 12, there exists a ramseyan split s for (α̇′, σ′)
of height at most |S|. By construction of α′ and σ′, s is also a ramseyan split for (α, σ). ⊓⊔

The general case for complete orderings: proof of Theorem 4.

Theorem 4 follows directly from the following lemma, with E = S.

Lemma 14. Let E ⊆ S be a D-closed subset of S and β ⊆ α be complete and such that σ(β) ⊆
E. Then there exists a ramseyan split of height at most 3|E| of (β, σ).

Proof. We assume wlog that β is nonempty. The proof is done by induction on the size of E.
Let D be a minimal D-class in E (for the ≤J -order). We define a binary relation R over β by:
for every x < y in β, R(x, y) if σ(x, y) ∈ D. Since D is a minimal D-class, this relation is upward
closed; we can apply Lemma 1 and obtain a set γ satisfying its conclusion.

Define the equivalence relation ∼ over β \ γ by x ∼ y, if [x, y] ∩ γ = ∅ for x < y and closed
under reflexivity and symmetry. Let η be an equivalence class for ∼. By Lemma 1 from which is
obtained γ, σ(η)∩D = ∅. Hence, one can apply the induction hypothesis and obtain a ramseyan
split sη for (η, σ). At this point, two cases may happen depending on the regularity of D.

If D is not regular, then γ contains at most 2 elements (same argument as in the case
of α being an ordinal. Let us treat the case of γ containing two elements x0 < x1 (the case
of γ being empty or a singleton can be deduced from it). The equivalence ∼ has at most three
equivalence classes, η = (−∞, x0[, η′ =]x0, x1[, and η′′ =]x1,+∞). We can apply the induction
hypothesis with σ(η) ⊆ E \D (resp. σ(η′) ⊆ E \D and σ(η′′) ⊆ E \D) and obtain a ramseyan
split sη for (η, σ) (resp. sη′ for (η′, σ) and sη′′ for (η′′, σ)) of height at most 3(|E| − |D|). We
construct s over β by s(x) = sη(x)+ 2 if x ∈ η, s(x0) = 1, s(x) = sη′(x)+ 2 if x ∈ η′, s(x1) = 2,
and s(x) = sη′′(x)+2 for x ∈ η′′. It follows from the definition that s is a ramseyan split of (β, σ)
of height at most 3(|E| − |D|) + 2 ≤ 3|E|.

Else, if D is regular, we apply Lemma 3 on γ with k = 3 and obtain a mapping c : γ →
{0, 1, 2} satisfying the conclusions of Lemma 3. By Lemma 1, σ(c−1(0)) ⊆ D. We can apply
Lemma 11 to c−1(0), obtaining a ramseyan split s′ for (c−1(0), σ) of height at most |D|. Let x
be in β, we define

s(x) =











s′(x) if x ∈ γ, and c(x) = 0

|D| + c(x) if x ∈ γ, c(x) ∈ {1, 2}

sη(x) + |D| + 2 if x 6∈ γ, and η is the ∼-equivalence class of x.

Let us first remark that the values corresponding to the first case of the definition range
in [1, |D|] (def. of s′). The values of the second case lie in [|D| + 1, |D| + 2] by construction.
Finally, the values provided by the last case lie all in [|D| + 3, |D| + 2 + 3(|E| − |D|)], which is
included in [|D| + 3, 3|E|].

We have to prove the ramseyanity of s. Let x < y and x′ < y′ be pairwise k-neighbours for
some k. If k ∈ [1, |D|], we are in the first case of the definition of s, and σ(x, y) = σ(x′, y′) =
σ(x, y)2 by ramseyanity of s′. If k ∈ [|D|+ 1, |D| + 2], then c(x) = c(y) and by Lemma 3, there
is some z in ]x, y[ with c(z) = 0. This implies s(z) ≤ |D|, contradicting the ‘k-neighbourity’
of x and y. Finally if k ≥ |D|+ 3, since x, y, x′ and y′ are k-neighbours, they all lie in the same
∼-equivalence class η. And σ(x, y) = σ(x′, y′) = σ(x, y)2 by ramseyanity of sη. ⊓⊔
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5 Application to countable scattered linear orderings

In this section, we use Theorem 4 for giving a new simplified proof of Theorem 5 (known
from [10]). We first briefly recall some facts about scattered linear orderings in Section 5.1 and
define the corresponding notions for words. Then we introduce automata on countable scattered
words in Section 5.2 and the corresponding algebraic definition of a ⋄-semigroup in Section 5.3.
In Section 5.4, we prove Theorem 5.

This section is independant from the subsequent ones.

5.1 Scattered linear orderings

A linear ordering α is dense if for every x < y in α, there exists z in ]x, y[. A linear ordering
is scattered if it is not dense on any subordering. For instance (Q, <) and (R, <) are dense,
while (N, <) and (Z, <) are scattered. Being scattered is preserved under taking a subordering.
A scattered sum of scattered linear orderings also yields a scattered linear ordering. Every
ordinal is scattered. Furthermore, if α is scattered, then α is scattered. And if α is countable
and scattered, then α is also countable and scattered.

Given an alphabet A, we denote by A⋄ the set of words indexed by a countable scattered lin-
ear ordering. Given a language L ⊆ A⋄, Lω represents the set of words of the form

∏

{ui : i ∈ ω}
where all the ui’s belong to L. One defines similarly L−ω and Lζ .

A standard way for proving results on scattered linear orderings is to use the theorem
of Hausdorff (chapter 5 of [22] is dedicated to the subject). It establishes a general way of
decomposing scattered linear orderings. Hausdorff’s theorem is a key tool in the original proof of
Theorem 5 [10]. We avoid it below; instead, we use the following lemma which provides a kind of
induction principle for scattered linear orderings. It essentially says that an equivalence relation
such that any two sets of equivalent elements are contiguous (there is nothing in between) are
equivalent, then the relation contains is trivial.

Lemma 15. Given a scattered linear ordering α and an equivalence relation R over α satisfying:

for all X < Y, with X2 ⊆ R, and Y 2 ⊆ R,
⋂

x∈X, y∈Y

]x, y[= ∅ implies (X ∪ Y )2 ⊆ R ;

Then R = α2.

Proof. Consider the set S of equivalence relations included in R such that every equivalence class
is convex. It is nonempty since the equality relation over α belongs to S. Order S by inclusion.
Given a chain in S, the union of all relations in the chain is itself an element of S: the chain has
an upper bound in S. Then, according to Zorn’s lemma, there is a maximal element ∼ in S.
Since α is scattered and ∼∈ S, α/∼ is itself a scattered linear ordering. Assume that it has two
distinct equivalence classes. Since α/∼ is scattered, there are two equivalence classes X and Y
— choose wlog X < Y — such that there is no other equivalence class Z with X < Z < Y .
This follows that ∩x∈X, y∈Y ]x, y[= ∅. Applying the hypothesis leads to (X ∪ Y )2 ⊆ R, and
consequently (∼ ∪(X ∪ Y )2) ∈ S. It contradicts the maximality of ∼. ⊓⊔

5.2 Automata over countable scattered linear orderings

In this section, we define priority automata and show how they accept words indexed by count-
able scattered linear orderings. Those automaton were introduced in [7], but in their ‘Muller’
form, while here we adopt the ‘parity-like’ approach.
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Definition 1. A priority automaton A = (Q,A, I, F, p, δ) consists of a finite set of states Q,
a finite alphabet A, a set of initial states I, a set of final states F , a priority mapping p : Q 7→
[1, N ] (N being a natural) and a transition relation δ ⊆ (Q×A×Q)⊎([1, N ]×Q)⊎(Q× [1, N ]).

A run of the automaton A over an α-word u is a mapping ρ from α to Q such that for all
cuts c, c′:

– if c′ is the successor of c through x, then (ρ(c), u(x), ρ(c′)) ∈ δ,
– if c is a left limit, then (k, ρ(c)) ∈ δ where k = max

⋂

c′<c

p(ρ(]c′, c[)),

– if c is a right limit, then (ρ(c), k) ∈ δ where k = max
⋂

c′>c

p(ρ(]c, c′[)).

The first case corresponds to standard automata on finite words: a transition links one state
to another while reading a single letter in the word. The second case verifies that the highest
priority appearing infinitely close to the left of c corresponds to a transition. The third case is
symmetric. An α-word u is accepted by A if there is a run ρ of A over u such that ρ(⊥) ∈ I
and ρ(⊤) ∈ F .

Example 4. Consider the automaton with states {q, r}, alphabet {a}, initial states {q, r}, final
state q, priority mapping constant equal to 0 and transitions {(q, a, q), (q, a, r), (0, q), (r, 0)}). It
accepts those words in {a}⋄ which have a complete domain. For this, note that a linear ordering
is complete iff no cut is simultaneously a left and a right limit.

Consider a word u ∈ {a}⋄ which has a complete domain α. For c ∈ α, set ρ(c) to be q if c
is ⊤ or if c has a successor, else ρ(c) is r. Under the hypothesis of completeness, it is simple to
verify that ρ is a run witnessing the acceptance of the word. Conversely, assume that there is a
run ρ over the α-word u with α not complete. There is a cut c ∈ α which is both a left and a
right limit. If ρ(c) is r, then, as c is a left limit, there is no corresponding transition; else if ρ(c)
is q the same argument apply to the right of c. In both cases there is a contradiction.

The languages accepted by priority automata are closed under union, intersection, concate-
nation, projection and exponentiation by ω and −ω [7]. They also admit an equivalent form of
regular expressions [7] and their emptyness problem is decidable. A consequence of Theorem 5
below is their closure under complementation (originally proved in [10], in [9] for a particular
case).

5.3 On ⋄-semigroups

Finite semigroups are known to have the same ‘expressive power’ as finite state automata.
This approach has been extended to languages of ω-words while introducing ω-semigroups
in [16]. Then Bedon and Carton generalized it to words indexed by countable ordinals in [2], the
corresponding algebraic object being called an ω1-semigroup. Finally, Carton and Rispal have
introduced ⋄-semigroups for describing languages of words indexed by scattered linear orderings.

Formally, a ⋄-semigroup (s, π) is a set equipped with an operator π mapping S⋄ to S which
satisfies:

– for all s ∈ S, π(s) = s, and,

– for all countable scattered linear ordering α and families (ui)i∈α of words in S⋄,

π(
∏

{π(ui) : i ∈ α}) = π(
∏

{ui : i ∈ α}) .

Those properties express the fact that π is a generalized product operator: more precisely, the
rules correspond to a generalized form of associativity. For instance, for every u, v,w in S,
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π(uπ(vw)) = π(uvw) = π(π(uv)w). In this sense, every ⋄-semigroup can be seen as a semigroup
with the product defined by u.v = π(uv). The free ⋄-semigroup generated by a finite alphabet A
is (A⋄,

∏

).
Given two ⋄-semigroups (S, π) and (S′, π′), a mapping ϕ from S to S′ is a morphism of ⋄-

semigroups if for every scattered linear ordering α, and every (xi)i∈α in S, ϕ(π(
∏

{xl : l ∈ α})) =
π′(

∏

{ϕ(xl) : l ∈ α}). A language K ⊆ A⋄ is ⋄-recognizable if there exists a morphism of ⋄-
semigroups from A⋄ to a finite ⋄-semigroup saturating K; i.e. such that ϕ−1(ϕ(K)) = K. As
usual with recognizability, ⋄-recognizable languages are closed under union, intersection and
complementation.

From now, we denote π(uv) simply by uv. More generally, given a word u in S⋄, we do
not distinguish between u and π(u). Similarly, we abbreviate π(

∏

{u : i ∈ (N, <)}) by uω

and π(
∏

{u : i ∈ (−N, <)}) by u−ω. We also denote by uζ the value u−ωuω.

Example 5. Consider the set S = ({0, 1}×{0, 1})⊎{⊥}. Define the product . and the exponent
mappings ω and −ω by, for every x in S and a, b, a′, b′ in {0, 1},

⊥x = x⊥ = ⊥ (a, b)(a′, b′) =

{

⊥ if b = a′ = 1

(a, b′) else

⊥ω = (1, 1)ω = ⊥ (a, b)ω =

{

⊥ if a = b = 1

(a, 1) else

⊥−ω = (1, 1)−ω = ⊥ (a, b)−ω =

{

⊥ if a = b = 1

(1, b) else.

Using Theorem 10 in [10], this (S, .) together with the mappings ω and −ω defines uniquely a
⋄-semigroup (S, π).

Let u be in {a}⋄ of domain α. Set ϕ(u) to be ⊥ if α is not complete. If α is complete, set ϕ(u)
to be (a, b) where a = 0 if α has a minimal element, else a = 1, and b = 0 if α has a maximal
element, else b = 1. This ϕ is a morphism from ({a}⋄,

∏

) to (S, π). It follows that the set of
words in {a}⋄ of complete domain is ⋄-recognizable: it is equal to ϕ−1({0, 1} × {0, 1}).

5.4 Equivalence of representations

The following theorem was proved in [10]2. A direct consequence of it is the closure under
complementation of the languages of words indexed by scattered linear orderings accepted by
priority automata.

Theorem 5 ([10]). Let A be a finite alphabet. A language L ⊆ A⋄ is accepted by a priority
automaton if and only if it is ⋄-recognizable.

The left to right implication is standard: one constructs a ⋄-semigroup which captures all the
possible behaviours of the automata over a word. Then there is no choice on the definition of
the product and the morphism.

The difficult direction is, given a ⋄-recognizable language, to construct a priority automaton
accepting it. The contribution here is to show that a natural way of constructing such an
automaton is to follow the structure of a ramseyan split. Let us fix a ⋄-semigroup (S, π) and
a morphism of ⋄-semigroups ϕ from (A⋄,

∏

) to (S, π). By closure of priority automata under
union, it is sufficient to show that for every c ∈ S the language ϕ−1(c) is acepted by a priority
automaton.
2 In fact, the present theorem differs in the use of priority automata in place of automata using Muller condition

in limit transitions. For this reason the result here is new; but for a nonessential reason.
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Let k be a natural number, set Lk to be the set of words u such that ϕu admits a ramseyan
split of height at most k. We show by induction on k that for every c ∈ S, the language Lc,k =
Lk∩ϕ−1(c) is accepted by an automaton. According to Theorem 4 we have ϕ−1(c) = Lc,3|S|. We
also use the intermediate language SD(e, k) for e an idempotent of S which is the set of words u
of domain α admitting a ramseyan split s of height at most k, such that s(⊥α) = s(⊤α) = 1
and ϕ(u) = e (in particular, SD(e, k) ⊆ Le,k).

The following lemma reduces the problem from describing the language Lc,k to describing
languages of the form SD(e, k).

Lemma 16. Let u ∈ A⋄ be a word of at least two letters. Then u belongs to Lc,k+1 iff there exists
a, b, e in S and γ ∈ {0, 1, ω,−ω, ζ} such that e2 = e, c = aeγb and u ∈ La,k(SD(e, k + 1))γLb,k

(with the convention that xy0z = xz).

Proof. From left to right. Let u be an α-word in A⋄ of length at least 2, and let s be a ramseyan
split of height at most k + 1 of (α,ϕu). We argue on the nature of s−1(1).

If s−1(1) is empty, then choose arbitrarily a cut c in α∗, and set a new value of 1 to s(c).
This modified s is still a ramseyan split of height k + 1 of (α,ϕu). And we can apply the next
case for which s−1(1) is a singleton.

If s−1(1) is a singleton {c}, let v be u restricted to positions to the left of c, and w be u
restricted to positions to the right of c. Obviously u = vw, and we have u ∈ Lϕ(v),ke0Lϕ(w),k for
any idempotent e.

Else s−1(1) contains at least two elements. There are four cases depending on the existence
of a minimal (resp. a maximal) element in s−1(1). First case. If s−1(1) has both a minimal
element c and a maximal element c′, then let a = ϕu(⊥, c), e = ϕu(c, c′), and b = ϕu(c′,⊤). By
definition of a ramseyan split, e is an idempotent of S; furthermore, ϕ(u) = aec. We obtain u ∈
La,kSD(e, k + 1)Lb,k. Second case. If s−1(1) has neither a minimal element nor a maximal
element. Let c be inf(s−1(1)) and c′ be sup(s−1(1)). Let a = ϕu(⊥, c), b = ϕu(c′,⊤). Using
the countability of α∗, we have a ζ-indexed sequence · · · < xn < xn+1 < · · · in s−1(1), such
that inf{xi : i ∈ ζ} is c, and sup{xi : i ∈ ζ} is c′. Let e be ϕu(x1, x2). The sequence of
xi’s shows that ϕu(c, c′) ∈ (SD(e, k + 1))ζ . Furthermore e is an idempotent. We obtain u ∈
La,k(SD(e, k + 1))ζLb,k. The two other cases are obtained as combinations of the two first one,
using ω and −ω-indexed sequences. ⊓⊔

This lemma together with the closure properties of languages accepted by priority automata
shows that it is sufficient to construct an automaton accepting SD(e, k +1). For this, define the
following languages:

Me,k = {u ∈ Lk \ {ε} : ϕ(u) = e}, M←
e,k = {u ∈ Lk : ϕ(u)e−ω = e},

M→←
e,k = {u ∈ Lk : eωϕ(u)e−ω = e}, M→

e.k = {u ∈ Lk : eωϕ(u) = e}.

Those languages can be obtained as unions of the La,k together with languages consisting of
a single letter word, or the empty word. Hence, by induction hypothesis there are automata
accepting them. We identify below the automaton and the language.

In order to accept the language SD(e, k+1), we construct a corresponding automaton A(e, k+
1). The definition of the automaton A(e, k+1) is depicted in Figure 2. This is a disjoint union of
the automata accepting Me,k,M

←
e,k,M

→
e,k and M→←

e,k and of a new state t of priority n; the state t
being both initial and final. The value n is chosen to be the highest priority of the automaton.
New ε-transitions3 are added to this construction as depicted in Figure 2: arrow arriving from
the left have the initial states of the automaton as destination, while the arrows leaving to the

3 ε-transitions are just a commodity notation. And in particular there is no cycle of such transitions.
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t : nM→e,k M←e,k

Me,k M→←e,k

n ε ε n

ε ε

n n

Fig. 2. The automata A(e, k + 1)

right have the final states of the automaton as origin. Dashed arrows represent limit transitions.
For instance the leftmost one expresses the existence of a limit transition (n, q) for q an initial
state of M→

e,k: the automaton can go to state q if the maximal priority appearing infinitely often
to its left is n. The following lemma concludes the proof.

Lemma 17. The automaton A(e, k + 1) accepts the language SD(e, k + 1).

Proof. From right to left. Let u be a word indexed by α. Let s be a ramseyan split of ϕu

corresponding to the membership of u in SD(e, k + 1), i.e. such that s(⊥) = s(⊤) = 1.
We construct a run ρ ∈ Qα in the following way (Q is the set of states of Ae,k+1). Set ρ(x) = t

whenever s(x) = 1. We define ρ elsewhere by copying runs of the automata Ee,k,M
←
e,k,M

→
e,k

and M→←
e,k . More precisely, consider a maximal interval I ⊆ α such that s(I) ≥ 2. Let us define ρ

over I. Four cases happen depending on the nature of the interval: I = [x, y], [x, y[, ]x, y] or ]x, y[.
We treat the case of [x, y[. The others are similar.

If I = [x, y[, this means that s(x) > 1, but s(y) = 1. As a consequence, there is a sequence
x1 < x2 < . . . in s−1(1) indexed by ω such that sup{xi : i < ω} = x (this is possible because α
is countable). It follows that σ(x1, x) = eω. Furthermore (by ramseyanity), σ(x1, y) = e. We
deduce eωσ(x, y) = e. By induction hypothesis, we obtain that v is accepted by M→

e,k. We
define ρ to replicate the corresponding run over I using the instance of M→

e,k it contains. We
have to prove that this choice indeed produces a run. Over ]x, y[ this is a correct run since the
original run was itself correct. It remains to show the correctness of the run to the left of x.
But, we already know that the maximal priority reaching x from the left is n since the sequence
of the xi’s tends to x and by construction correspond to a priority n which is maximal. We
conclude that there is a corresponding transition in Ae,k+1.

From left ro right. Let ρ ∈ Qα be a run of A(e, k + 1) over u from t to t. We aim at
constructing a ramseyan split s of ϕu corresponding to the membership of u in SD(e, k + 1).
Let J be ρ−1(t). We set s(x) to be 1 over J . Let I be a maximal interval which does not
intersect J . Once more there are four cases: I = [x, y], [x, y[, ]x, y] or ]x, y[. We treat the case
of [x, y[. The others being similar.

If I = [x, y[, this means that s(x) > 1, but s(x) = 1. Let q be the state ρ(x). Since I is
maximal, there exists an ω-sequence x1 < x2 < . . . in J of limit x. Since ρ(xi) is n by definition,
this means that the maximal priority appearing infinitely often to the left of x is n. Hence,
there must be in Ae,k+1 a limit transition from n to q. By inspecting the definition of Ae,k+1,
this means that q is either the initial state of M→

e,k or the initial state of M→←
e,k . In y, the run

assumes state n, but this state has been reached by an ε-transition either from the final state
of Me,k, or by the final state of M→

e,k. Let p′ be this state. We know that there is a run of Ae,k+1

from configuration (x, q) to (y, p′) which does not visit state n (by definition of I). It follows
that q is the initial state of M→

e,k−1, p′ is its final state and that the run from (x, q) to (y, p′) is
an accepting run of M→

e,k. By induction hypothesis, σ(u|I) = (ϕu)|I has factorisation height at
most k. Let s′ be this factorisation. For all x ∈ I, let s(x) be s′(x) + 1.
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Let us show that this split is ramseyan. Let x < y be such that s(x) = s(y) = k. For
k-neighours with k ≥ 2, this is inherited from the induction hypothesis. What remains to be
shown is that for every x < y in J (i.e. x, y are 1-neighbours), σ(x, y) = e. To make this
relation reflexive and symmetric, we consider the relation R defined by xRy if x = y or x < y
and σ(x, y) = e or y < x and σ(y, x) = e. We want to apply Lemma 15 on (J,<) and the
relation R. Let X,Y ⊆ J be such that X < Y , X2 ⊆ R, Y 2 ⊆ R and ∩x∈X,y∈Y ]x, y[∩X = ∅.
Let I = ∩x∈X,y∈Y ]x, y[, I is a maximal interval nonintersecting J .

Once more there are four cases: I = [x, y], [x, y[, ]x, y] or ]x, y[. We treat the case of I = [x, y[.
Fix x0 ∈ X and y0 ∈ Y . We want to prove σ(x0, y0) = e. As x 6∈ J , there is an ω-sequence x0 <
x1 < . . . of limit x with for all i, σ(xi, xi+1) = e. It follows that σ(x0, x) = eω. By construction s
corresponds to a run of M→

e,k over I. It follows, by definition of M→
e,k, that eωσ(x, y) = e. We

obtain σ(x0, y) = e. Since furthermore by hypothesis, σ(y, y0) = e, we have σ(x0, y0) = e.
Lemma 15 concludes that for every x < y in J , σ(x, y) = e. Hence, s is a ramseyan split

for ϕu. ⊓⊔

6 Deterministic extension to the factorisation forest theorem

We try in this section to construct the split from ‘left to right’ in a ‘deterministic way’. The
notion of ramseyanity is not suitable anymore in this context; the result would be false4. It is
replaced by the notion of forward ramseyanity. The result, Theorem 6, only holds for ordinals.

6.1 The statement

A split s of height N is forward ramseyan if for every k = 1 . . . n and k-neighbours x < y
and x′ < y′,

σ(x, y) = σ(x, y).σ(x′, y′) .

So in particular, σ(x, y) is an idempotent, but σ(x, y) and σ(x′, y′) may be different idempotents.
In the terminology of Green’s relation, σ(x, y) and σ(x′, y′) are L-equivalent idempotents. A
ramseyan split is always forward ramseyan, but the converse does not hold in general.

Below, we also identify the natural numbers with the corresponding ordinal. Furthermore,
for σ an additive labelling over an ordinal α, and given β < α, we denote by σ|≤β the labelling σ
restricted to [0, β].

Theorem 6. Let (S, .) be a semigroup. To every additive labelling σ over an ordinal α, one
can associate a forward ramseyan split sα,σ of (α, σ) of height at most |S|. Furthermore, for
every additive labellings σ and σ′ over the respective ordinals α and α′, and every ordinal
β < min{α,α′},

if σ|≤β = σ′|≤β then sα,σ(β) = sα′,σ′(β) (determinism property) .

Furthermore, under the same hypothesis, over finite linear orderings, the forward ramseyan
split can be computed via monadic formulæ.

Proposition 1 (definable variant of Theorem 6). Given a finite semigroup (S, .), there
exist monadic closed formulæ Θ1, . . . , Θ|S| such that for every ordinal α, and additive labelling σ
from α to S, the split s defined for every β ∈ α by:

s(β) = n such that (β + 1, σ|≤β) |= Θn ,

is forward ramseyan.
4 Consider the semigroup ({a, b}, .) defined by ab = aa = a and ba = bb = b.
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Proof. (Idea) Implement the construction of the proof of Theorem 6 via monadic formulæ. ⊓⊔

Note, that a consequence of Proposition 1, the mapping s satisfies the determinism property.

6.2 Proof of Theorem 6

Once more, we perform a case analysis.

Case of a single H-class.

Lemma 18. Let H be an H-class in S such that (H, .) is a group. For β ⊆ α such that σ(β) ⊆
H, there exists a ramseyan split sH

β,σ of height at most |H|. Furthermore sH satisfies the deter-
minism property.

This is exactly the proof of Lemma 10 in which one always chooses x0 to be 0β .

Case of a single L-class.

Lemma 19. Let L be an L-class in a regular D-class, for every ordinal β such that σ(β) ⊆ L,
there exists a ramseyan split sL

β,σ of height at most |L|. Furthermore sL satisfies the determinism
property.

We require the following result.

Fact 20. There is an H-class H ⊆ L which is a group, and a mapping f : L → H such that:

– for every a, b in L, if ab ∈ L then f(ab) = f(a)f(b), and,
– for every H-class H ′ ⊆ L, f |H′ is a bijection from H ′ onto H.

Proof. Let H1, . . . ,Hn be the H-classes included in L. By Fact 9 we can assume that H1, . . . ,Hk

are groups, while for every a, b in Ki for i > k, ab 6∈ L. By regularity hypothesis and Fact 6,
k ≥ 1. Let L′ = H1 ∪ · · · ∪ Hk.

Let a, b be in L, we claim that ab ∈ L iff b ∈ L′. Indeed, if b ∈ L′, let e be the neutral
element of the group containing b. Since e L a, e = xa for some x. Hence, b = eb = xab, and we
deduce ab L b. Conversely, suppose ab in L, then ab R a. Hence, a = abc for some c. But then
abcbc = a. Hence bc belongs to L′. But bc R b. Hence b ∈ L′.

Let H be H1. If k = 0, then for all a, b in L, ab 6∈ L. One can construct the mapping arbitrarily
using Fact 8. Else, let ei be the neutral element of Hi for i ≤ k. Let i, j ≤ k. Since ei L ej,
ei = xej for some x. Hence eiej = xejej = xej = ei. For every a ∈ L, let f(a) = ae1. According
to the claim above, f is a mapping from L to H1. Assume a, b in L such that ab ∈ L. According
to the claim, above, b ∈ L′, i.e. b ∈ Hi for i ≤ k. Also, as a L ei, a = xei for some x. We
have f(a)f(b) = ae1be1 = xeie1be1 = xeibe1 = abe1 = f(ab).

The fact that f |Hi
is a bijection from Hi to H1 is known as Green’s lemma. ⊓⊔

We can now prove Lemma 19.

Proof. Let H and f be obtained by Fact 20. For x < y in β, let σ′(x, y) be f(σ(x, y)). The first
property of f makes σ′ an additive labelling from β to H, such that σ(β) ⊆ H. Applying the
case of a single H-class above we obtain a split sH

β,σ′ forward ramseyan for (β, σ′). There are
two different cases.

Either all the H-classes are groups. In this case, one sets sL
β,σ to be sH

β,σ′ . Let us show that

sL is forward ramseyan. Indeed, consider x < y and x′ < y′ to be k-neighbours for some k. This
means that f(σ(x, y)) and f(σ(x′, y′)) are equal to the neutral element 1 of H. Since the H-
class of σ(x, y) (resp. of σ(x′, y′)) are groups isomorphic to H, we have that σ(x, y) and σ(x′, y′)
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are idempotents of S. Since σ(x, y) L σ(x′, y′), σ(x, y) = aσ(x′, y′) for some a ∈ S. Hence,
σ(x, y)σ(x′, y′) = aσ(x′, y′)2 = aσ(x′, y′) = σ(x, y).

Else, if there exists a non-regular H-class in L. This means that L contains at least two
H-classes. Define sL

β,σ(0β) = 1, and sL
β,σ = sH

β,σ′(x) + 1 elsewhere. The split sL defined this way
is forward ramseyan for (β, σ) as above. It has height at most |H| + 1 ≤ 2|H| ≤ |L|.

And this construction satisfies the determinism property. ⊓⊔

Case of a single D-class.

Lemma 21. Let D be a regular D-class. For every ordinal β such that σ(β) ⊆ D, there exists
a ramseyan split sD

β,σ of height at most |D|. Furthermore sD satisfies the determinism property.

Proof. We prove the property for every L-closed E ⊆ D. This is done by induction on the
cardinal of E. If E is an L-class, Lemma 19 concludes.

Else, let L be an L-class in E. Let γ = {0β} ∪ {x ∈ β̇ : σ(0β , x) ∈ E \ L}. By Fact 7,
for every x < y in γ, σ(x, y) ∈ E \ L. On can apply the induction hypothesis, and obtain a
split sE\L which is forward ramseyan for (γ, σ) and of height at most |E| − |L|. Similarly, for
every x < y in β\γ, σ(x, y) ∈ L. By Lemma 19, one obtains a split sL which is forward ramseyan
for (β \ γ, σ) of height at most |L|. Let us define the split sE by sE(x) = sE\L(x) + |L| if x ∈ γ,
else sE(x) = sL(x) if x ∈ β\γ. The mapping sE is forward ramseyan for (β,E) as an inheritance
of the forward ramseyanity of sL and sE\L. It has height at most |E| − |D| + |D| = |E|. ⊓⊔

For the proof of Theorem 6, we use Lemma 21 with E = D, and the same trick as for ordinal
ramseyan splits.

7 Compaction of additive labellings

A labelling maps pairs of elements to a finite set (the semigroup): it is defined via a finite number
of binary predicates. In this section we show that the use of (forward) ramseyan factorisations
permits to encode all this information into a finite number of unary predicates. Furthermore,
we show that the whole additive labelling can be reconstructed from those unary predicates via
first-order formulæ. We call this technique compaction.

As above, there are two variants to the technique. One which usable over complete linear
orderings (Section 7.1), and one usable over ordinals, which satisfies furthermore the determin-
isism property (Section 7.2). In Section 7.3, we apply this technique for proving a new result on
monadic interpretations applied to trees. And in Section 7.4 we briefly describe how this result
impacts on the theory of finitely presentable infinite structures.

7.1 Compactions of additive labelling over complete linear orderings

We prove here the following statement.

Theorem 7. For every finite semigroup (S, .) and a in S, there exists a first-order formula
labellinga(x, y) of free variables x, y, which uses the ordering relation < and unary predi-
cates p1, . . . , pN with N = ⌈(6|S| + 2) log2(|S|)⌉ such that the following holds5.

For every complete linear ordering α and additive labelling σ from α to S, there exists
subsets X1, . . . ,XN of α such that for all a in S and x < y in α:

σ(x, y) = a iff (α,X1, . . . ,XN ) |= labellinga(x, y) ,

in which for every i = 1 . . . N , pi is interpreted as Xi.
5 We did not try to optimize the value of N .
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In this proof, we define first the value of X1, . . . ,XN , before giving the formulæ.
Using Theorem 3, one obains a ramseyan split s for (α, σ) of height at most 3|S|. To every

element x in α and k with 1 ≤ k ≤ 3|S|, we furthermore attach some pieces of information
concerning the value of σ. For every k with 1 ≤ k ≤ 3|S|, there are two such informations, lk(x)
and rk(c), taking value in S, and corresponding to a compaction of what is happening to the
left of x, and to the right of x respectively. We give the definition of lk(x), the case of rk(x)
being symmetric.

lk(x) =











any value if Lk(x) = ∅

σ(z, x) if Lk(x) has a maximum z

a else, with a such that ∀y ∈ Lk(x).∃z ∈ Lk(x). z > y ∧ σ(z, x) = a

where Lk(x) = {y < x : s(y) = k}

Note that a consequence of this definition is that, whenver x < y are k-neighbours, then σ(x, y) =
ls(y)(y). Finally, it is simple to establish that N = ⌈(6|S| + 2) log2(|S|)⌉ bits are sufficient for
coding (s(x), l1(x), . . . , ls(x)(x), r1(x), . . . , rs(x)(x)).

We have now to construct first-order formulæ which reconstruct the value of σ(x, y) for
every x < y in α. We do not provide the formulæ explicitly, but instead describe functions
which can be easily translated into first-order logic. Let us treat first the ‘ascending case’; i.e.
compute σ(x, y) for x < y, s(x) ≤ s(y), and s(z) ≥ s(x) for all z in [x, y].

Lemma 22. For every x < y in α, if s(x) ≤ s(y) and s(z) ≥ s(x) for all z in [x, y],
then σ(x, y) = asc(x, y) with:

asc(x, y) =

{

ls(x)(y) if s(z) > s(x) for all z ∈]x, y[ ,

ls(x)(z)ls(x)(y) else for some z ∈]x, y[ with s(z) = s(x) .

Proof. Two cases can happen. If for all z in ]x, y[, s(z) > s(x). This means that [x, y[∩s−1(s(x)) =
{x}. Hence, by definition, ls(x)(y) = σ(x, y).

Else, there exists x′ be in ]x, y[∩s−1(s(x)). By definition of ls(x)(y), there exists y′ in [x′, y[∩s−1(s(x))
such that ls(x)(y) = σ(y′, y). Let now z be the one used in the definition of asc(x, y). By defini-
tion of ls(x)(z), there exists z′ in [x, z[∩s−1(s(x)) such that σ(z′, z) = ls(x)(z). Finally using the
ramseyanity of s, we deduce σ(x, y′) = σ(z′, z) = ls(x)(z). Overall σ(x, y) = σ(x, y′)σ(y′, y) =
ls(x)(z)ls(x)(y) = asc(x, y). ⊓⊔

Naturally, there is a corresponding definition for desc(x, y) satisfying σ(x, y) = desc(x, y)
whenever s(x) ≥ s(y) and s(z) ≥ s(y) for all z in [x, y]. Combining asc and desc we obtain the
following.

Lemma 23. For every x < y in α, σ(x, y) = labelling(x, y) with:

labelling(x, y) =











asc(x, y) if s(x) ≤ s(y) and s(z) ≥ s(x) for all z in [x, y]

desc(x, y) if s(x) > s(y) and s(z) ≥ s(y) for all z in [x, y]

desc(x, z)asc(z, y) else, for z ∈]x, y[ and s(z′) ≥ s(z) for all z′ ∈ [x, y] .

Proof. There are three cases, corresponding to the three items of the definition. The two first
one are treated by Lemma 22 and its variant for desc(x, y). In the third case, one finds z
in ]x, y[ such that s(z) is minimum. We use Lemma 22 between x and z, and its variant for
desc between z and y, as well as the additivity of the labelling σ, for obtaining:

σ(x, y) = σ(x, z)σ(z, y) = asc(x, z)desc(z, y) = labelling(x, y) .

⊓⊔
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It is not difficult at this point to check that the definition of labelling can be translated
for every a in S into a first-order formula labellinga using as predicate the ordering relation < as
well as unary predicates p1, . . . , pN encoding the value of (s(x), l1(x), . . . , ls(x)(x), r1(x), . . . , rs(x)(x)),
and satisfying the conclusion of Theorem 7.

7.2 Deterministic compaction of additive labellings over ordinals

We now state a result similar to Theorem 7 in the ordinal case, which satisfies a form of
determinism property. The statement in itself is difficult to process; it is similar to the statement
of Theorem 7, in which the determinism feature has been injected.

Theorem 8. For every finite semigroup (S, .) and a in S, there exists a first-order formula
labellinga(x, y) of free variables x, y, which uses the ordering relation < and unary predi-
cates p1, . . . , pN with N = ⌈(2|S|+ 1) log2(|S|)⌉ such that the following holds. For every ordinal
α and additive labelling σ from α to S, there exists subsets X1(α, σ), . . . ,XN (α, σ) of α such
that for all a in S and x < y in α:

σ(x, y) = a iff (α,X1(α, σ), . . . ,XN (α, σ)) |= labellinga(x, y) ,

in which for every i = 1 . . . N , pi is interpreted as Xi(α, σ).
Furthermore, for every additive labellings σ and σ′ over the respective ordinals α and α′,

and every ordinal β < min(α,α′),

if σ|β = σ′|β then for all i, β ∈ Xi(α, σ) iff β ∈ Xi(α, σ′) (determinism property) .

Let s be the forward ramseyan split of (α, σ) of height |S| obtained by Theorem 6. Let us
define lk(x) as in the previous section (this time only for every k = 1 . . . |S|). Without loss of
generality, we assume that there exists a neutral element — denote it 1 — in S, and we set for
every x, σ(x, x) = 1. Define:

labelling(x, y) = labelling1(x, y) ,

with labellingn defined by induction for all n = 1, . . . , |S| + 1 by:

labellingn(x, y) =























1 if n = |S| + 1 ,

labellingn+1(x, y) else if [x, y[∩s−1(n) = ∅ ,

labellingn+1(x, z)ln(y) else if [x, y[∩s−1(n) = {z} ,

labellingn+1(x, z0)ln(z1)ln(y) else if [x, y[∩s−1(n) = {z0 < z1 < . . . } .

In this definition, we abbreviate by [x, y[∩s−1(n) = {z0 < z1 < . . . } the fact that z0 is the
minimal element, and z1 the minimal element different from z0 in [x, y[∩s−1(n). Those two
elements exist since α is an ordinal and since the case of [x, y[∩s−1(n) being the emptyset or a
singleton is treated above.

The correctness is then stated by the following lemma.

Lemma 24. For every x < y in α, and n = 1, . . . , |S| + 1, if for all z in [x, y[, s(z) ≥ n, then

labellingn(x, y) = σ(x, y) .

Proof. The proof is done by a downward induction on n. For n = |S|+1, no z does satisfy s(z) ≥
n, hence [x, y[ has to be empty. It follows that x = y, and by consequence labellingn(x, y) =
1 = σ(x, y).
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Else, let n ≤ |S|. Assume the property true for n+1 and consider x ≤ y. Let E be [x, y[∩s−1(n).
If E is empty, this means that for all z in [x, y[, s(z) ≥ n + 1. And by induction hypothesis
labellingn+1(x, y) = σ(x, y). Hence, labellingn(x, y) = σ(x, y). If E is the singleton {z}.
This means that ln(y) = σ(z, y). It follows that labellingn(x, y) = labellingn+1(x, z)ln(y) =
σ(x, z)σ(z, y) = σ(x, y). Finaly, if E = {z0 < z1 < . . . }. By definition of ln(z1), ln(z1) =
σ(z0, z1). By induction hypothesis, labellingn+1(x, z0) = σ(x, z0). Furthermore, by definition
of ln(y), there is some z > z0 such that ln(y) = σ(z, y). Alltogether with the forward ramseyanity
of s leads to:

labellingn(x, y) = labellingn+1(x, z0)ln(z1)ln(y)

= σ(x, z0)σ(z0, z1)σ(z, y)

= σ(x, z0)σ(z0, z)σ(z, y)

= σ(x, y) .

⊓⊔

As in the previous case, the construction is easily adaptable into a presentation by first-order
formulæ using the relation < together with N = ⌈(2|S| + 1) log2(|S|)⌉ unary predicates coding
all the possible values of (s(x), l1(x), . . . , l|S|(x)). This concludes the proof of Theorem 8.

7.3 Application to interpretations

We prove in this section Theorem 9. Let us first give two lemmas which are consequences of
standard techniques; either the compositional method, or tree automata.

Lemma 25. Every monadic formula Φ(x1, . . . , xn) is equivalent on trees to a formula of the
form ∃z1 . . . ∃zk.Φ

′ where Φ′ is a boolean combination of monadic formulæ of the form x ⊏

y ∧ Ψ(x, y) (of free variables x, y), Ψ(x) (of free variable x) and x = y, for x, y ranging in
{x1, . . . , xn, z1, . . . , zk}.

Lemma 26. For every monadic formula of the form x ⊏ y∧Φ(x, y) of free variables x, y, there
exists a semigroup SΦ and AΦ ⊆ SΦ such that, for every tree t, there exists a mapping σ which
to every nodes x ⊏ y associates σ(x, y) ∈ SΦ, such that

– σ restricted to every branch is an additive mapping, and
– for every nodes x ⊏ y, t |= Φ(x, y) iff σ(x, y) ∈ AΦ.

Furthermore, σ is monadically definable: for every s ∈ SΦ, there exists a monadic formula Φs(x, y)
such that for every tree t and nodes x ⊏ y, t |= Φs(x, y) iff σ(x, y) = s.

And the result is then the following.

Theorem 9. For every monadic interpretation IMSO , there exists a monadic marking MMSO

and a first-order interpretation IFO such that for every tree t, IMSO(t) = IFO(MMSO(t)).

Proof. Wlog, we prove the result for an interpretation IMSO with a single formula Φ(x1, . . . , xn).
Using Lemma 25, we just have to show how to obtain an equivalent to a formula of the form x ⊏

y ∧Ψ(x, y) as the combination of a monadic marking and a first-order formula. For this, we use
Lemma 26 which tells us that the value of Ψ(x, y) can be uncovered by projection of an additive
labelling. And we use Theorem 8 for reducing the computation of the additive labelling to the
combination of a monadic marking and a first-order formula.

Note that this argument heavily relies on the determinism of the construction of Theorem 8.
Indeed, one has to mark every branch of a tree, a priori with a different marking. The deter-
minism property allows to have a single marking for the whole tree. ⊓⊔

24



7.4 Consequences for infinite structures

The goal of this section is to show how the results given above, namely Theorem 9, have direct
new consequences in the definition of some families of finitely presentable infinite structures.
There is no real technical contribution in this section but rather a presentation of those con-
sequences to the theory of infinite structures. Let us warn the reader that we do not intend
to provide a survey of this area, since this would require much more space and would be out
of topic. We rather directly concentrate on providing Theorems 11 and 12. Essentially, those
results show that for the standard caracterisation of the families of prefix-recognizable graphs,
as well as for the Caucal hierarchy, one can replace the monadic interpretations by first-order
ones.

The prefix-recognizable graphs were introduced by Caucal via an internal definition [11].
Namely, fix a finite alphabet A. A prefix-recognizable graph is an infinite directed graph defined
as follows. Its set of vertices is a regular language over the alphabet A. And each edge relation
is a finite union of relations of the form (U × V ).W with

(U × V ).W = {(uw, vw) : u ∈ U, v ∈ V, w ∈ W} ,

for U, V,W regular languages. By extension, a graph is prefix recognizable if it is isomorphic to
such a graph. An important property of those graphs is that their monadic theory is decidable
(this fact is due to Caucal [11]; it can be easily seen as a direct consequence of Rabin Theorem [21]
stating that the complete binary tree has a decidable monadic theory, together with Theorem 10
below).

There exists different caracterisations for this class of graphs. We will use below the following
one:

Theorem 10 (Blumensath [3]). A graph is prefix-recognizable iff it is isomorphic to a monadic
interpretation of the complete binary tree.

Using this theorem as guide, one can extend the definition of prefix-recognisability to relational
structures: we call a relational structure prefix-recognizable if it is monadically interpretable in
the complete binary tree.

Theorem 9 provides another — new — caracterisation of prefix-recognizable structures,
Theorem 11. Beforehand, we need the following lemma.

Lemma 27. Let t be a regular tree. Then there exists a first-order interpretation IFO such
that t is isomorphic to IFO(∆2).

Proof. It is sufficient to consider that the regular tree is the complete binary tree together with
a regular labelling in some finite alphabet A attached to every node. This means that there
exists a deterministic and complete finite automata A of finite words over the alphabet {0, 1},
with each state labelled by a letter in A, such that the label of a node u is the letter attached to
the sole state reached from the initial state while reading u. Let this automaton have states Q,
initial state q0, and transition function δ from Q×{0, 1} to Q. As usual we extend this transition
function into a mapping from Q × {0, 1}∗ to Q. Wlog we can assume that there exists also a
mapping d from Q to {0, 1} such that for every state q in Q and letter a in {0, 1}, d(δ(q, a)) = a;
i.e. the automaton remembers whether the current node is a left or a right child.

Let n be a mapping numbering the states of A from 1 to |Q|. Given a word u = a1a2 . . . an,
the ai’s being letters in {0, 1}, define:

f(u) = 10n(q0)10n(q1)1 . . . 10n(qn)1
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in which q0, q1, . . . , qn are the n+1 states successively assumed by the automaton while reading
the word u. The proviso concerning the mapping d makes f an injective mapping.

The image of f is first-order definable (as a language of words). Indeed, in order to verify that
a word belongs to the image of f , it is sufficient to check a) that 10n(q0)1 is a prefix, b) that the
last letter is 1, and c) that every factor of the form 10n10m1 is such that n = n(p) and m = n(q)
for some transition δ(p, a) = q. Those verifications are first-order definable. Furthermore, for
every word u, the state δ(q0, u) is nothing but the sole state q such that 10n(q)1 is suffix of f(u).
This is also first-order definable.

From those remarks, it is easy to give a first-order interpretation which, given the complete
binary tree, selects the nodes belonging to the image of f , and labels every node f(u) by the
state δ(q0, u). This interpretation provides a new tree t′. Since all the relevant information —
the label of the node, and its right-child/left-child nature — is encoded in each state, it is easy
to first-order interpret t in t′. ⊓⊔

Theorem 11. A structure is prefix-recognizable iff it is isomorphic to the first-order interpre-
tation (with ancestor relation) of the complete binary tree.

Proof. We have to show that given a monadic interpretation IMSO , there exists a first-order
interpretation IFO such that IMSO(∆2) is isomorphic to IFO (∆2). Using Theorem 9, we have
that IMSO(∆2) is equal to I ′

FO
(LMSO(∆2)) for some monadic labelling LMSO and first-order

interpretation I ′
FO

. Then using Lemma 27, we obtain an interpretation I ′′
FO

such that I ′′
FO

(∆2)
is isomorphic to LMSO(∆2). By closure of first-order interpretation under composition, IFO =
I ′
FO

◦ I ′′
FO

is a first-order interpretation such that IFO(∆2) is isomorphic to IMSO(∆2). ⊓⊔

A similar approach can be used for caracterising the Caucal hierarchy. The Caucal hierarchy
[12] is an extension of prefix-recognizable graphs to ‘higher-order’. We use here the caracterisa-
tion of Carayol and Wöhrle [8] as a definition:

– The structures in Struct0 are the finite relational structures.

– The graphs in Graphn are the structures in Structn having a graph signature.

– The trees in Treen+1 are the unfolding of graphs in Graphn.

– The structures in Structn+1 are the monadic interpretations of trees in Treen+1.

Since both the monadic interpretation and the unfolding preserve the decidability of the monadic
theory, the trees, graphs and structures in the classes defined above have a decidable monadic
theory.

The following interpretation shows that in the definition of this hierarchy, the monadic logic
can be replaced by first-order logic.

Theorem 12. The structures in Structn are, up to isomorphism, the first-order interpretation
of trees in Treen.

In fact, this is a direct consequence of Theorem 9 together with the following proposition (see
[8], Proposition 1).

Proposition 2. The class Treen is closed under monadic markings.

Acknowledgement

I am deeply grateful to Achim Blumensath and Olivier Carton for their help in the production
of this document.

26



References

1. J. R. Bchi. On a decision method in restricted second order arithmetic. In Proceedings of the International

Congress on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University press, 1960.
2. N. Bedon and O. Carton. An eilenberg theorem for words on countable ordinals. In LATIN, pages 53–64,

1998.
3. A. Blumensath. Prefix-recognisable graphs and monadic second-order logic. Technical Report AIB-06-2001,

RWTH Aachen, May 2001.
4. A. Blumensath. A short combinatorial proof of Rabin’s theorem. Personal communication, 2006.
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