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Abstract. Following the idea developed by I. Simon in his theorem
of Ramseyan factorisation forests, we develop a result of ‘deterministic
factorisations’. This extra determinism property makes it usable on trees
(finite or infinite).
We apply our result for proving that, over trees, every monadic inter-
pretation is equivalent to the composition of a first-order interpretation
(with access to the ancestor relation) and a monadic marking. Using this
remark, we give new characterisations for prefix-recognisable structures
and for the Caucal hierarchy.
Furthermore, we believe that this approach has other potential applica-
tions.

1 Introduction

The theorem of factorisation forests was proposed by Simon [20]. One way to
present it is the following. For every semigroup morphism ϕ from A+ to some
finite semigroup S, there exists a regular expression evaluating to A+ in which
the Kleene exponent L∗ is allowed only when ϕ(L) = {e} for some e = e2 ∈ S;
i.e., the Kleene star is allowed only if it produces a Ramseyan factorisation of the
word. The original statement is slightly different in its presentation. It establishes
the existence of a so called ‘Ramseyan factorisation of bounded depth’ for every
word; those factorisations intuitively witness the acceptance of the word by the
regular expression mentioned above. The present paper is based on the proof of
the theorem of factorisation forests in [9] which is a simplification of the original
presentation.

The result itself has been used for various applications. In [21], Simon uses
this theorem for studying the finiteness problem of regular languages of ma-
trices over the tropical semiring (i.e. the semiring N ∪ {∞} equipped with the
minimum and addition operations). This problem is equivalent to the limited-
ness problem for distance automata. This question is at the heart of the very
difficult proof of decidability of the star-height problem due to Hashigushi [11]
(the star-height problem consists in determining how many nesting of Kleene
stars are required for describing a given regular language of words by a regular



expression). In [16] the theorem is used in a characterisation of the polynomial
closure of a variety of languages. In [2], the authors use the theorem of factorisa-
tion forests in a complementation result extending the one of Büchi over infinite
words. A direct consequence of the result in [2] is the decidability of the limit-
edness problem for nested distance desert automata: this problem extends the
one for distance automata seen above, and is the cornerstone of the modern and
much simpler solution to the star-height problem proposed by Kirsten [12]. In
general the theorem of factorisation forests entails very deep consequences in the
understanding of the structure of semigroups. For instance, one directly derives
from it a constructive proof of Brown’s lemma on locally finite semigroups [3].

Independently of the contributions of this paper, let us advertise the impor-
tance of the factorisation forests theorem. This result is well known in semigroup
theory, in which some of its consequences are investigated. But this theorem
clearly has other potential fields of application. In the present paper for instance,
we use the approach for an application in logic. The interest of this theorem is
in fact more natural outside the scope of semigroup theory: for a non-specialist
in semigroups, it happens to be much easier to use than to prove. Thus, it is
hardly avoidable in some situations (such as in [2]).

The present paper is an attempt to adapt the theorem of factorisation forests
in a framework suitable for its use on trees. Essentially the problem we have
concerning the original statement is the following: given two words sharing a
common prefix, the factorisation forests theorem explicits the existence of a
factorisation for each of the two words, but those two factorisations need not
coincide on the common prefix. For eliminating this problem, we introduce an
extra determinism requirement: the original theorem shows the existence of a
factorisation for every word; our theorem shows the existence of a factorisation
which is computable ‘deterministically, on-line’ while reading the word from
left to right. For reaching this goal, we modify in two ways the original result.
A cosmetic modification is that we drop the original formalism using trees —
determinism does not fit naturally in it —, and replace it by the notion of splits
for representing factorisation (see below). The second modification consists in
weakening the hypothesis of ‘Ramseyanity’, and replace it by a notion of ‘forward
Ramseyanity’. Without this weakening, the result would simply not hold.

The second part of the paper is devoted to an application of this result to
monadic (second-order) logic over trees. This result has been chosen as an appli-
cation because it is it is new, because it does not contain too much technicalities,
and also because it could not be derived from weaker version of the main theo-
rem. Let us recall that the monadic logic is an extension of first-order logic by
the possibility to quantify over sets of elements. Over words, trees as well as
infinite words and trees (of length/height ω), the expressivity of closed monadic
formulæ coincide with the standard classes of automata ([5, 4, 17]). In partic-
ular, this logic is known to be more expressive than first-order logic, already
over words. We use our result to decompose monadic formulæ over trees: every
monadic formula with only free first-order variables is equivalent over trees to
a first-order formula with access to the ancestor relation and to monadically



defined unary predicates. Equivalently, every monadic interpretation is equiva-
lent, over trees, to the composition of a first-order interpretation and a monadic
marking.

We apply this result to the theory of infinite structures. We give new charac-
terisations to the class of prefix-recognisable structures as well as to the Caucal
hierarchy.

2 Main result

We first define semigroups and additive labellings, then words in Sections 2.1
and 2.2. Our main result is presented in Section 2.3.

2.1 Semigroups and Additive Labellings

A semigroup (S, .) is a set S equipped with an associative binary operator written
multiplicatively. Groups and monoids are particular instances of semigroups.
A morphism of semigroup from a semigroup (S, .) to a semigroup (S ′, .′) is a
mapping ϕ from S to S′ such that for all x, y in S, ϕ(x.y) = ϕ(x).′ϕ(y). An
idempotent in a semigroup is an element e such that e2 = e.

Let us recall that a linear ordering (α, <) is a set α together with a total
strict ordering relation <. Let α be a linear ordering and (S, .) be a semigroup. A
mapping σ from couples (x, y) with x, y ∈ α and x < y to S is called an additive
labelling if for every x < y < z in α, σ(x, y).σ(y, z) = σ(x, z).

2.2 Words

Given an alphabet A, we denote by A∗ the set of finite words over A, i.e. finite se-
quences of letters in A. The length of the word is the length of the sequence. The
empty word is ε, and A+ represents A∗\{ε}. A+ equipped with the concatenation
of words is a semigroup. Given a word u of length n, and i, j with 0 ≤ i ≤ j ≤ n,
ui,j is the word ui+1ui+2 . . . uj . Given a finite semigroup S, a morphism of semi-
group ϕ from A+ to S, and a word u of length n, ϕu is the additive labelling
from [0, n] to S defined by

ϕu(i, j) = ϕ(ui,j).

Reciprocally, given an additive labelling σ over ([0, n], <) for some n, one can
associate the word 〈σ〉 of length n over the alphabet S, the ith letter of which is
σ(i − 1, i). Of course, ϕ〈σ〉 = σ, where ϕ is the canonical semigroup morphism
from S+ to S. According to this remark, additive labellings and words together
with a semigroup morphism form two sides of the same object.



2.3 Main Theorem

A split of height N of a linear ordering α is a mapping s from α to [1, N ] (we use
square brackets for intervals of natural numbers). Given a split, two elements x

and y in α such that s(x) = s(y) = k are k-neighbours if s(z) ≥ k for all z ∈ [x, y].
k-neighbourhood is an equivalence relation over s−1(k). A split s of height N

is forward Ramseyan wrt. σ if for every k = 1 . . . n and every x, y, x′, y′ in the
same class of k-neighbourhood with x < y and x′ < y′,

σ(x, y) = σ(x, y).σ(x′, y′) . (1)

So in particular, σ(x, y) is an idempotent, but σ(x, y) and σ(x′, y′) may be
different idempotents1. Our main result is the following.

Theorem 1. Fix a finite semigroup (S, .), an alphabet A and a semigroup mor-
phism ϕ from A+ to S. There is a partition of A∗ into regular languages L1, . . . , LK

with K ≤ |S| such that for every word u of length n, su defined by

for all i ∈ [0, n], su(i) = k such that u0,i ∈ Lk,

is forward Ramseyan for ϕu.

The proof essentially follows the one of Chalopin and Leung [9]. In particular, it
is based on a decomposition of the semigroup following Green’s relations. Green’s
relation reflects the interplay of ideals in a semigroup [10], and their use provides
deep informations on the structure of the semigroup.

Example 1. For simplicity, we identify A with S, and ϕ is the identity over
letters. Let S be {a, b, c} together with the product defined by a = ab = aa,
b = ba = bb and c = cc = ac = bc = ca = cb, then the languages

L1 = ε + (a + b)∗c , and L2 = (a + b + c)∗(a + b)

form a valid output of the theorem. For instance, consider the word abcbaabacbaa,
the split defined is (the value of the split being interleaved in the word):

1 a 2 b 2 c 1 b 2 a 2 a 2 b 2a 2 c 1 b 2a 2a 2 .

Given two 1-neighbour positions i < j, the letter just before j is c; this means
ϕu(i, j) = c. While given two 2-neighbour positions i < j, all letters in ui,j

belong to {a, b}; this means ϕu(i, j) ∈ {a, b}. Those remarks entail the forward
Ramseyanity since c is an idempotent, and a, b are idempotents satisfying ab = a

and ba = b.

3 Application to Monadic Second-Order Logic

We first define structures, graphs and trees in Section 3.1. Then Section 3.2
introduces logics. Section 3.3 presents our result, Theorem 2, and Section 3.4
studies its consequences over infinite structures.

1 In terms of Green’s relation, σ(x, y) and σ(x′
, y

′) are L-equivalent idempotents.



3.1 Structures

Structures. A (relational) structure (U , R1, . . . , Rn) is a set U , called the uni-
verse, together with relations R1, . . . , Rn of fixed finite arity over U . Each rela-
tion R has a name that we write R itself. The relation is called the interpretation
of the name in the structure. The signature of a structure contains the names
involved together with their arity. By extension, we allow (partial) functions
from Uk to some finite set E = {e1, . . . , en}. Such a function f is nothing but
a shorthand for using n k-ary relations F1, . . . , Fn, each Fi being interpreted as
f−1(ei).

Words. Our base structure is ([0, n], <), i.e. the natural numbers equipped
with the natural ordering. An additive labelling σ on it to some finite semigroup
can be directly represented in it according to the remark above: this provides
the structure ([0, n], <, σ). Our coding of a word u of length n is slightly non-
standard. It is the structure ([0, n], <, u) where u is a partial mapping from [1, n]
to A. The element 0 of this structure is unused. This makes it easier to jump
from ([0, n], <, σ) to ([0, n], <, 〈σ〉) and vice versa.

Graphs. A (directed) graph is a structure for which all relations have arity 1
but one of arity 2 called the edge relation. The elements of the universe are called
vertices, the unary relations are labelling relations. A path is a finite sequence of
vertices such that two successive vertices are in relation by the edge relation. The
first vertex is called the origin of the path, and the last vertex the destination.

Trees. A tree t is a graph for which the edge relation is called the ancestor
relation, is denoted by v, and satisfies:

– the relation v is an order,
– there is a minimal element for v, called the root,
– for every u, the set {v : v v u} is finite and totally ordered.

The vertices of a tree are called nodes. Maximal chains are called branches. The
maximal element smaller than node u is called (when it exists) the parent of u.

We extend the notions for words to trees: an additive labelling is a mapping σ

from pairs of nodes (x, y) such that x @ y to a finite semigroup S which is an
additive labelling when restricted to every branch. We also note by 〈σ〉 the partial
function from nodes different from the root to S defined by 〈σ〉(u) = σ(v, u) for v

the parent of u (if it exists). A split of height N is a mapping from nodes to [1, N ].
The split is forward Ramseyan wrt. σ if it is forward Ramseyan wrt. σ over every
branch.

Caution: The trees are not defined by a ‘direct successor’ relation, but rather
by the ancestor relation. This has major impact on the logic side: all the logics
we use below can refer to the ancestor relation, and it is well-known that first-
order logic using this ancestor relation is significantly more expressive over trees



than first-order logic with access to the successor of a node only. The ancestor
relation is necessary in this work.

The complete binary tree has as universe {0, 1}∗, as ancestor relation the
prefix relation, and has two unary relations, 0 = {0, 1}∗0 and 1 = {0, 1}∗1. We
call the relation 0 the left-child relation, while 1 is the right-child relation. We
denote by ∆2 the complete binary tree.

One constructs a tree from a graph by unfolding. Given a graph G and one
of its vertices v, the unfolding of G from v is the tree which has as nodes the
paths of origin v, as ancestor relation the prefix relation over paths, and such
that a path π is labelled by a in the unfolding iff its destination is labelled by a

in the graph.

3.2 Logics

First-order logic. We assume a countable set of first-order variables x, y, . . .

to pick from. The atomic formulæ are R(x1, . . . , xn) for x1, . . . , xn first-order
variables and R a name of relation of arity n; given two first-order variables
x, y, x = y is also an atomic formula. First-order logic formulæ are made out of
atomic formulæ combined by the boolean connectives ∨,∧,¬, and the first-order
quantifiers ∃x and ∀x.

Monadic logic. We assume a countable set of monadic variables X, Y, . . . .
Monadic (second-order) formulæ are defined as first-order formulæ, but further
allow the use of monadic quantifiers ∃X , ∀X , and of a membership atomic for-
mula x ∈ X , where x is first-order and X monadic.

We use the standard notion of free variables. A formula without free variables
is closed. We denote by S |= φ the fact, for a closed formula φ and a structure S,
that the formula is true over the structure S. The value of first-order variables
range over elements of the universe of the structure, while monadic variables
take as values subsets of the universe. For S |= φ, we also say that S is a model
of φ, or that φ is satisfied over S. We also allow ourselves to write φ(x1, . . . , xn)
to denote that the free-variables of φ are among {x1, . . . , xn}. Then given ele-
ments u1, . . . , un in the universe of a structure S, we write S |= φ(u1, . . . , un) if
the formula φ is true over the structure S, using the valuation mapping xi to ui.

A structure S has a decidable L-theory (where L is either first-order or
monadic), if there is an algorithm which, given a formula φ of the logic L,
answers whether S |= φ or not.

Definability. Let R be a relation of arity k over the universe of some struc-
ture S. It is said L definable (where L is either first-order or monadic) if there
exists an L formula φ(x1, . . . , xk) such that R(u1, . . . , uk) iff S |= φ(u1, . . . , uk).
Implicitly, when we refer to definability, we mean that the formula does not
depend of the structure.

A structure S ′ is L definable in S if its universe is an L definable subset
of the universe of S, and all the relations in S ′ are L definable in S. We write
S ′ ≤FO S (resp. S ′ ≤MSO S) if S ′ if first-order (resp. monadically) definable in



S. The special case S ′ ≤1
MSO

S signifies that S ′ is the structure S augmented
with some new monadically definable unary relations. We also say that S ′ is
obtained by a monadic marking from S. The relations .FO , .MSO and .1

MSO

correspond to ≤FO , ≤MSO and ≤1
MSO

respectively, up to isomorphism.

3.3 Main result

We prove in this section Theorem 2: every monadic interpretation is the compo-
sition of a first-order interpretation with a monadic marking. For simplicity, we
use the notations ≤FO ,≤MSO , etc. But let us stress that the constructions are
uniform in the sense that implicitly the formulæ involved do not depend on the
structures, but only on their signatures.

We need two intermediate lemmas. Both can be proved using elementary
compositional methods (see e.g., [19]). The first one establishes that a monadic
formula with many first-order variables can be “first-order” reconstructed out of
monadic formulæ of two free first-order variables.

Lemma 1. Every monadic formula Φ(x1, . . . , xn) is equivalent over trees to a
first-order formula with access to binary relations defined by monadic formulæ
of the form x @ y ∧ Ψ(x, y).

The second lemma states that a monadic formula of two free first-order variables
can be seen as a monadically definable additive labelling.

Lemma 2. For every monadic formula of the form Φ(x, y) of free first-order
variables x, y, there exists a finite semigroup SΦ, a subset AΦ ⊆ SΦ, and an
additive labelling σ monadically definable in every tree t such that

for every nodes u @ v in t, t |= Φ(u, v) iff σ(u, v) ∈ AΦ .

The combination of the two previous lemmas yields the following.

Corollary 1. For every relation R monadically definable in some tree t,

(t, R) ≤FO (t, σ) ≤MSO t ,

where σ is an additive labelling from t to some finite semigroup.

Proof. (Idea) If R is defined by a monadic formula of the form x @ y∧Ψ(x, y), this
is a direct application of Lemma 2. Else, we decompose the formula defining R

as in Lemma 1, and use the argument above for coding each formula of the
form x @ y∧Ψ(x, y). Each time we obtain a semigroup and an additive labelling.
By product, we combine all those informations into a single semigroup and a
single additive labelling σ. ut

The following lemma is the key argument. It shows how to first-order reconstruct
an additive labelling σ out of its unary presentation 〈σ〉, providing a forward
Ramseyan split is given.



Lemma 3. Fix a semigroup S. Then

([0, n], <, σ) ≤FO ([0, n], <, 〈σ〉, s)

where n is some natural number, σ an additive labelling from [0, n] to S, and s

a split of [0, n] of height at most |S| forward Ramseyan wrt. σ.

Proof. We have to first-order define σ in ([0, n], <, 〈σ〉, s). By a downward in-
duction on k = |S|+ 1, . . . , 1, we construct a function ak(i, j) to S such that for
every i < j in [0, n], ak(i, j) = σ(i, j) whenever s(x) ≥ k for all x ∈]i, j[.

For k = |S| + 1, then j = i + 1. And a|S|+1(i, j) = 〈σ〉(j) = σ(i, j).
For k ≤ |S|. Let i < j lie in [0, n], define

ak(i, j) =



















































ak+1(i, j) if s(x) > k for all x ∈]i, j[ ,

ak+1(i, x).ak+1(x, j) if x is the only element in ]i, j[

such that s(x) = k,

ak+1(i, x).ak+1(x, y).ak+1(z, j)

for x < y ≤ z in ]i, j[

with s(x) = s(y) = s(z) = k

and s(w) > k for all w ∈]i, x[∪]x, y[∪]z, j[ .

Let i < j be in [0, n] such that s(x) ≥ k for all x ∈]i, j[. We have to show
ak(i, j) = σ(i, j). In the two first cases, the correctness is obvious. In the last
case, x, y, z are k-neighbours. Hence, by forward Ramseyanity of s, σ(x, z) =
σ(x, y).σ(y, z) = σ(x, z) (this holds even if y = z). Hence

ak(i, j) = ak+1(i, x).ak+1(x, y).ak+1(z, j)

= σ(i, x).σ(x, y).σ(z, j)

= σ(i, x).σ(x, z).σ(z, j)

= σ(i, j) .

Those constructions are first-order definable. The result follows. ut

The determinism allows to transfer easily this result to trees.

Corollary 2. Fix a semigroup S. Then

(t, σ) ≤FO (t, 〈σ〉, s)

for a tree t, an additive labelling σ from t to s, and a split of t of height |S|
forward Ramseyan for σ.

Proof. (Idea) The formula defining σ(u, v) for u @ v is obtained by relativisation
of the formula obtained by Lemma 3 to {w : w v v}. ut

Lemma 4. Let R be a relation monadically definable in a tree t,

(t, R) ≤FO t′ ≤1
MSO t for some tree t′.



Proof. From Corollary 1 it is sufficient to derive from (t, σ) ≤MSO t that

(t, σ) ≤FO t′ ≤1
MSO t

where σ is an additive labelling to a finite semigroup S. Let L1, . . . , L|S| be as in
Theorem 1. Set s to be the split of t defined by s(u) = n such that t|{v : vvu} ∈ Ln

(we see here t|{v : vvu} as a word, up to isomorphism). By Theorem 1, s is forward
Ramseyan wrt. σ. Furthermore, from the equivalence between regular languages
and monadic logic, s is monadically definable in (t, σ). Obviously, 〈σ〉 is also
monadically definable in (t, σ). Combined with Corollary 2 we obtain:

(t, σ) ≤FO (t, 〈σ〉, s) ≤MSO (t, σ) ≤MSO t .

Hence,

(t, σ) ≤FO (t, 〈σ〉, s) ≤1
MSO t .

ut

By extension of Lemma 4 to structures, we obtain the expected theorem.

Theorem 2. If S ≤MSO t then S ≤FO t′ ≤1
MSO

t for some tree t′.

3.4 Consequences for infinite structures

The goal of this section is to show how Theorem 2 has direct new consequences
in the definition of some families of finitely presentable infinite structures: The-
orems 4 and 5. But we do not intend to survey this area.

Prefix-recognisable graphs were introduced in [7]. Fix a finite alphabet A. A
prefix-recognisable graph is an (possibly infinite) graph defined as follows. Its set
of vertices is a regular language over the alphabet A. And each edge relation is
a finite union of relations of the form (U × V ).W with

(U × V ).W = {(uw, vw) : u ∈ U, v ∈ V, w ∈ W} ,

for U, V, W regular languages. By extension, a graph is prefix-recognisable if it is
isomorphic to such a graph. An important property of those graphs is that their
monadic theory is decidable (this fact is due to Caucal [7]; it can be easily seen
as a direct consequence of Rabin Theorem [17] stating that the complete binary
tree has a decidable monadic theory, together with Theorem 3 below).

There exists different characterisations for this class of graphs. We will use
below the following one due to Blumensath [1]:

Theorem 3. A graph G is prefix-recognisable iff G .MSO ∆2.

Following this idea, one extends prefix-recognisability to structures: a structure S
is prefix-recognisable if S .MSO ∆2.

Theorem 4 provides another – new – characterisation to the prefix-recognisable
structures. Beforehand, we need Lemma 5 stating that every regular binary tree
is first-order definable in ∆2.



Lemma 5. If t ≤1
MSO

∆2 then t .FO ∆2.

And we obtain.

Theorem 4. A structure S is prefix-recognisable iff S .FO ∆2.

Proof. From S .MSO ∆2 and Theorem 2, S .FO t′ ≤1
MSO

∆2 for some t′. By
Lemma 5, S .FO t′ .FO ∆2. Hence S .FO ∆2. The converse is obvious. ut

A similar approach can be used for characterising the Caucal hierarchy [8],
i.e a form of extension of prefix-recognisable graphs to ‘higher-order’. We use
here the characterisation in [6] as a definition:

– The structures in Struct0 are the finite structures.
– The graphs in Graphn are the graphs2 in Structn.
– The trees in Treen+1 are the unfolding of graphs in Graphn.
– A structure S is in Structn+1 if S .MSO t for some tree t in Treen+1.

The following theorem shows that in the definition of this hierarchy, the
monadic logic can be replaced by first-order logic.

Theorem 5. S is in Structn+1 iff S .FO t for some tree t in Treen+1.

In fact, this is a direct combination of the definitions, of Theorem 2, and of the
following proposition (see [6], Proposition 1).

Proposition 1. For t in Treen , every t′ .1
MSO

t is also in Treen .

4 Other Consequences, Perspectives

Determinisation of Regular Languages of Infinite words

From our result can also be derived McNaughton’s determinisation theorem [13].
This theorem states that for every regular language of infinite words of length ω

(regular meaning accepted by a Büchi automaton), there exists a deterministic
parity automaton which accepts the same language. Such an automaton is a
standard finite deterministic automaton without final states, the states of which
are labelled by natural numbers among 1, . . . , p called their priorities. An infinite
word is accepted by such an automaton if the least priority appearing infinitely
often in the (unique by determinism) run is even. The deteterminisation result
is fundamental in the theory of languages of infinite words. In particular, it is
used in most proofs of the theorem of Rabin.

Let us sketch the link with our result. Given a Büchi automaton accepting
a language L, it is natural to associate to it a structure of finite semigroup S

as well as a morphism ϕ from finite words to S such that it is sufficient to
know ϕ(u1), ϕ(u2), . . . for determining whether the word u1u2 . . . belongs to L

2 In the original version, graphs have their edges labelled. We drop this since it has
no impact on the definition of Structn.



(this was already the approach of Büchi in his proof of complementation [4],
see also [15] for the more explicit presentation via ω-semigroups). In particular,
given two words u, v, the membership of uvω = uvvv · · · in L does only depend
of ϕ(u) and ϕ(v).

One can apply Theorem 1 to this semigroup, and obtain for each word u the
forward Ramseyan split su. One constructs a deterministic parity automaton
which, when reading a word of u of length n, reaches a state of priority:

{

2su(n) if u0,muω
m,n ∈ L for m = max{m < n : su(n) = su(m)},

2su(n) + 1 if u0,muω
m,n 6∈ L, or m does not exist.

One checks that a) this can be implemented by a finite deterministic parity au-
tomaton, and b) that the language it accepts is L (using forward Ramseyanity).

This construction yields a doubly exponential automaton in the size of the
original automaton. It is comparable in complexity to the original proof of Mc-
Naughton, but quiet far from Safra’s construction [18]. A clother study of the
construction above shows that in fact only a third of the proof of Theorem 1
(the proof treats separately three different cases) is sufficient for establishing Mc-
Naughton’s determinisation result. This means that determinisation does not
illustrate the full interest of Theorem 1 and should be considered more as a
side-effect.

Another combinatorial approach to determinisation of Büchi automata is
known from [22]. The combinatorial lemma it involves is suitable for determini-
sation, but is not as expressive as Theorem 1. And in particular it is not sufficient
for proving Theorem 2.

Infinite trees

Another motivation for factorising trees is the perspective to give a new proof to
the theorem of Rabin of decidability of monadic second-order logic over infinite
trees [17]. Such a contribution would be an answer to a long lasting open question
of Shelah [19]. It would also generalise the original proof of Büchi for infinite
words to the case of infinite trees. Theorem 1 is far from being sufficient for such
an application. A reason for that is the irreducibility of nondeterminism in tree
automata (it is for instance shown in [14] that some languages of infinite trees
are not accepted by any unambiguous automaton, i.e., an automaton having a
single accepting run for each accepted input tree). Standard proofs of the result
of Rabin handle this problem using game theory, see e.g., [23]. The theorem
developed in this paper has no nondeterminism feature, and for this reason
cannot be sufficient alone for this application.

Despite this, the main reason for the introduction of Theorem 1 by the author
is its perspective of usage in an extension of the work in [2] to infinite trees, which
would be at the same time an extension of Rabin’s theorem
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