
A Tight Lower Bound for Determinization of
Transition Labeled Büchi Automata

Thomas Colcombet1 and Konrad Zdanowski1,?

Liafa/Cnrs/Université Paris 7, Denis Diderot, Paris, France

Abstract. In this paper we establish a lower bound hist(n) for the
problem of translating a Büchi word automaton of size n into a de-
terministic Rabin word automaton when both the Büchi and the Rabin
condition label transitions rather than states. This lower bound exactly
matches the known upper bound to this problem. The function hist(n)
is in Ω((1.64n)n) and in o((1.65n)n).
Our result entails a lower bound of hist(n − 1) when the input Büchi
automaton has its Büchi acceptance condition labeling states (as it is
usual). Those lower bounds remain when the output deterministic Rabin
automaton has its Rabin acceptance condition labeling states.

1 Introduction

Since the seminal work of Büchi [Büc62], automata running over infinite words
(of length ω) have become a fundamental object in automata theory. The au-
tomata introduced by Büchi are non-deterministic and use a so called Büchi
acceptance condition: a run of the automaton is accepting if some set of states is
visited infinitely often. Büchi established that it is possible to complement them,
though those automata cannot be made deterministic in general. The next fun-
damental step in this theory is the result of McNaughton [McN66] stating that
Büchi automata can be effectively transformed into deterministic automata (of
doubly exponential size) using a Muller acceptance condition; i.e., a run is ac-
cepting if it satisfies a boolean combination of atomic properties of the form ‘the
state q is visited infinitely often’1. Those two operations of complementation and
determinization of automata running on infinite words are the two key results
in this theory, and a long line of research is dedicated to the search of the exact
complexity of those two operations (in terms of state blow-up).

The complementation saga. The quest for the exact complexity for the com-
plementation of Büchi automata has been the subject of a long list of works
(see e.g., [Sch09a]). Now both lower bounds and upper bounds are well known
and tightly related. Indeed, there is a function tight which is in O((0.76n)n)
such that (lower bound) for all n, there exists a Büchi automaton of size n such

? Both authors are supported by the Anr project Jade (“Jeux et Automates,
Décidabilité et Extensions”).

1 The original statement is that every Büchi automaton is equivalent to a boolean
combination of deterministic Büchi automata.

that every Büchi automaton for the complement language has Ω(tight(n − 1))
states [Yan08], and (upper bound) for all Büchi automaton of size n, there ex-
ists a Büchi automaton for its complement of size O(tight(n + 1)) [Sch09a].
Since O(n2tight(n− 1)) = O(tight(n+ 1)), lower and upper bound to the com-
plementation problem only differ by a quadratic factor. This is the end of the
quest.

The determinization problem: The origins. In the theory of finite automata,
determinization is easy to describe [RS64]. Given a non-deterministic (finite
word) automaton of size n, one constructs a deterministic automaton that main-
tains the set of states that the original automaton could have reached at the
current position. The resulting automaton has size 2n (2n− 1 if one does not re-
quire completeness). This construction is known to be optimal (it is even optimal
for complementation). For automata running over infinite words, the informa-
tion maintained by the above construction is not sufficient. Safra was the first
to provide a solution oriented toward efficiency [Saf88]. In his construction the
reachable states are maintained, and furthermore organized in a tree-structure
(called a Safra tree) which carries information on the history of the possible runs
reaching each state. The resulting construction takes as input a non-deterministic
Büchi automaton of size n, and produces a deterministic automaton of size at
most (12)nn2n states using a Rabin acceptance condition; i.e., a run is accepting
if it satisfies a disjunction of properties of the form ‘the set of state E is visited
infinitely often, and the set of states F finitely often’ (each such pair (E,F) is
named a Rabin pair). The automaton constructed by Safra uses 2n Rabin pairs:
this is achieved by furthermore maintaining in each Safra tree a name attached
to each node. This naming mechanism allows a dynamic reuse of the Rabin
pairs. The ideas developed by Safra in his seminal work are underlying most of
the other solutions to the determinization problem.

The determinization problem: Further developments. Piterman [Pit07] pro-
poses a modification to Safra’s constructions for producing an automaton using
a parity acceptance condition; i.e., every state has a priority in ω, and a run is
accepting if the least priority seen infinitely often is even. This construction, not
only produces a parity condition (which is a further restriction on the Rabin
condition), but also improves on the original upper bound of Safra, reaching a
deterministic automaton of size at most 2nnnn!. By a finer analysis of Piterman’s
solution, Liu and Wang reach an upper bound of 2n(n!)2 [LW]. Independently,
Schewe in [Sch09b] gives a solution in o((2.66n)n) for the size of a Rabin deter-
ministic automaton using 2n−1 Rabin pairs2. In the same paper, Schewe provides
the best known upper bound for producing a deterministic parity automaton in
O((n!)2) (recall that n! ≈ (0.36n)n).

Extensions and Variants. Safra has generalized his construction: he shows
how to directly determinize automata that use Streett acceptance condition; i.e.,
the dual of Rabin: a run is accepting if it satisfies a conjunction of properties of

2 In fact one can argue on the respective advantages of this solution with respect to
others since it is obtained by completely removing the naming system in Safra’s
original solution, and the price to pay for that is the 2n−1 number of Rabin pairs.

the form ‘if the set of states E is visited infinitely often, then the set of states F
is visited infinitely often’. A construction with similar characteristics has been
described by Muller and Schupp using different techniques [MS95]. The latter
has been revisited by Kähler and Wilke for giving a unified view on comple-
mentation, determinization, and disambiguisation3 of Büchi automata[KW08].
Finally, Piterman in [Pit07] describes the best known determinization procedure
that takes a Streett automaton as input, and produces a deterministic parity
automaton as output.

Lower bounds. The first non-trivial lower bound to the problem of deter-
minization was n! [Löd99], derived from an early lower bound for complementa-
tion [Mic88]. The best known lower bound is in Ω((0.76n)n) [Yan06], and holds
even if the resulting automaton uses a Muller acceptance condition.

Decomposition. Schewe [Sch09b] develops the idea that the correct way of
describing determinization constructions consists in first isolating what he calls
the principle acceptance mechanism that captures the core of the construction,
and then waving on this construction for producing deterministic automata of
various characteristics. The principle acceptance mechanism takes the form of a
deterministic Rabin-automaton which has the non-standard characteristic that
the Rabin condition labels transitions rather than states. It has 2n−1 Rabin
pairs and hist(n) = o((1.65n)n) states, where hist(x) is the function giving the
number of states of an output automaton in Schewe’s construction.

Contributions. In this paper, we establish that the principle acceptance mech-
anism isolated by Schewe is optimal. More precisely, we prove that there ex-
ists a transition-labeled Büchi automaton of size n accepting a language Ln
such that every transition-labeled deterministic Rabin automaton accepting the
language Ln has at least hist(n) states. If the input Büchi automaton has its
Büchi condition labeling states, then we have a lower bound of hist(n−1). Since
transition-labeled automata are at least as compact as their state-labeled coun-
terparts, those lower bounds can be directly transferred to state-labeled Rabin-
automata as output. Since both hist(n) and hist(n− 1) are in Ω((1.64n)n), this
improves the previous lower bound of Ω((0.76n)n) to Ω((1.64n)n).

2 Basic definitions and facts

2.1 Basic notions and notations

For a sequence u, the i-th element of u is denoted by u(i) with the convention
that elements in a sequence are labeled from 0. The empty sequence is denoted
by ε and the length of a sequence u is denoted by |u|. If we assume an ordering
between elements of sequences then the lexicographic ordering of sequences is
defined as u <lex v if there exists i such that u(i) < v(i) and for all j < i,
u(j) = v(j) or |u| < |v| and for all i < |u|, u(i) = v(i). Then u ≤lex v if u <lex v
or u = v.
3 An automaton is non-ambiguous if there is at most one accepting run per input.

This is weaker than determinism.

A tree T is a subset of ω<ω such that if xi ∈ T then x ∈ T and xj ∈ T for
all j < i. The elements of T are called nodes. The size of T is the number of
nodes in T . A node of the form xi is called a child of the node x. If x is a prefix
of y we write x � y, and we write x ≺ y if x � y and x 6= y. When x � y, x
is called an ancestor of y, and y a descendant of x. When x ≺ y, x is called a
strict ancestor of y, and y a strict descendant of x.

2.2 Automata

We define here automata running on infinite inputs. Le us emphasize the fact
that, in this work, the accepting condition refers to transitions rather than states.

A (finite) automaton is a tuple A = (Q,Σ, I, Γ,∆), where Q is a set of states,
Σ is an input alphabet, I is a set of initial states, Γ is an output alphabet and
∆ ⊆ Q×Σ × Γ ×Q is the transition relation.

We see a finite automaton A as a non-deterministic transducer from Σω to
Γω. For a word u ∈ Σω, ρ = (p0, b0, p1)(p1, b1, p2)(p2, b3, p3) . . . is a run of A
over u if p0 ∈ I and ∀i (pi, u(i), bi, pi+1) ∈ ∆. The output of ρ, Out(ρ) is the
word b0b1b2

The automaton A is called deterministic if A has exactly one initial state
and ∆ is a functional relation, that is for each q ∈ Q and a ∈ Σ there is at most
one transition of the form (q, a, b, p) in ∆. We will take the convention that when
an automaton is deterministic, we denote its transition relation by δ, and we use
it also as a mapping from Q×Σ to Q. This mapping is naturally extended into
a mapping from Q × Σ∗ to Q in the usual manner. Thus, δ(q, u) is the unique
state p such that after reading u when starting in q the automaton A is in the
state p.

An automaton B is a Büchi automaton if Γ = {0, 1}. The language LB is
the set of words v in {0, 1}ω such that v contains infinitely many zeros. A run ρ
of of B is accepting if Out(ρ) ∈ LB . An automaton B accepts a word u ∈ Σω if
there is an accepting run of B on u.

An automaton R is a Rabin automaton with h conditions (i.e, h Rabin pairs)
for h ∈ ω, if Γ = P({r1, s1, r2, s2, . . . , rh, sh}). The Rabin language LR is the set
of words v in Γω such that for some i, ri ∈ v(n) for finitely many n, and si ∈ v(n)
for infinitely many n. As above, a run ρ of a Rabin automaton R is accepting if
Out(ρ) ∈ LR and R accepts u if there is an accepting run of R on u.

We are interested in providing a lower bound to the number of states needed
for the determinization of a Büchi automaton. Hence, we define the size of an
automaton as the number of its states. For a Büchi automaton B, let D(B) be
the size of a smallest deterministic Rabin automaton which recognizes the same
language. Let D(n)= max{D(B) : B is a Büchi automaton of size n}.

An important remark made by Yan in [Yan08] is that for each n there exists
a canonical Büchi automaton with n states which can simulate every Büchi
automaton of this size: the full automaton. In our context, it gives the following
definition.

Definition 1 (Full automaton). The full Büchi automaton of size n is the
automaton Bn = (Q,Σ,Q, {0, 1}, ∆) such that Q = {1, . . . , n} and Σ = P(Q ×
{0, 1} ×Q) and ∆ = {(q, a, b, p) : (q, b, p) ∈ a}.

Thus, the language of Bn is a set of words u such that there is a path ρ =
(p0, b0, p1)(p1, b1, p2)(p2, b2, p3) . . . such that for each i, (pi, bi, pi+1) ∈ u(i) and
for infinitely many i, bi = 0. We denote this language Ln.

Since full automata can simulate every automaton of the same size, we nat-
urally get the following lemma. It follows from it that to prove lower or upper
bounds on D(n) it is enough to consider only full automata Bn.

Lemma 1 ([Yan06]). D(n) = D(Bn).

2.3 Games

A game is a tuple G = (V, VE , VA, pI , Γ,Move, L), where V is a set of positions
which is partitioned into the positions for Eva VE and the positions for Adam VA,
pI ∈ V is the initial position of G, Γ is the labeling alphabet, Move ⊆ V ×Γ ×V
is the set of possible moves, and L ⊆ Γω is the winning condition. A tuple
(v, a, w) ∈ Move indicates that there is a move from v to w which produces
letter a. A game using the winning condition L is called an L-game.

During a play of the game G, the two players, Adam and Eva, make moves
according to Move, the player to whom belong the current positions choosing the
next move. Formally, a play is a maximal sequence π = (p0, a0, p1, a1, p2, a2, . . .)
such that p0 = pI and for each i, (pi, ai, pi+1) ∈ Move. Let πΓ = (a0, a1, a2, . . .).
Eva wins the play π if πΓ ∈ L. Otherwise, Adam wins the play.

A strategy for the player X is a function which tells the player what moves
he should choose depending on the finite history of moves played so far. For-
mally, a strategy (for Eva or for Adam) is a total mapping from finite sequences
(p0, a0, . . . , an−1, pn) into Move. A play π is compatible with a strategy σ for Eva
(resp. Adam) if for all prefixes (p0, . . . , pn−1, an−1, pn) of π, if pn−1 ∈ VE (resp. in
VA), then σ(p0, . . . , pn−1) = (pn−1, an−1, pn). A strategy σ for Eva (resp. Adam)
is winning if Eva (resp. Adam) wins every play compatible with σ.

A strategy with memory m for Eva is described as (M, update, choice, init) in
whichM is a set of sizem called the memory, update is a mapping fromM×Move
to M , choice is a mapping from VE ×M to Move, and init ∈ M . The map-
ping update is defined for moves, but can naturally be extended to paths in the
game. The strategy described by (M,update, choice, init) is the one which to each
path π = (p0, a0, . . . , an−1, pn) with pn ∈ VE associates choice(pn,update(init, π)).
A player X wins a game with memory n if it has a winning strategy with memory
m. A positional strategy corresponds to the case m = 1.

We call a game G a Rabin-game if L is the Rabin language LR over some
alphabet Γ . Eva has positional winning strategies in Rabin games:

Theorem 1 ([Kla94],[Zie98]). For every Rabin-game, if Eva wins, she can
win using a positional strategy.

2.4 Reduction

A standard way to use a deterministic automaton is for game reduction. Indeed,
given a deterministic automaton for a language L with (e.g. Rabin) acceptance
condition F with n states, and an L-game, one can perform the product of
the game with the automaton, yielding an F -game. From the determinism of
the automaton, one can derive that the winner of the two games is the same.
Pushing further, if the F -game admits positional strategies for Eva (and it is
the case for Rabin-games according to Theorem 1), one can see the states of the
automaton as maintaining the memory for a strategy in the L-game: Eva needs
memory n in the original game. We obtain:

Lemma 2. If Eva wins an L-game, and there exists a deterministic Rabin-
automaton for L with n states, then Eva wins using a strategy with memory n.

It is standard to use this result for proving upper bound results on the memory
needed for the winner of a game. In this work, we take the opposite point of
view and read the above lemma as follows: “If Eva wins an L-game, and requires
memory n for that, then every deterministic Rabin-automaton for L has size at
least n”. This provides an argument for proving lower bounds on determinization
problems.

3 The determinization construction

Now, we will describe briefly the construction of Schewe from [Sch09b]. This
construction takes as input a Büchi automaton B, and produces as output a
deterministic Rabin automaton R such that L(B) = L(R). This construction
captures the core mechanism of the famous construction of Safra [Saf88] (it
removes from it the node naming system that was used for reducing the number
of Rabin pairs). For more explanation of the construction we use here, we refer
the reader to [Sch09b].4 For a more extensive description of the original Safra
construction, we suggest [Tho97].

Let us fix a Büchi automaton B = (Q, I,Σ, {0, 1}, ∆) with n states. For a
set S ⊆ Q and a letter a ∈ Σ, let ∆(S, a) = {q : ∃p ∈ S∃b (p, a, b, q) ∈ ∆} and
∆0(S, a) = {q : ∃p ∈ S (p, a, 0, q) ∈ ∆}.

In the construction we work with trees with nodes labeled by subsets of states
of a Büchi automaton. A labeling of T is a function from nodes of T to the set
of labels (in our case: subsets of Q). A label of a node x ∈ T is denoted by T (x).
We use a convention that for x 6∈ T , T (x) = ∅. It does not cause any ambiguity
because the labels of nodes of T will be always nonempty. For a node x we order
its children by the “older than” relation and we say that xi is older than xj for
i < j.

Recall that siblings in a tree have, by definition, consecutive numbers starting
from 0. For this reason, the process of deleting a node requires some explanations.
4 Schewe’s construction takes a state-labeled Büchi automaton as input rather than a

transition labeled automaton. Nevertheless, his approach easily adapts to this case.

Deleting a node x in a tree T consists in a) removing the node x and all its
descendants, and b) shifting all the younger siblings of x to the left, i.e., the
direct right sibling of x takes the place of x, etc...

Now, we define the deterministic Rabin automaton R accepting L(B). The
set of states of R is the set of trees T of size at most |Q| labeled with subsets of
Q and such that

1. each node in T is labeled by a nonempty set of states,
2. the label of a node x is a strict superset of the union of its children labels,
3. labels of siblings are disjoint.

We call such trees, after [Sch09b], history trees. According to our notation for
x ∈ T , T (x) is the label of the node x in T . In particular, by the second point
above, T (ε) denotes the set of states which occur in some label of T . We denote
by H the set of history trees.

The initial state of R is a one node tree labeled by the set of initial states of
B. We always call this initial tree T0 (in general T0 depends on the set of initial
states of B but in the cases we consider it will be just a one node tree labeled
with Q). Let T be the current state of R, and a be the currently read letter.
The transition function is defined in multiple steps as follows.

1. For each node x ∈ T , replace the label of x with ∆(T (x), a).
2. For each node x ∈ T originally labeled by S, if ∆0(S, a) is nonempty then

form a new youngest child of x and label it with ∆0(S, a).
3. For each node x and for each state q ∈ T (x), if q belongs to an older sibling

of x, then delete q from labels of x and all its descendants.
4. Now, we contract the tree obtained so far:

4.1 for each node x such that its label is nonempty and is equal to the sum
of labels of its descendants, delete all strict descendants of x, and call x
green,

4.2 for each node xi that has an empty label, mark xi and all the nodes
in trees rooted at younger siblings of xi as red, and delete the subtree
rooted in xi.

5. The output of the transition is a set E of what we call events. For each red
node x we put (x,A) ∈ E and for each green x we put (x,E) in E .

The events (x,A) play the role of ri in the definition of a Rabin language LR
and events (x,E) correspond to si. Thus, the Rabin condition simply states that
there exists x such that (x,A) is seen finitely many times and (x,E) infinitely
many times. In other words, there will be a node x such that from some time on
it will never be deleted or moved to the left during point 4.2 of the transition
and it will be green infinitely many times. We will denote by Λ the set of possible
events, i.e., pairs of the form either (x,A) or (x,E) in which x is a possible node
in an history tree (there are 2n−1-many such x).

Since the Rabin automaton defined above is deterministic, its transition re-
lation can be seen as a partial function from H × Σ to P(Λ) × H. Given a
history tree T , and a letter a, δ(T, a) denotes the tree obtained by the above

procedure, and E(T, a) the set of produced events. The mapping δ is extended
into a mapping from H×Σ∗ to H by δ(T, ε) = T , and δ(T, ua) = δ(δ(T, u), a).
The mapping E is extended into a mapping from H×Σ∗ to P(Λ) by E(T, ε) = ∅
and E(T, ua) = E(T, u) ∪ E(δ(T, u), a).

Theorem 2 ([Sch09b], variant of [Saf88]). Let B be a nondeterministic
Büchi automaton and let R be a deterministic Rabin automaton constructed
as above for B. Then, L(B) = L(R).

3.1 Complexity of the construction

The size complexity of the construction described above is measured as the
number of states of the constructed Rabin automaton. Then, let us define the
function hist(n) as the number of history trees for Q of size n. The subject
of the paper is to prove that this value also provides a lower bound to the
determinization construction. This function is analyzed in [Sch09b] where it is
proved to be in o((1.65n)n). On the other hand, the following lower bound on
hist(n) can be proved.

Lemma 3 (M. Bouvel, D. Rossin). The function hist(n) is in Ω((1.64n)n).

4 Optimality of determinization

During this section we fix a full automaton of size n, Bn = (Q,Σ,Q, {0, 1}, ∆),
and we set Σ to be its alphabet P(Q× {0, 1} ×Q). The subject of this section
is to prove Theorem 4 that establishes our lower bound.

The proof consists first in restricting ourselves to a constant set of reach-
able states, second to prove a lower bound in this restricted context, third to
reconstruct our main result.

4.1 Fixing the set of reachable states

We define the set of states reachable by a word u, Reach(u), by induction.
Reach(ε) = Q and Reach(va) = {q : p ∈ Reach(v), (p, b, q) ∈ a} for v ∈ Σ∗ and
a ∈ Σ. Let ΣS be the set of letters a ∈ Σ such that S = {q : (p, b, q) ∈ a, p ∈ S},
or equivalently Reach(a) = Reach(aa) = S. Let LSn be Ln ∩Σω

S .
Of course, each history tree T maintains in T (ε) the set of states reachable by

the original automaton at the current position in the word. Hence it is natural for
all S ⊆ Q to consider HS = {T ∈ H : T (ε) = S}. We have for all words u ∈ Σ∗S
and all T ∈ HS that δ(T, u) ∈ HS .

4.2 The game

Let us fix ourselves a set S ⊆ Q. We establish in this section Theorem 3 which
provides a lower bound for the size of a deterministic Rabin automaton accepting
LSn . For this, we define a game G such that Eva wins G but she cannot win with

memory less than |HS |. That proves, by Lemma 2, that any deterministic Rabin
automaton accepting LSn has at least |HS | states.

We order history trees: we say that T is strictly smaller than T ′ at position
x, written T <x T

′, if T ′(x) (T (x) and for all y <lex x, T ′(y) = T (y). We can
remark that if T <x T

′, x may not be a node of T ′ (i.e., T ′(x) = ∅), but in any
case it is a node of T .

We construct the LSn-game G= (V, VE , VA, pI , Σ+
S ,Move, LSn), where VE is a

singleton set {pE} and VA consists of the initial position in the game pI and one
position pT for each history tree T ∈ HS . The moves in G are the following:

1. (pI , u, pE) ∈ Move, for all u ∈ Σ+
S ,

2. (pE , idS , pT) ∈ Move, for each history tree T , where idS = {(q, 1, q) : q ∈ S},
3. (pT , u, pE) ∈ Move, for each history tree T and word u ∈ Σ+

S if there exists
a node x in δ(T, u) such that either
– (x,E) ∈ E(T, u), and for all y ≤lex x, (y,A) 6∈ E(T, u) and δ(T, u)(y) =
T (y) or;

– δ(T, u) <x T and for all y <lex x, (y,A) 6∈ E(T, u).

Essentially, this game has a flower shape. The central node is controlled by Eva,
and from this node, she can decide to go to any of the petals of the flower,
each one corresponding to a history tree pT . Then, it is Adam’s turn to choose
a word u, and come back to the center. Adam’s moves are restricted in the
following way: playing a word u in petal pT is valid if it is possible to witness
in the behaviour of R from the state T when reading u that it is profitable for
Eva. This witness takes the form of a position x in the tree T such that nothing
happened above or to the left of x, and something good for Eva happened in x:
either some Eva-good event in E , or a local advance of the <x ordering.

It should be clear that both players can always perform a move from their
positions. Thus, every completed play has the length ω.

Lemma 4. Eva has a winning strategy in G.

To prove Lemma 4 we show that a winning strategy for Eva is as follows: if a
word u was played after a finite play and Eva is to make a move from pE , then
she chooses to go to a position indexed by δ(T0, u). Then, possible moves for
Adam forces him to generate infinitely often an event (x,E) without generating
infinitely many (x,A).

4.3 Memory lower bound for the game

Now, for each history tree T ∈ HS we define a game GT which is a modification
of G by removing a petal pT , i.e., removing one of Adam’s positions, and hence
removing to Eva the ability to take the corresponding move. All other elements
in the game are unchanged. Our crucial Lemma 5 states that for any two history
trees T 6= T ′ in HS , there exists always a word u such that (pT ′ , u, pE) is a valid
move in the game, and such that nothing good for Eva happens when R reads u
from state T . This is formalized as follows:

Lemma 5. Let T 6= T ′ be history trees in HS. There exists a word u such that

1. (pT ′ , u, pE) is a move in GT ,
2. T = δ(T, u),
3. for all x, (x,E) 6∈ E(T, u).

This lemma is the technical core of our proof. It requires an analysis of the
differences between the two trees. This results in many situations of very different
nature. With the help of Lemma 5 we can prove the following.

Lemma 6. For every T ∈ HS Adam has a winning strategy in GT .

A winning strategy for Adam is as follows. From pI he plays a word u such
that δ(T0, u) = T , where T0 is the initial state of the deterministic Rabin au-
tomaton R from Theorem 2. The good answer for Eva would be to move to pT
(according to the proof of Lemma 4), but since the petal is removed, she has to
choose another move, say to pT ′ for some T ′ 6= T . Then Adam answers according
to Lemma 5. Of course, using this strategy, Adam maintains the property that if
a word w has been played so far, then δ(T0, w) = T , and hence Adam can always
answer to Eva’s proposal using Lemma 5. Now, when the play gets infinite, say
producing an infinite word u, we can see from the property of the words u in
Lemma 5 that R does not accept this word (no events good for Eva are ever
produced). Hence, u 6∈ LSn and Adam wins.

From Lemma 6 we may easily infer the following.

Corollary 1. Eva has no winning strategy with memory |HS | − 1 in G.

Indeed, if Eva had a strategy with memory |HS | − 1, then there would be a
position pT which is never visited by this strategy. But this would mean that
Eva wins GT with the exact same strategy.

Using Lemma 2, we now get:

Theorem 3. Every deterministic Rabin automaton accepting LSn has size at
least |HS |.

4.4 Reduction to the general case

What remains to be done is a reduction to the general case. We do this by
decomposing a given deterministic Rabin automaton accepting Ln into disjoint
sets of states. The following lemma gives an argument for such a decomposition.

Lemma 7. Let R be a deterministic Rabin automaton which accepts Ln with a
transition function δ and an initial state q0. If δ(q0, u) = δ(q0, v) then Reach(u) =
Reach(v).

Now, it is possible to prove the main theorem.

Theorem 4. Every deterministic Rabin automaton accepting Ln has size at
least hist(n).

The theorem is proved by defining for a given deterministic Rabin automaton
R accepting Ln a partition of its states. For S a nonempty subset of Q, let RS
be the set of states q ∈ Q such that there exists u with Reach(u) = S and
δ(q0, u) = q, in which q0 is the initial state of R and δ is its transition function.
The automaton R restricted to RS can be seen as a Rabin automaton which
accepts the restriction of Ln to letters in ΣS . Hence the lower bound of Theorem
3 holds for the automaton R restricted to RS .

Theorem 4 then follows from the fact that the sets RS are disjoint, and that

hist(n) = |H| =
∑

S⊆{1,...,n}

|HS | .

5 Discussion

We have proved an exact lower bound for the determinization of Büchi automata
using a non-standard definition of automata in which the acceptance condition
labels transitions rather than states as it is usual.

State-labeled Büchi automaton as input. A state-labeled Büchi automaton over
alphabet Σ and of states Q, has transitions ∆ ⊆ Q × Σ × Q (the Büchi label
has disappeared from transitions), and a set of final states F ⊆ Q. A run of
the automaton is accepting if it visits a state in F infinitely often. Given a
(transition-labeled) Büchi automaton with n states A, one can transform it into
a state-labeled Büchi automaton with 2n states B in such a way that the action
of every letter in A can be simulated by a sequence of two letters on B. This is
sufficient for proving that translating a state-labeled automaton of size 2n into
a deterministic Rabin-automaton requires at least hist(n) states.

However it is possible to do much better if one inspects the proof of our
theorem more closely. For this one remarks that in our proof of optimality one
does not need to use the whole alphabet Σ. By a close inspection of all the cases
in the proof of Lemma 5, one can remark that all the letters appearing in the
word u described by this lemma do satisfy the following property: either there
is no 0-transitions in a letter, or all transitions labeled by 0 have the same state
as origin. Using this remark, one can optimise the above argument and get the
following lower bound.

Theorem 5. There is a language L′n accepted by a state-labeled Büchi automa-
ton with n-states such that every deterministic Rabin automaton accepting L′n
has size at least hist(n− 1).

State-labeled Rabin automaton as output. It is very simple to transform a state-
labeled automaton accepting some language (whatever is its acceptance con-
dition) into a transition-labeled one using the same acceptance condition and
the same number of states. The idea is simply to use transitions that have as
label the label of the origin state in the original automaton. From this we de-
duce that all the lower bounds presented above can be directly transferred to
transition-labeled automata as output.

Acknowledgements

We are grateful to Mathilde Bouvel and Dominique Rossin for their proof of
Lemma 3. We also thank Christof Löding for his insightful comments.

References

[Büc62] J. Richard Büchi. On a decision method in restricted second-order arithmetic.
pages 1–11, 1962.

[Kla94] N. Klarlund. Progress measures, immediate determinacy, and a subset con-
struction for tree automata. Annals of Pure and Applied Logic, 69(2–3):243–
268, 1994.

[KW08] Detlef Kähler and Thomas Wilke. Complementation, disambiguation, and
determinization of Büchi automata unified. In ICALP (1), pages 724–735,
2008.

[Löd99] Christof Löding. Optimal bounds for transformations of ω-automata. In
FSTTCS, pages 97–109, 1999.

[LW] W. Liu and J. Wang. A tighter analysis of Piterman’s Büchi determinization.
submitted.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521–530, 1966.

[Mic88] Max Michel. Complementation is more difficult with automata on infinite
words. CNET, Paris, 1988.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the theorems of
Rabin, McNaughton and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

[Pit07] Nir Piterman. From nondeterministic Büchi and Streett automata to deter-
ministic parity automata. Logical Methods in Computer Science, 3(3), 2007.

[RS64] Michael O. Rabin and D. Scott. Finite automata and their decision problems.
Technical report, 1964.

[Saf88] S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988.
[Sch09a] Sven Schewe. Büchi complementation made tight. In STACS 09, 2009.
[Sch09b] Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In

FoSSaCS 09, 2009.
[Tho97] W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salo-

maa, editors, Handbook of Formal Languages, volume 3. Spinger, 1997.
[Yan06] Qi Qi Yan. Lower bounds for complementation of ω-automata via the full

automata technique. In Proc. 33rd Intl. Colloq. on Automata, Languages and
Programming, volume 4052 of Lecture Notes in Computer Science, pages 589–
600. Springer-Verlag, 2006.

[Yan08] Qi Qi Yan. Lower bounds for complementation of ω-automata via the full
automata technique. Logical Methods in Computer Science, 4, 2008.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1–2):135–183,
1998.

