
Limited Set quantifiers over Countable Linear
Orderings ?

Thomas Colcombet and A V Sreejith

LIAFA, Université Paris-Diderot
{thomas.colcombet, sreejith}@l iafa.univ-paris-diderot.fr

Abstract. In this paper, we study several sublogics of monadic second-
order logic over countable linear orderings, such as first-order logic, first-
order logic on cuts, weak monadic second-order logic, weak monadic
second-order logic with cuts, as well as fragments of monadic second-
order logic in which sets have to be well ordered or scattered. We give
decidable algebraic characterizations of all these logics and compare their
respective expressive power.

Key words: Linear orderings, Algebraic characterization, Monadic sec-
ond order logic

1 Introduction

Monadic second-order logic (i.e., first-order logic extended with set quantifiers)
is a concise and expressive logic that retains good decidability properties (though
with a bad complexity). In particular, since the seminal works of Büchi [3], Rabin
[11] and Shelah [13], it is known to be decidable over infinite linear orderings
with countably many elements, such as (Q, <) [5,7]. A breakthrough result of
Shelah (also in [13]) states that over general linear orderings (i.e., not necessarily
countable), or simply over (R, <), this logic is not decidable anymore. There is
also a long line of research focusing on the analysis of the expressive power and
decidability status of temporal logics, which, for most of them are equivalent in
expressiveness to first-order logic (but much more tractable), and can be decided
on some non-countable linear orderings.

Such studies are interesting for themselves, i.e., for the techniques involved
in their resolution and the understanding of the logics it requires for doing so.
Such studies are also interesting since infinite linear orderings offer a natural
model of continuous linear time.

Recently, another step in our understanding of monadic second-order logic
over countable linear orderings has been made. An algebraic model, ◦-monoids,
was proposed [4], yielding among other results the first known quantifier collapse
of monadic second-order logic (to the one alternation fragment over set quanti-
fiers), the resolution of a conjecture of Gurevich and Rabinovich [8] concerning
? The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 259454.

the use of cuts “in the background” [6]. Algebraic recognizers give us a much
deeper understanding of the expressive power of monadic second-order logic.

The next natural step is to follow the footprints of Schützenberger, who
characterized algebraically first-order logic over finite words as languages that
are recognized by aperiodic monoids [12] (in fact, the first-order logic terminology
is in combination with McNaughton and Papert [10]) as these languages that are
recognized by aperiodic monoids. Now that a suitable algebraic model is known
for understanding monadic second-order logic, a similar study can be performed
in this more general context. There exist already results of this kind, but these
are so far restricted to the case of scattered linear orderings (i.e., without any
dense sub-ordering). In this context, first-order logic and first-order logic on cuts
have been algebraically characterized [1], as well as weak monadic second-order
logic [2]. Simple decision procedures are derived in all these situations.

In this paper, we perform a systematic analysis of sublogics of monadic
second-order logic on countable linear orderings depending on the kind of sets
over which set quantifiers range. If such sets are just singletons, we have ex-
actly first-order logic (FO). If such sets are Dedekind cuts, we obtain first-order
logic on cuts (FO[cut]). If finite sets only are allowed, this is weak monadic
second-order logic (WMSO). If it is possible to quantify over both finite sets
and cuts, we obtain weak monadic second-order on cuts (MSO[finite,cut]). We
consider also MSO[ordinal] in which quantified sets need to be well-ordered. Fi-
nally MSO[scattered] corresponds to the case where quantified sets are required
to be scattered. Our contribution is to compare the expressive power of all these
logics (all are distinct but for MSO[finite,cut] which coincide with MSO[ordinal]),
and characterize each of them by decidable algebraic means.

Structure of the paper In Section 2, we introduce linear orderings, words,
and the logics we are interested in. In Section 3 we provide sufficient material
concerning the algebraic framework of ◦-monoids, state the main characteriza-
tion theorem, Theorem 2, and show the separation result, Theorem 3. Section 4
is devoted to the description of some ideas concerning one direction of the proof
of Theorem 2. Section 5 concludes the paper.

2 Preliminaries

In this preliminary section, we introduce the notion of linear orderings (Sec-
tion 2.1), (countable) words (Section 2.2) and the studied logics (Section 2.3).

2.1 Linear orderings

A linear ordering α = (X,<) is a non-empty set X equipped with a total order
<. A linear ordering α is dense if it contains at least two elements and for all
x < y ∈ α, there exists a z such that x < z < y. It is scattered if no subset of
X induces a dense ordering. A well ordering is a linear ordering such that every
non-empty subset has a minimal element. A subset of a linear ordering is well

ordered (resp. scattered) if the linear ordering restricted to it is a well ordering
(resp. scattered).

Given an element x, its successor (resp. predecessor) (if it exists) is the only
y > x (resp. y < x) such that there is no z such that x < z < y (resp. y < z < x).
A subset I ⊆ α of a linear ordering is convex if whenever x, y ∈ I and x < z < y,
z ∈ I. A condensation of a linear ordering is an equivalence relation ∼ such that
all equivalence classes are convex. For a linear ordering α and a condensation ∼,
we denote by α/∼, the condensed linear ordering : its elements are the equivalence
classes for ∼, and the ordering is obtained by projection of the original ordering.
Two convex subsets I, J of a linear ordering are consecutive if I and J are disjoint
and their union is convex. Using the notations for elements, if I < J , then I is
the predecessor of J , while J is the successor of I.

Given linear orderings (βi)i∈α (assumed disjoint up to isomorphism) indexed
with a linear ordering α, their generalized sum

∑
i∈α βi is the linear ordering

over the (disjoint) union of the sets of the βi’s, with the order defined by x < y
if either x ∈ βi and y ∈ βj with i < j, or x, y ∈ βi for some i, and x < y in βi.

Given elements x, y, we denote by [x, y) the set {z | x ≤ z < y}, and similarly
[x, y], (x, y] and (x, y). We also denote as (−∞, x), (−∞, x], (x,+∞) and [x,+∞)
the intervals that are unlimited to the left or to the right. Usually Dedekind cuts
are defined as ordered pairs of sets (L,R) such that L < R. Here, we define a
Dedekind cut (or simply a cut) as a left-closed subset X of a linear ordering,
i.e., for all x < y with y ∈ X, then x ∈ X.

2.2 Infinite words

Given a linear ordering α and a finite alphabet A, a word over A of domain α is
a mapping w : α→ A. The domain of a word is denoted dom(w). In this work,
all words are assumed of countable domain. The set of all words of countable
domain is denoted by A◦. A language is a subset of A◦.

Given a convex setX ⊆ dom(w) of word w, wX denotes the word w restricted
to X, i.e., the word of domain X that coincides with w over X. A factor of a
word w is any restriction of w to one of the convex subsets of its domain.

Given two words u : α → A and v : β → A (where α and β are disjoint),
we denote by uv the word over domain α + β such that each position x ∈ α
(similarly x ∈ β) is labelled by u(x) (by v(x)). The generalized concatenation of
the words wi (supposed of disjoint domain) indexed by a linear ordering α is∏

i∈α
wi ,

and denotes the word of domain
∑
i dom(wi) which coincides with each wi over

dom(wi) for all i ∈ α.
Some words will play an important role in the paper. The empty word ε, which

is the only word of empty domain. The words denoted “aaa . . . ” and “. . . aaa”
are the words over the single letter a, and of respective domain ω = (N, <) and
ω∗ = (N, >). Finally, perfectshuffle(A) for A, a non-empty finite set of letters, is

a word of domain (Q, <) in which all non-empty intervals (x, y) contain at least
once each letter of A. This word is unique up to isomorphism.

2.3 First-order logic, monadic second-order logic, and between

We use logics for expressing properties of linear orderings or words. All of the
several logics we study are all restrictions of monadic second-order logic (MSO).
We very succinctly recall the basics of this logic here. The reader can refer to
many other works on the subject, e.g., [14]. We only consider word models.

Monadic second-order logic (MSO for short) is a logic with the following
characteristics. It is possible to use first-order variables x, y, z, . . . , ranging over
positions of the word, and quantify over them thanks to ∃x or ∀y. It is possible
to use monadic variables X,Y, . . . (traditionally typeset in capital letters), that
range over sets of positions of the word, and quantify over them using ∃X, ∀Y .
Three atomic predicates can be used. The predicate a(x), for a a letter, and
x a position, holds if the letter carried at position x in the word is an a. The
predicate x < y for x, y, first-order variables denotes the order of the domain
of the word. The membership predicate x ∈ Y tests the membership of (the
valuation of) a first-order variable x in (the valuation of) a monadic variable Y .
All the Boolean connectives are also allowed. First-order logic (FO of short) is
the fragment of this logic in which monadic variables, as well as quantifiers over
them, are not allowed.

In this study, we are interested in the expressive power of logics weaker than
MSO. There is a long tradition of such researches, initiated by the seminal work
of Schützenberger. For instance, it is classical to study first-order logic and its
fragments when the quantifier alternation or the number of variables are re-
stricted. In our case, our goal is to investigate the intricate relationship between
the expressive power of the logic, and the infinite/dense nature of the linear or-
derings/words under study. The only parameter that we use for modifying the
power of the logic is to change the range of monadic variables. By default, such
variables range over any set of positions. We introduce now several restricted
set quantifiers and the corresponding logics. Our simplest logic is first-order
logic. The logic obtained by allowing monadic quantifiers restricted to Dedekind
cuts is denoted FO[cut] . Another situation is when monadic second-order vari-
ables range over finite set, yielding weak monadic second-order logic (WMSO for
short). We are also interested in the fragment in which it is possible to quantify
both over finite sets and Dedekind cuts. We denote this logic MSO[finite,cut] .
Then come logics in which monadic variables range over “infinite but small”,
sets of positions. We consider the case in which it is possible to quantify over
well ordered sets, or scattered sets. We denote these logics MSO[ordinal] and
MSO[scattered] .

We formally denote these restricted quantifiers as ∃V and ∀V , where V ⊆
{∈, 6∈}◦. A set belongs to the range of the quantifier ∃V or ∀V if its characteristic
map (as a labelling of the domain by ∈, 6∈) is in V .

Given one of the above logics L, a formula ϕ ∈ L and a countable word w
we denote by w |= ϕ, the fact that the formula is true over w. We say that w is

a model of ϕ. A language L ⊆ A◦ is definable in L if there exists a formula ϕ in
L such that for all words w ∈ A◦, w ∈ L if and only if w |= ϕ.

Remark 1. Some dependencies between these logics are simple to establish:

FO
FO[cut]

WMSO
MSO[finite,cut] MSO[ordinal] MSO[scattered] MSO

Indeed, FO[cut] is an extension of FO. Also WMSO extend FO since “being
a singleton” is definable in WMSO. Similarly, MSO[finite,cut] is clearly an ex-
tension of both WMSO and FO[cut]. MSO[ordinal] can express finiteness, and
represent cuts (as the left closure of a well ordered subset), and hence con-
tains MSO[finite,cut]. In the same way, since being well ordered is expressible
in MSO[scattered], MSO[scattered] contains MSO[ordinal]. Similarly, scattered-
ness being expressible in MSO, MSO[scattered] is a sublogic of MSO. In fact, all
these logics are separated (Theorem 3), but for MSO[finite,cut] and MSO[ordinal]
which happen to coincide (see Theorem 2).

The goal of this paper is to compare the expressive power of all these logics
and be able to characterize them effectively.

3 The algebraic presentation: ◦-monoids

We now introduce the equivalent algebraic presentation of definable languages.
We first describe the ◦-monoids in Section 3.1, and then the derived operations
in Section 3.2, before presenting the theorems of characterization and separation
in Section 3.3.

3.1 ◦-monoids, syntactic ◦-monoids and recognizability

As in the seminal work of Schützenberger, we use algebraic acceptors for de-
scribing regular languages of countable words: ◦-monoids. A ◦-monoid is a set
M equipped with an operation π, called the product , from M◦ to M , that satis-
fies π(a) = a for all a ∈M , and the generalized associativity property: for every
words ui over M◦ with i ranging over a countable linear ordering α,

π

(∏
i∈α

ui

)
= π

(∏
i∈α

π(ui)

)
.

Of course, an instance of ◦-monoids is the set of words over some alphabet A
equipped with the generalized concatenation

∏
, i.e., (A◦,

∏
). It is even the free

◦-monoid generated by A. A ◦-monoid morphism from M to N (◦-monoids) is
a map γ from M to N such that γ(

∏
i∈α ai) = π(

∏
i∈α γ(ai)).

Example 1. Sing= ({1, s, 0}, π) where π is defined for all u ∈ {1, s, 0}◦ as:

π(u) =

1 if u ∈ {1}◦,
s otherwise if u contains no 0, and exactly one s,
0 otherwise,

is a ◦-monoid (checking generalized associativity requires a case by case study).
By slightly modifying the example, we obtain the ◦-monoid Fin in which

the second line in the definition of π is changed into “s if u contains no 0, and
finitely many s’s”. The ◦-monoid Ord is when π(u) evaluates to “s if u contains
no 0, and a well ordered set of s’s”. Finally, the ◦-monoid Scat is when π(u)
evaluates to “s if u contains no 0, and a scattered set of s’s”. Once more, checking
generalized associativity is by case analysis.

The element π(ε) is called the unit , and it is customary to denote it 1 as done
above. A zero (that does not necessarily exist) is an absorbing element, i.e., an
element such that π(u0v) = 0 whatever are u and v. It is denoted by convention
0 as in the above examples. An idempotent is an element e such that π(ee) = e.

A ◦-monoid can be used to recognize languages as follows. Consider a ◦-
monoid M = (M,π), a map h from an alphabet A to M and a set F ⊆ M ,
then (M, h, F) recognizes the language L = {u ∈ A◦ | π(h(u)) ∈ F} (where h
has been extended implicitly into a map from A◦ to M◦). Said differently, L
is the inverse image of F under the ◦-monoid morphism π ◦ h. From [4], being
recognizable by a ◦-monoid is equivalent to be definable in MSO.

Furthermore, when a language is recognizable by a finite ◦-monoid, then there
is a minimal one called the syntactic ◦-monoid . It is minimal in the algebraic
sense: all ◦-monoids that would recognize this language can be trimmed and
quotiented yielding the syntactic one. We do not develop this aspect more in
this short abstract.

Example 2. Coming back to the above examples, with h(∈) = s and h(6∈) =
1, then (Sing, h, {s}) recognizes the language LSing over the alphabet {∈, 6∈}
of words that contain exactly one occurrence of ∈. Similarly, (Fin, h, {1, s}),
(Ord, h, {1, s}), and (Scat, h, {1, s}) recognize the languages LFinite, LOrd and
LScat respectively, of words that contain “finitely many ∈’s”, “a well ordered set
of ∈’s”, and “a scattered set of ∈’s” respectively.

Let us note that these languages are the one used in the restricted quantifiers
∃V and ∀V for defining the logics (cuts are omitted for space considerations).

3.2 The derived operations

The product operation π is infinite, even in a finite ◦-monoid M = (M,π).
Hence, π is a priori not representable in finite space (it has uncountably many
possible inputs). This problems is resolved using derived operations.

The operations derived from π are the following:

– 1 is the unit constant π(ε),

– · :M ×M →M is defined for a, b ∈M as a · b = π(ab),
– ω:M →M is defined for all a ∈M as aω= π(aaa . . .),
– ω∗:M →M is defined for all a ∈M as aω∗= π(. . . aaa),
– η: P(M) \ {∅} → M is defined as Eη = π(perfectshuffle(E)) for E ⊆ M

non-empty.

Note that from the definitions, using generalized associativity, the unit element
satisfies 1 · 1 = 1ω = 1ω∗ = {1}η = 1, a · 1 = 1 · a = a, and (E ∪ {1})η = Eη

for all a ∈ M and all non-empty E ⊆ M . Similarly, if there is a zero 0 then it
satisfies 0 · a = a · 0 = 0ω = 0ω∗ = (E ∪ {0})η = 0 for all a ∈ M and E ⊆ M .
This is why we usually do not mention these elements when describing derived
operations.

Example 3. The derived operation of the above examples are entirely determined
by the following table:

s · s sω sω∗ {s}η
Sing 0 0 0 0
Fin s 0 0 0
Ord s s 0 0
Scat s s s 0

Though not essential in this short abstract, let us emphasize that the derived
operations determine entirely the product π, as shown now.

Theorem 1. There exists a set of equalities (A) involving the derived opera-
tions1, such that:

– The operations derived from a ◦-monoid satisfy all the equations from (A).
– If 1, ·, ω, ω∗, η are maps of correct type over a finite set M that satisfy the

equalities of (A), then there exists one and only one product over M from
which 1, ·, ω, ω∗, η are derived.

3.3 The core theorem

We state in this section our main results, Theorem 2 and 3. All ◦-monoids are
assumed finite from now. We first refine our understanding of idempotents:

– A gap insensitive idempotent e is an idempotent such that eω · eω∗ = e.
– An ordinal idempotent e is an idempotent such that eω = e. The name comes

from the fact that in such a case, all words u ∈ {e}◦ that have a well ordered
(i.e., isomorphic to an ordinal) non-empty domain satisfy π(u) = e.

– Symmetrically, an ordinal* idempotent e is an idempotent such that eω∗ = e.
– A scattered idempotent e is an idempotent which is at the same time an

ordinal and an ordinal* idempotent. For such idempotents, all words u ∈
{e}◦ that have a scattered non-empty domain satisfy π(u) = e.

1 These are variants of associativity, such as x · (y · z) = (x · y) · z, 1 · x = x · 1 = x,
(an)ω = aω, and so on. A complete list is known [4], but of no use here.

– A shuffle idempotent e is an idempotent such that {e}η = e.
– A shuffle idempotent e is shuffle simple if for all K ⊆M such that e ·a ·e = e

for all a ∈ K, ({e} ∪K)η = e.

Note that since in every ◦-monoid ({e}η)ω = ({e}η)ω∗ = {e}η, every shuffle
idempotent is a scattered idempotent. Note also that every scattered idempotent
is by definition an ordinal idempotent and an ordinal* idempotent. Also, every
scattered idempotent is obviously gap insensitive.

We define now the following properties of a ◦-monoid M = (M,π):

– aperiodic if for all a ∈M there exists n such that an = an+1,
– i→gi if all idempotents are gap insensitive,
– oi→gi if all ordinal idempotents are gap insensitive,
– o∗i→gi if all ordinal* idempotents are gap insensitive,
– sc→sh if all scattered idempotents are shuffle idempotent,
– sh→ss if all shuffle idempotents are shuffle simple.

It is clear by definition that oi→gi (as well as o∗i→gi) imply i→gi. There
is in fact another, slightly less direct, implication to mention:

Lemma 1. i→gi implies aperiodic.

Proof. Let a be an element of a finite ◦-monoid M . There exists n such that an
is idempotent. We compute an = (an)ω · (an)ω∗ = a · (an)ω · (an)ω∗ = an+1. ut

We are now ready to state our core theorem.

Theorem 2. Let M be the syntactic ◦-monoid of a language L ⊆ A◦, then:
– L is definable in FO iff M satisfies i→gi, sc→sh and sh→ss.
– L is definable in FO[cut] iff M satisfies aperiodic, sc→sh and sh→ss.
– L is definable in WMSO iff M satisfies oi→gi, o∗i→gi, sc→sh and sh→ss.
– L is definable in MSO[finite,cut] iff it is definable in MSO[ordinal] iff M

satisfies sc→sh and sh→ss.
– L is definable in MSO[scattered] iff M satisfies sh→ss.

And as a consequence, these classes are decidable.

Example 4. Let us apply these characterizations to the ◦-monoids of Example 3:

aper. i→gi oi→gi o∗i→gi sc→sh sh→ss definable in
Sing yes yes yes yes yes yes FO
Fin yes no yes yes yes yes WMSO, FO[cut], not FO
Ord yes no no yes yes yes FO[cut], not WMSO
Scat yes yes yes yes no yes MSO[scattered], not MSO[ordinal]

Remark 2. One aspect of Theorem 2 is that MSO[finite,cut] and MSO[ordinal]
are equivalent. If we apply this fact to the domain ω, then cuts can be eliminated
easily, and MSO[finite,cut] coincide with WMSO. Still over ω, MSO[ordinal] ob-
viously coincide with MSO. Hence Theorem 2 implies that WMSO and MSO
coincide over ω (in fact, the same argument is valid over any well ordered count-
able word). This non-trivial fact is usually established using the deep result of
determinization of McNaughton [9] (other proofs involve weak alternating au-
tomata or algebra).

Theorem 3. There are languages separating all situations not covered by The-
orem 2.

Proof (sketch). In fact, two among the five separating languages were given in
Example 4: LOrd ∈FO[cut]\WMSO and LScat ∈MSO[scattered]\MSO[ordinal].

WMSO\FO[cut] 6= ∅: The witnessing language is “the domain is of even finite
length”. It is the classical example of non-aperiodicity over finite words, and it
works as well in this case.

MSO[ordinal]\(FO[cut]∪WMSO) 6= ∅: For this, it is sufficient to take the dis-
joint union (for instance using disjoint alphabets) of a language inWMSO\FO[cut]
and a language in FO[cut]\WMSO.

MSO\MSO[scattered] 6= ∅: Call a set X perfectly dense if all elements x < y <
z with y ∈ X are such that (x, y) and (y, z) both intersect X. Said differently,
all elements in X are limits from the left of elements from X, and symmetrically
from the right. The language “there exists a set X of a-labelled positions which
is perfectly dense” is obviously definable in MSO. Computing its syntactic ◦-
monoid would yield four elements 1, a, b, 0 with derived operations defined by
a ·a = aω = aω∗ = b ·b = b ·a = a ·b = bω = bω∗ = {b}η = b and {a}η = {a, b}η =
0. The morphism sends a to a and b to b, and the accepting set is {0}. However,
this language is not definable in MSO[scattered]: b is a shuffle idempotent which
is not shuffle simple since {b}η = b = b · a · b and {a, b}η 6= b. ut

4 From logics to ◦-monoids

In this section, we show some of the results of the form “if a language L ⊆ A◦ is
definable in logic L, then its syntactic ◦-monoid satisfies property P ” for suitable
choices of L and P . The standard approach for such results is to use the technique
of Ehrenfeucht-Fraïssé games. We adopt a different presentation here, making
use of our fine understanding of ◦-monoids.

Let us first recall that all the logics we work with differ by their use of
restricted set quantifiers. These restricted quantifiers are parameterized by a
language V ⊆ {∈, 6∈}◦. The quantifier ∃VX signifies “there exists a set of posi-
tions X which, when written as a labelling of the linear ordering yields a word
in V ”. We have seen the language LSing, LFinite, LOrd, LScat that correspond to
the quantifiers over singletons, finite sets, well ordered sets, and scattered sets.

Thus, the core step in each of these proofs consists in showing that the
operation of restricted set quantifier preserves the property we are interested in
when done at the level of ◦-monoids. Essentially, this looks as follows: “assume
that Lφ is recognized by a ◦-monoid that has property P ’ then L∃VXφ also has
property P ”. Thus, we start by describing how ∃V behaves.

Let us just mention here that the existential quantifier is the crux of the prob-
lem, and that the other constructions involved (atomic predicates and boolean
connectives) have also to be treated, but do not involve interesting arguments.
We also have to verify the closure of the properties we are interested in under
quotient of ◦-monoids. This last step is usually not necessary, but, since we did
not choose to present the properties as identities, it has to be done explicitly.

4.1 Restricted quantifiers over ◦-monoids

Let us first recall how the existential set quantifier is implemented, from a lan-
guage and algebraic theoretic point of view, and then refine this for restricted
set quantifier.

Consider a language L ∈ (A × {∈, 6∈})◦. A word over this alphabet can be
seen as a usual word over the alphabet A, enriched with the characteristic map
of some set X: if a position belongs to X, then the second component is ∈,
otherwise it is 6∈. The operation equivalent to existential set quantifier over such
languages is Proj (L) defined as:

Proj (L) =
{
u|1 ∈ A◦ | u ∈ L

}
,

where u|1 denotes the word obtained by projecting each letter of u to its first
component (similarly for u|2). If furthermore L is recognized by some M =
((M,π), h, F), we define the new ◦-monoid P(M) to be (P(M), π), where

for all U ∈ (P(M))◦, π(U) = {π(u) | u ∈ U} ,

in which u∈U holds if dom(u) = dom(U) and for all i ∈ dom(u), u(i) ∈ U(i).
This construction is known to (1) produce a valid ◦-monoid, and (2) be

such that (P(M), h′, F ′) recognizes Proj (L) for h′(a) = {h(a,∈), h(a, 6∈)} and
F ′ = {X ⊆M | X ∩ F 6= ∅}.

We present now a refinement of this construction, which furthermore restricts
the range of the projection. Given a language V ⊆ {∈, 6∈}◦ that represents the
range of a restricted set quantifier, we define the restricted projection of L as:

Proj V (L) =
{
u|1 ∈ A◦ | for some u ∈ L such that u|2 ∈ V

}
.

This operation is the language theoretic counterpart to the logical restricted
quantifier ∃V . Let us assume furthermore that V is recognized by some (V, g, E).
We assume (and this will always be the case) thatV has a zero 0, and that 0 6∈ E.
We define the new ◦-monoid PV(M) to be (N, π), where

for all U ∈ (P(M × V))◦, π(U) = {(π(u|1), π(u|2)) | u ∈ U} \ (M × {0}) ,
and N = {π(U) | U ∈ {{(h(a,∈), g(∈)), (h(a, 6∈), g(6∈))} | a ∈ A}◦} .

We can recognize in this construction the above powerset construction, applied
to the ◦-monoid M×V, from which all occurrences of the zero of V are removed
as well all all non-reachable elements.

Lemma 2. PV(M) is a ◦-monoid.
If L is recognized by (M, h, F), then Proj V (L) is recognized by (PV(M), h′, F ′)
where h′(a) = {(h(a,∈), g(∈)), (h(a, 6∈), g(6∈))} and F ′ = {A | A∩ (F ×E) 6= ∅}.

4.2 Establishing invariants

The core result in the translation from logics to ◦-monoids is the following.

Lemma 3. Let M be a ◦-monoid.

1. If M satisfies i→gi then PSing(M) satisfies i→gi.
2. If M satisfies aperiodic then PCut(M) satisfies aperiodic2.
3. If M satisfies oi→gi then PFin(M) satisfies oi→gi (resp. o∗i→gi).
4. If M satisfies sc→sh then POrd(M) satisfies sc→sh.
5. If M satisfies sh→ss then PScat(M) satisfies sh→ss.

Let us give some ideas about its proof. Let N be PV(M) where V is one of
Sing, Fin, Ord or Scat (unfortunately, Cut having a different structure, it has
to be treated separately).

Lemma 4. There exists a ◦-monoid morphism ρ from N to M such that for all
A ∈ N , (x, 1) ∈ A if and only if x = ρ(A).

Proof. Essentially, the point is to prove that for all A ∈ N , there is one and only
one ρ(A) such that (ρ(A), 1) ∈ A. The fact that this ρ is a ◦-monoid morphism is
then straightforward. For proving it, it is sufficient to do it for the neutral element
{(1, 1)}, the image of each letter ‘a’ which happens to be {(h(a), 1), (h(a), s)},
and then show the preservation of the property under ·, ω, ω∗ and η. ut

Let us show the simplest case of Lemma 3, the one for PSing(M):

Lemma 5. If a ◦-monoid M satisfies i→gi then PSing(M) also does.

Proof. Let E be an idempotent in N = PSing(M). Our goal is to show that it
is gap insensitive.

Let (x, y) ∈ E. Since E = E · E, there exists (x1, y1), (x2, y2) ∈ E such that
x1 · x2 = x and y1 · y2 = y. Since y 6= 0, at least one among y1, y2 is equal to
1. Without loss of generality, let us assume it is y1. In this case, according to
Lemma 4, x1 = ρ(E). In particular, since ρ is a morphism, this means that x1
is an idempotent. Thus we can use the assumption that M satisfies i→gi on it,
and get that xω1 · xω∗1 = x1. It follows that the word

of domain ω︷ ︸︸ ︷
(x1, 1)(x1, 1) . . .

of domain ω∗︷ ︸︸ ︷
. . . (x1, 1)(x1, 1)(x2, y2)

has also value (x, y) under π (componentwise), and as a consequence (x, y) ∈
Eω · Eω∗. We have proved E ⊆ Eω · Eω∗.

Conversely, consider some (x, y) ∈ Eω · Eω∗. This means that there exists a
word u of the form

of domain ω︷ ︸︸ ︷
(x1, y1)(x2, y2) . . .

of domain ω∗︷ ︸︸ ︷
. . . (x′2, y

′
2)(x

′
1, y
′
1)

which evaluates (componentwise) to (x, y), with (xi, yi) and (x′i, y
′
i) ∈ E for all

i ∈ N. If all y = 1, then its clear. Otherwise, there is at most one among the yi’s
2 Cut is a ◦-monoid recognizing “cuts” that we omitted here for space reasons.

and the y′i’s which is not equal to 1. Without loss of generality (by symmetry), we
can assume that it is yj . According to Lemma 4, xi = ρ(E) for all i 6= j and x′i =
ρ(E) for all i. Since ρ is a morphism, ρ(E) is also an idempotent. Thus we can use
the assumption that M satisfies i→gi. We obtain that ρ(E)ω · ρ(E)ω∗ = ρ(E).
Thus, u evaluates to (ρ(E), 1) ·(xj , yj) ·(ρ(E), 1) ∈ E3 = E. Hence Eω ·Eω∗ ⊆ E.

This terminates the proof that N satisfies i→gi. ut

5 Conclusion

In this paper we have characterized algebraically and effectively several natu-
ral sublogics of MSO. Unfortunately the most involved arguments, namely the
translation from algebra to logic, were not addressed in this short abstract. These
can be found in the appendix.

References

1. Alexis Bès and Olivier Carton. Algebraic characterization of FO for scattered
linear orderings. In CSL, volume 12 of LIPIcs, pages 67–81. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

2. Alexis Bès and Olivier Carton. Algebraic characterization of WMSO for scattered
linear orderings. Personal communication, 2014.

3. J. Richard Büchi. On a decision method in restricted second order arithmetic.
In Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr .),
pages 1–11. Stanford Univ. Press, Stanford, Calif., 1962.

4. Olivier Carton, Thomas Colcombet, and Gabriele Puppis. Regular languages of
words over countable linear orderings. In ICALP, volume 6756, pages 125–136,
2011.

5. Rispal Chloé and Olivier Carton. An algebraic theory for regular languages of
finite and infinite words. Int. J. of Foundations of Comp. Sc., 16(04):767–786,
2005.

6. Thomas Colcombet. Monadic second-order logic and cuts in the backgrounds. In
CSR, page Invited Paper, 2013.

7. Rosenstein J. G. Linear Orderings. Academic press, 1982.
8. Yuri Gurevich and Alexander Moshe Rabinovich. Definability and undefinability

with real order at the background. J. Symb. Log., 65(2):946–958, 2000.
9. Robert McNaughton. Testing and generating infinite sequences by a finite automa-

ton. Information and Control, 9:521–530, 1966.
10. Robert McNaughton and Seymour Papert. Counter-free Automata. MIT Press,

1971.
11. Michael O. Rabin. Decidability of second-order theories and automata on infinite

trees. Trans. Amer. Math. Soc., 141:1–35, 1969.
12. Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups.

Information and Control, 8:190–194, 1965.
13. Saharon Shelah. The monadic theory of order. Ann. of Math. (2), 102(3):379–419,

1975.
14. Wolfgang Thomas. Languages, automata and logic. In Gregorz Rozenberg and

Arto Salomaa, editors, Handbook of Formal Languages, volume 3, chapter 7, pages
389–455. Springer, 1997.

	Limited Set quantifiers over Countable Linear Orderings
	Thomas Colcombet and A V Sreejith

