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Abstract
We consider the following question: given an automaton or a game with a Muller condition, how
can we efficiently construct an equivalent one with a parity condition? There are several examples
of such transformations in the literature, including in the determinisation of Büchi automata.

We define a new transformation called the alternating cycle decomposition, inspired and extending
Zielonka’s construction. Our transformation operates on transition systems, encompassing both
automata and games, and preserves semantic properties through the existence of a locally bijective
morphism. We show a strong optimality result: the obtained parity transition system is minimal
both in number of states and number of priorities with respect to locally bijective morphisms.

We give two applications: the first is related to the determinisation of Büchi automata, and the
second is to give crisp characterisations on the possibility of relabelling automata with different
acceptance conditions.
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1 Introduction

Games and automata form the theoretical basis for the verification and synthesis of reactive
systems; we refer to the recent Handbook [5] for a broad exposition of this research area,
in particular Chapters 2 and 27. A milestone objective is the synthesis of reactive systems
specified in Linear Temporal Logic (LTL). The original approach of Pnueli and Rosner [24]
using automata and games devised more than four decades ago is today at the heart of
the state of the art synthesis tools [8, 16, 20, 21]. The bottleneck is the determinisation of
Büchi automata: given a non-deterministic Büchi automaton, construct an equivalent parity
automaton. This problem has a long history; it was originally solved by McNaughton [18],
and the first asymptotically optimal construction is due to Safra [25], see also [15] for a recent
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exposition. Most of the recent theoretical and practical solutions of this problem are based on
the construction of Piterman [23]. Schewe’s [26] enlightening perspective on this construction
is to decompose it into two steps: first construct a deterministic Muller automaton, and
then transform it into an equivalent deterministic parity automaton. Piterman and Schewe’s
determinisation procedure is one of many examples of constructions using as an intermediate
step (subclasses of) Muller conditions before transforming them into parity conditions, either
working with automata models or games models.

The objective of this work is to focus on this particular step and study transformations
from Muller to parity. We work with general transition systems to seamlessly encompass
both automata and games models.

There are several existing constructions transforming subclasses of Muller conditions to
parity. The first is the Latest Appearance Record (LAR) [9], which applies to all Muller
conditions. It was proved to be optimal in the worst case [17]: there exists a family of Muller
automata for which the obtained parity automata are minimal. Many refinements of the
LAR have been constructed for subclasses of Muller conditions, e.g. [17, 13].

The starting point of our work is the notion of a Zielonka tree of a Muller condition,
which was introduced in [30] and shown to capture the exact memory requirements of Muller
games [7]. In the long version of [7], it implicitly appears that the Zielonka tree of a Muller
condition can be used to construct a parity automaton recognising this Muller condition.
Our first observation is to show a strong optimality result: for all Muller conditions, the
parity automaton obtained from the Zielonka tree of a Muller condition is minimal both in
the number of states and in the number of priorities. This result has also been obtained
in the independent unpublished work [19]. This optimality result is much stronger than
the worst case optimality result of the LAR transformation; in essence, it shows that the
Zielonka tree of a Muller condition precisely captures the properties of the Muller condition,
whereas for instance the LAR only depends on the number of colours.

Our first insight is to note that all existing constructions, including the one based on
Zielonka trees, only consider the Muller condition but do not take into account the structure
of the underlying transition system. In other words, all transformations work at the level
of conditions: they transform a Muller condition into a parity condition, and ignore the
interplay between the condition and the transition structure.

Our main contribution is to construct a new transformation called the alternating cycle
decomposition (ACD) which captures this interplay: the ACD transforms a Muller transition
system T into a parity transition system PACD(T ), extending Zielonka trees by considering
the alternation of accepting and rejecting cycles in T .

Our second insight is to introduce the notion of locally bijective morphisms to capture
the notion of a “transformation”, preserving many natural semantic properties (such as
language equivalence, being deterministic, unambiguous, or good for game in the context
of automata, and the winner for games). We use this notion to state and prove a strong
optimality result for the ACD transformation: PACD(T ) is minimal both in the number of
states and in the number of priorities amongst parity transition systems admitting a locally
bijective morphism into T .

We present two applications. The first is an improvement in the determinisation of
Büchi automata: the second step of the Piterman and Schewe construction is a locally
bijective transformation of some deterministic Muller automaton into a deterministic parity
automaton; we show that our ACD transformation yields in all cases smaller (and in some
sense minimal) automata, and in many cases strictly smaller. The second application is
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a set of crisp characterisations for relabelling transition systems with different classes of
acceptance conditions: for instance, given a transition system with a Rabin condition, does
there exist a parity condition on the same structure yielding an equivalent transition system?
This unifies and extends results from [1, 30].

The outline of the paper follows the narration of this introduction. We show in Section 3
how the Zielonka tree yields a parity automaton recognising the Muller condition, inducing a
transformation at the level of conditions. We then lift this transformation from conditions to
transition systems: we introduce the alternating cycle decomposition and its transformation
in Section 4. Our two applications are discussed in Section 5.

2 Notations and definitions

The symbol ω denotes the ordered set of non-negative integers. For i, j ∈ ω, i ≤ j, the
notation [i, j] stands for {i, i + 1, . . . , j − 1, j}. For a set Σ, a word over Σ is a sequence
of elements from Σ. The length of a word u is |u|. The set of words of finite length (resp.
of length ω) over Σ will be written Σ∗ (resp. Σω). We let Σ∞ = Σ∗ ∪ Σω. For a word
u ∈ Σ∞ we write ui to represent the i-th letter of u. If u = v · w for v ∈ Σ∗, u, w ∈ Σ∞,
we say that v is a prefix of u and we write v⊑u (it induces a partial order on Σ∗). For
a finite word u ∈ Σ∗ we write First(u) = u1 and Last(u) = u|u|. For a word u ∈ Σ∞,
we let Inf (u) = {a ∈ Σ : ui = a for infinitely many i ∈ ω} and Occ(u) = {a ∈ Σ :
∃i ∈ ω such that ui = a}. Given a map α : A → B, we implicitly extend α to words
component-wise, i.e., α : A∞ → B∞ will be defined as α(a1a2 . . . ) = α(a1)α(a2) . . . . A
directed graph is a tuple (V, E, Source, Target) where V is a set of vertices, E a set of edges
and Source, Target : E → V are maps indicating the source and target for each edge. A path is
a word ϱ ∈ E∗ such that Source(ϱi+1) = Target(ϱi) for i < |ϱ|. A graph is strongly connected
if there is a path connecting each pair of vertices. A subgraph of (V, E, Source, Target) is
a graph (V ′, E′, Source′, Target′) such that V ′ ⊆ V , E′ ⊆ E and Source′ and Target′ are
the restriction to E′ of Source and Target, respectively. A strongly connected component
is a maximal strongly connected subgraph. For a subset of vertices A ⊆ V we write:
In(A) = {e ∈ E : Target(e) ∈ A} and Out(A) = {e ∈ E : Source(e) ∈ A}.

Transition systems. A transition system graph TG = (V, E, Source, Target, I0) is a
directed graph with a non-empty set of initial vertices I0 ⊆ V . We will also refer to vertices
and edges as states and transitions, respectively. We will suppose that every vertex has at
least one outgoing edge. A transition system T is obtained from a transition system graph
TG by adding:

A function γ : E → Γ. The set Γ will be called a set of colours and the function γ a
colouring function.
An acceptance condition Acc ⊆ Γω.

For technical convenience we use transition-labelled systems: acceptance conditions are
defined over edges instead of over states. These can be easily transformed into state-labelled
systems. We will usually take Γ = E and γ the identity function. In that case we will omit γ

in the description of T . We let |T | denote |V |, for V the set of vertices.
A (finite or infinite) run from q ∈ V on a transition system graph T is a path ϱ =

e1e2 · · · ∈ E∞ starting at q. For A ⊆ V we let RunT ,A denote the set of runs on T starting
from some q ∈ A, and RunT = RunT ,I0 the set of runs starting from some initial vertex. A
run ϱ ∈ RunT is accepting if γ(ϱ) ∈ Acc, and rejecting otherwise. In this work we suppose
that only infinite runs can be accepted.
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We say that a vertex v ∈ V is accessible if there exists a finite run ϱ ∈ RunT ending in v.
A set of vertices B ⊆ V is accessible if every vertex v ∈ B is accessible. The accessible part
of a transition system is the set of accessible vertices.

We might want to add additional information to a transition system (as illustrated
in the following paragraphs). For this purpose we introduce labelled transition system: a
vertex-labelled (resp. edge-labelled) transition system is a transition system T with a labelling
function lV : V → LV (resp. lE : E → LE) from vertices (resp. edges) into a set of labels.

Automata as transition systems. An automaton is an edge-labelled transition system
A = (V, E, Source, Target, I0, Acc, lE) where lE : E → Σ, for Σ a finite set called the input
alphabet (we say that A is an automaton over Σ). Given a word w ∈ Σω, a run over w is an
infinite run ϱ ∈ RunT such that lE(ϱi) = wi for every i > 0. The word w ∈ Σω is accepted
by the automaton A if there exists an accepting run over w in A. The language accepted by
an automaton A is the set L(A) := {u ∈ Σω : u is accepted by A}.

We say that an automaton A is deterministic if |I0| = 1 and for every q ∈ V and every
a ∈ Σ there is exactly one edge e ∈ Out(v) such that lE(e) = a. In this case, we write δ(q, a)
for the only state reachable from q taking the transition labelled with a. We extend the
function δ(q, −) to finite words in the natural way. If A is deterministic then there is a single
run over w for each w ∈ Σω, written A(w).

Games as transition systems. A game Gv0 = (V, E, Source, Target, v0, Acc, lV ) is a
vertex-labelled transition system with a single initial vertex v0 and vertices labelled by a
function lV : V → {Eve, Adam} that induces a partition of V into vertices controlled by
two different players. A play is an infinite run produced by moving a token along edges: the
player controlling the current vertex chooses what transition to take. It is winning for Eve if
it is accepting, and winning for Adam otherwise. We say that player P ∈ {Eve, Adam} wins
the game Gv0 if P can force to always produce a winning play. The winning region for player
P is the set of vertices v ∈ V such that P wins the game Gv obtained by setting the initial
vertex to v.

Classes of acceptance conditions. We present the main classes of ω-regular conditions.
Let Γ be a finite set of colours, it will usually be the set of edges of a transition system.
Büchi A Büchi condition AccB is represented by a subset B ⊆ Γ. An infinite word u ∈ Γω

belongs to AccB if some colour from B appears infinitely often in u.
Rabin A Rabin condition AccR is represented by a family of Rabin pairs, R = {(E1, F1), . . . ,

(Er, Fr)}, where Ei, Fi ⊆ Γ. A word u ∈ Γω belongs to AccR if Inf (u) ∩ Ei ≠ ∅ and
Inf (u) ∩ Fi = ∅ for some index i ∈ {1, . . . , r}.

Streett A word u ∈ Γω belongs to the Streett condition AccS associated to the family
S = {(E1, F1), . . . , (Er, Fr)}, Ei, Fi ⊆ Γ if Inf (u) ∩ Ei ≠ ∅ → Inf (u) ∩ Fi ≠ ∅ for every
i ∈ {1, . . . , r}.

Parity To define a parity condition we suppose that Γ is a finite subset of N. A word u ∈ Γω

belongs to the condition AccP if min Inf (u) is even. The elements of Γ are called priorities
in this case. We associate to a parity condition the interval [µ, η], where µ = min Γ and
η = max Γ.

Muller A Muller condition AccF is given by a family F ⊆ P(Γ). A word u ∈ Γω is accepted
if the colours appearing infinitely often in u form a set of the family F .

Equivalent conditions. Two different acceptance conditions over a set Γ are equivalent
if they define the same set Acc ⊆ Γω. Given a transition system graph TG, two representations



A. Casares, T. Colcombet and N. Fijalkow 116:5

R1, R2 of acceptance conditions are equivalent over TG if they define the same accepting
subset of runs of RunT . We write (TG, R1) ≃ (TG, R2) in that case.

If A is the transition system graph of an automaton and R1, R2 are two representations
of acceptance conditions such that (A, R1) ≃ (A, R2), then they recognise the same language:
L(A, R1) = L(A, R2). However, the converse only holds for deterministic automata.

▶ Proposition 2.1. Let A be the the transition system graph of a deterministic automaton
over the alphabet Σ and let R1, R2 be two representations of acceptance conditions such that
L(A, R1) = L(A, R2). Then, both conditions are equivalent over A, (A, R1) ≃ (A, R2).

▶ Remark. A parity condition given by Γ ⊆ N is equivalent to Rabin and Streett conditions
over Γ. Any of the previous conditions over a set Γ is equivalent to a Muller condition.

Trees. A tree is a set of sequences of non-negative integers T ⊆ ω∗ that is prefix-closed:
if τ · i ∈ T , for τ ∈ ω∗, i ∈ ω, then τ ∈ T . In this paper we will only consider finite trees.

The elements of T are called nodes. A subtree of T is a tree T ′ ⊆ T . The empty sequence ε

belongs to every non-empty tree and it is called the root of the tree. A node of the form τ · i,
i ∈ ω, is called a child of τ , and τ is called its parent. We let Children(τ) denote the set of
children of a node τ . Two different children σ1, σ2 of τ are called siblings, and we say that
σ1 is older than σ2 if Last(σ1) < Last(σ2). If two nodes τ, σ verify τ⊑σ, then τ is called an
ancestor of σ, and σ a descendant of τ (we add the adjective “strict” if in addition they are
not equal). A node is called a leaf of T if it is a maximal sequence of T . A branch of T is the
set of prefixes of a leaf. The set of branches of T is denoted Branch(T ). We order the set of
branches from left to right.

For a node τ ∈ T we define SubtreeT (τ) as the subtree consisting on the set of nodes that
appear below τ , or above it in the same branch: SubtreeT (τ) = {σ ∈ T : σ⊑τ or τ⊑σ}.

Given a node τ of a tree T , the depth of τ in T is defined as the length of τ , Depth(τ) = |τ |.
The height of a tree T , written Height(T ), is defined as the maximal depth of a leaf of T

plus 1. The height of the node τ ∈ T is Height(T ) − Depth(τ).
A labelled tree is a pair (T, ν), where T is a tree and ν : T → Λ is a labelling function

into a set of labels Λ.

3 An optimal transformation of Muller into parity conditions

In this section we show how to use the Zielonka tree of a Muller condition to construct a
deterministic parity automaton recognising the Muller condition. This can be seen as an
extension of the existing constructions transforming Muller conditions into parity conditions
such as the LAR [9] or the Index Appearance Record (IAR) [13, 17]. We prove that for all
Muller conditions, the parity automaton has a minimal number of states (Theorem 3.7) and
a minimal number of priorities (Proposition 3.6).

3.1 The Zielonka tree automaton
▶ Definition 3.1 (Zielonka tree of a Muller condition [30]). Let Γ be a finite set of colours and
F ⊆ P(Γ) a Muller condition over Γ. The Zielonka tree of F , written TF , is a tree labelled
with subsets of Γ via the labelling ν : TF → P(Γ), defined inductively as:

ν(ε) = Γ
If τ is a node already constructed labelled with S = ν(τ), we let S1, . . . , Sk be the maximal
subsets of S verifying the property Si ∈ F ⇔ S /∈ F , for i ∈ {1, . . . , k}. For each
i ∈ {1, . . . , k} we add a child to τ labelled with Si.

ICALP 2021



116:6 Optimal Transformations of Muller Conditions

We say that the condition F and the tree TF are even (resp. odd) if Γ ∈ F (resp. Γ /∈ F).
To each node τ of the Zielonka tree we associate the priority pZ(τ) = Depth(τ), and we add
1 to it if TF is odd.

This way, pZ(τ) is even if and only if ν(τ) ∈ F . We represent nodes τ ∈ TF such that
pZ(τ) is even as a circle (round nodes), and those for which pZ(τ) is odd as a square.

▶ Example 3.2. Let Γ1 = {a, b, c} and F1 = {{a}, {b}}. The Zielonka tree TF1 is shown in
Figure 1. It is odd.

Let Γ2 = {a, b, c, d} and F2 = {{a, b, c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b}, {a, d}, {b, c},

{b, d}, {a}, {b}, {d}}. The Zielonka tree TF2 is even and it is shown on Figure 2.
On the right of each tree there are the priorities assigned to the nodes of the corresponding

level. We have named the branches of the Zielonka trees with greek letters and we indicate
the names of the nodes in violet.

a,b,c

a b

1

2

α β

⟨ε⟩

⟨0⟩ ⟨1⟩

Figure 1 Zielonka tree TF1 .

a,b,c,d

a,b,c c,d

a,b b,c d

c

0

1

2

3
α

β

γ

⟨ε⟩

⟨0⟩ ⟨1⟩

⟨0,0⟩ ⟨0,1⟩ ⟨1,0⟩

⟨0,1,0⟩

Figure 2 Zielonka tree TF2 .

We show next how to use the Zielonka tree of F to build a deterministic automaton
recognizing the Muller condition F . This automaton can be implicitly found in [7].

For a branch β ∈ Branch(TF ) and a colour a ∈ Γ we define Supp(β, a) = τ as the deepest
node (maximal for ⊑) in β such that a ∈ ν(τ).

Given a node τ ∈ β, if τ is not a leaf then it has a unique child σβ such that σβ ∈ β. In
this case, we let Nextchild(β, τ) be the next sibling of σβ on its right, or the smallest child of
τ if σβ is the biggest one.

We define Nextbranch(β, τ) as the leftmost branch in T below Nextchild(β, τ), if τ is not
a leaf, and we let Nextbranch(β, τ) = β if τ is a leaf of T .

▶ Definition 3.3 (Zielonka tree automaton). Given a Muller condition F over Γ with Zielonka
tree TF , we define the Zielonka tree automaton ZF as a deterministic automaton over Γ
using a parity acceptance condition given by p : E → [µ, η], where

Q = Branch(TF ), the set of states is the set of branches of TF .
The initial state q0 is irrelevant, we pick the leftmost branch of TF .
The transitions are: δ(β, a) = Nextbranch(β, Supp(β, a)), for β ∈ Branch(TF ) and a ∈ Γ.
µ = 0, η = Height(TF ) − 1 if F is even; µ = 1, η = Height(TF ) if F is odd.
p(β, a) = pZ(Supp(β, a)).

The transitions of the automaton are determined as follows: if we are in a branch β

and we read a colour a, then we move up in the branch β until we reach a node τ that
contains the colour a in its label. Then we pick the child of τ just on the right of the branch
β (in a cyclic way) and we move to the leftmost branch below it. We produce the priority
corresponding to the depth of τ .
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▶ Example 3.4. Let us consider the conditions of Example 3.2. The Zielonka tree automaton
for the Muller condition F1 is shown in Figure 3, and that for F2 in Figure 4.

α β

a : 2

b, c : 1

a, c : 1

b : 2

Figure 3 The Zielonka tree automaton ZF1 .

α β

γ

a, b : 2

c : 1

d : 0

b : 2

c : 3
a : 1

d : 0

c : 1 d : 2

a, b : 0

Figure 4 The Zielonka tree automaton ZF2 .

▶ Proposition 3.5 (Correctness). Let F ⊆ P(Γ) be a Muller condition over Γ. Then, a word
u ∈ Γω verifies Inf (u) ∈ F if and only if u is accepted by ZF .

3.2 Optimality of the Zielonka tree automaton
We prove in this section the strong optimality of the Zielonka tree automaton, both for the
number of priorities (Proposition 3.6) and for the size (Theorem 3.7). These results have
been obtained independently in a recent unpublished work by Meyer and Sickert [19].

▶ Proposition 3.6 (Optimal number of priorities, independently proved in [19]). The Zielonka
tree ZF uses the optimal number of priorities for recognizing a Muller condition F . More
precisely, if [µ, η] are the priorities used by ZF and P is another parity automaton recognizing
F , then P uses at least η − µ + 1 priorities, and in case of equality, its smallest priority has
the same parity as µ.

▶ Theorem 3.7 (Optimal size of the Zielonka tree automaton, independently proved in [19]).
Every deterministic parity automaton P accepting a Muller condition F over Γ verifies
|ZF | ≤ |P|.

The proof of both results appear in the full version of this paper [4], and Proposition 3.6
can also be deduced from the results of [22]. We sketch the proof of Theorem 3.7: for a set
of letters X ⊆ Σ we define an X-SCC of an automaton A over Σ as a strongly connected
component of the graph obtained restricting the transitions of A to those labelled with letters
from X. We prove that if A and B are the labels of two siblings in the Zielonka tree TF ,
and P is a parity automaton recognising the Muller condition F , then A-SCCs and B-SCCs
of P must be disjoint. Finding such disjoints X-SCC for the children of the nodes of the
Zielonka tree allows us to conclude the proof by induction.

4 An optimal transformation of Muller into parity transition systems

In the previous section we have shown how the Zielonka tree yields a transformation of a
Muller condition into a parity condition, through the construction of a deterministic parity
automaton. This can be naturally lifted to transition systems by composing the automaton
with the transition system. However this approach is oblivious to the transition system,

ICALP 2021
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meaning it does not consider the possibly fruitful interplay between the transition structure
and the condition. All existing transformations follow this approach.

In this section we present our main contribution: an optimal transformation of Muller
transition systems into parity transition systems. The key novelty is that it precisely captures
the way the transition structure interacts with the condition. In the seminal work [28],
Wagner introduces the alternating chains of loops of an automaton. This idea has been
successfully applied to determine the complexity of computing the Rabin index of different
types of ω-automata [2, 14, 22, 29]. Inspired by the notion of Zielonka trees and Wagner’s
alternating chains, we define a data structure called the alternating cycle decomposition
(ACD) analysing the alternating chains of accepting and rejecting cycles of the transition
system. We arrange this information in a collection of Zielonka trees obtaining a data
structure, the alternating cycle decomposition, that subsumes all the structural information
of the transition system necessary to determine whether a run is accepted or not.

We start in Subsection 4.1 by defining the notion of “transformations” using locally
bijective morphisms. This will allow us to state the strong optimality result of Proposition 4.8
and Theorem 4.10: for all Muller transition system T , the parity transition system PACD(T )
is minimal both in number of states and number of priorities amongst parity transition
systems admitting a locally bijective morphism into T .

4.1 Locally bijective morphisms as witnesses of transformations
▶ Definition 4.1. Let T = (V, E, Source, Target, I0, Acc), T ′ = (V ′, E′, Source′, Target′, I ′

0, Acc′)
be two transition systems. A morphism of transition systems, written φ : T → T ′, is a pair
of maps (φV : V → V ′, φE : E → E′) such that:

φV (v0) ∈ I ′
0 for every v0 ∈ I0 (initial states are preserved).

Source′(φE(e)) = φV (Source(e)) for every e ∈ E (origins of edges are preserved).
Target′(φE(e)) = φV (Target(e)) for every e ∈ E (targets of edges are preserved).
For every run ϱ ∈ RunT , ϱ ∈ Acc ⇔ φE(ϱ) ∈ Acc′ (acceptance condition is preserved).

For labelled transition systems, we say that φ is a morphism of labelled transition systems if
it also preserves the labels.

We will denote both maps by φ whenever no confusion arises.

▶ Definition 4.2. Given two transition systems T and T ′, a morphism of transition systems
φ : T → T ′ is called locally bijective if for every v ∈ V the restriction of φE (resp. φV ) to
Out(v) (resp. I0) is a bijection into Out(φ(v)) (resp. I ′

0).

This is a very similar concept to the usual notion of bisimulation. The main difference
is that locally bijective morphisms treat the acceptance of a run as a whole, allowing us to
compare transition systems using different classes of acceptance conditions.

▶ Observation 4.3. If φ : T → T ′ is a locally bijective morphism, then φ induces a bijection
between the runs in RunT and RunT ′ that preserves their acceptance.

Intuitively, if we transform a transition system T1 into T2 “without adding non-determinism”,
we will have a locally bijective morphism φ : T2 → T1. In particular, if we take the product
T2 = T1 × B of T1 by some deterministic automaton B, the projection over T1 yields a locally
bijective morphism.

The existence of a locally bijective morphism is a witness of the fact that two systems
share the same semantic properties: languages recognised by automata are preserved, as well
as winning regions of games. Moreover, other important semantic properties of automata,
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such as being unambiguous or good for games (notions studied, respectively, in [3] and [10])
are preserved too. We refer to the full version for details [4].

4.2 The alternating cycle decomposition

In the following we will consider Muller transition systems T = (V, E, Source, Target, I0, F)
with the Muller acceptance condition using edges as colours. We can always suppose
this, however, the size of the representation of the condition F might change. Making
this assumption corresponds to considering what are called explicit Muller conditions. In
particular, solving Muller games with explicit Muller conditions is in PTIME [11], while
solving general Muller games is PSPACE-complete [12].

▶ Example 4.4. We will use the transition system T in Figure 5 as a running example. Its
Muller condition is given by F = {{c, d, e}, {e}, {g, h, i}, {l}, {h, i, j, k}, {j, k}}.

q0 q1 q2

q3 q4 q5

a

b

c

f

d
e

g

h

i

j

k l

Figure 5 Transition system T .

Given a transition system T , a loop is a subset of edges l ⊆ E such that exists v ∈ V and a
finite run ϱ ∈ RunT,v starting and ending in v and Occ(ϱ) = l. The set of loops of T is denoted
Loop(T ). For a loop l ∈ Loop(T ) we write States(l) := {v ∈ V : ∃e ∈ l, Source(e) = v}.

There is a natural partial order in the set Loop(T ) given by set inclusion. The maximal
loops of Loop(T ) are disjoint and in one-to-one correspondence with the strongly connected
components of T .

In the system T in Figure 5, examples of loops are l1 = {c, d, e} or l2 = {j, k}, with
States(l1) = {q1, q2} and States(l2) = {q4, q5}. The loop l1 is maximal.

▶ Definition 4.5 (Alternating cycle decomposition). Let T be a Muller transition system
with acceptance condition given by F ⊆ P(E). The alternating cycle decomposition of T ,
noted ACD(T ), is a family of labelled trees (t1, ν1), . . . , (tr, νr) with nodes labelled by loops
in Loop(T ), νi : ti → Loop(T ). We define it inductively as follows:

Let {l1, . . . , lr} be the set of maximal loops of Loop(T ). For each i ∈ {1, . . . , r} we consider
a tree ti and define νi(ε) = li.
Given an already defined node τ of a tree ti we consider the maximal loops of the set
{l ⊆ νi(τ) : l ∈ Loop(T ) and l ∈ F ⇔ νi(τ) /∈ F} and for each of these loops l we add
a child to τ in ti labelled by l.

For notational convenience we add a special tree (t0, ν0) with a single node ε labelled with
the edges not appearing in any other tree of the forest, i.e., ν0(ε) = E \

⋃r
i=1 li. We define

States(ν0(ε)) := V \
⋃r

i=1 States(li).
We call the trees t1, . . . , tr the proper trees of the alternating cycle decomposition of T .

Given a node τ of ti, we note Statesi(τ) := States(νi(τ)).

ICALP 2021
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a,b,f
q0

1
⟨ε⟩

Tree t0.

c,d,e
q1, q2

c,d
q1, q2

2

3

⟨ε⟩

⟨0⟩

Tree t1.

g,h,i,j,k,l
q3, q4, q5

g,h,i
q3, q4

l
q5

h,i,j,k
q3, q4, q5

g
q3

h,i
q3, q4

h,i
q3, q4

1

2

3

⟨ε⟩

⟨0⟩ ⟨1⟩
⟨2⟩

⟨0,0⟩ ⟨0,1⟩ ⟨2,0⟩

Tree t2. In bold orange, the subtree tq4 .

Figure 6 Alternating cycle decomposition of T . The priority assigned to the nodes of each level
of the trees is indicated on the right. Nodes with an even priority are drawn as circles and those
with an odd priority as rectangles (excepting the special node forming the root of t0). Each node τ

is labelled with νi(τ) and with Statesi(τ). In violet the names of the nodes.

The ACD of T is shown in Figure 6. It consists of two proper trees, t1 and t2, corresponding
to the strongly connected components of T and the tree t0 that corresponds to the edges not
appearing in the strongly connected components.

▶ Remark. The Zielonka tree for a Muller condition F can be seen as a special case of this
construction, for an automaton with a single state.

Since each state and edge of T appears in exactly one of the trees of ACD(T ), we can
define the index of a state q ∈ V (resp. of an edge e ∈ E) in ACD(T ) as the only number
j ∈ {0, 1, . . . , r} such that q ∈ Statesj(ε) (resp. e ∈ νj(ε)).

For each state q ∈ V of index j we define the subtree associated to the state q as the
subtree tq of tj consisting in the set of nodes {τ ∈ tj : q ∈ Statesj(τ)}.

In Figure 6, state q4 has index 2, and the subtree associated to q4 is shown in bold orange.

For each proper tree ti of ACD(T ) we say that ti is even if νi(ε) ∈ F and that it is odd if
νi(ε) /∈ F . We say that ACD(T ) is odd if all the trees of maximal height of ACD(T ) are odd.

For each τ ∈ ti, i = 1, . . . , r, we define the priority of τ in ti as pi(τ) = Depth(τ), adding
1 if ti is odd. In the case where ACD(T ) is odd we add 2 to nodes on even trees in order to
use an optimal number of priorities. We assign to p0(ε) the minimal priority appearing in
other trees (0 or 1).

We proceed to show how to use the alternating cycle decomposition of a Muller transition
system to obtain a parity one.

▶ Definition 4.6 (ACD-transformation). Let T be a Muller transition system with altern-
ating cycle decomposition ACD(T ) = {(t0, ν0), (t1, ν1), . . . , (tr, νr)}. We define its ACD-
transformation PACD(T ) = (VP , EP , SourceP , TargetP , I ′

0, p : EP → N) as follows:
For each state q ∈ T we consider the subtree tq consisting of the nodes with q in its label,

and we add a state for each branch of this subtree. For each initial state in T , we choose one
of its corresponding states in PACD(T ) and we set it as initial (the leftmost branch of tq).

To define transitions in PACD(T ) we move simultaneously in T and in ACD(T ). When
we take a transition e in T that goes from q to q′, while being in a branch β, we climb the
branch β searching the lowest node τ with e and q′ in its label (the support). We produce the
priority corresponding to the level reached. If no such node exists in the branch β, we jump
to the root of the tree containing q′, producing the priority assigned to this root. After having
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reached the support τ , we move to the next child of τ on the right of β in the tree tq′ , and we
pick the leftmost branch under it in tq′ . If we had jumped to the root of tq′ from a different
tree, we just pick the leftmost branch of tq′ .

For a formal definition we refer the reader to the full version of this paper [4].

In Figure 7 we show the ACD-transformation PACD(T ) of T . States are labelled with the
corresponding state qj in T , the tree of its index and a node τ ∈ ti that is a leaf in tqj .

We have tagged the edges of PACD(T ) with names of edges from T , in order to indicate
the image of the edges by the morphism φ : PACD(T ) → T .

q0, t0
⟨ε⟩

q1, t1
⟨0⟩

q2, t1
⟨0⟩

q3, t2
⟨0,0⟩

q3, t2
⟨0,1⟩

q3, t2
⟨2,0⟩

q4, t2
⟨0,1⟩

q4, t2
⟨2,0⟩

q5, t2
⟨1⟩

q5, t2
⟨2⟩

a : 2

b : 2

c : 3

f : 1
d : 3 e : 2

g : 3
h : 2

g : 2
h : 3

g : 1

h : 3

i : 3
j : 1

i : 3

j : 2

k : 2

l : 1k : 1

l : 2

Figure 7 Transition system PACD(T ).

▶ Proposition 4.7 (Correctness). Let T be a (possibly labelled) Muller transition system and
PACD(T ) its ACD-transformation. Then, there exists a locally bijective morphism (of labelled
transition systems) φ : PACD(T ) → T .

4.3 Optimality of the alternating cycle decomposition transformation

▶ Proposition 4.8 (Optimality of the number of priorities). Let T be a Muller transition
system and let PACD(T ) be its ACD-transition system. If P is another parity transition
system such that there is a locally bijective morphism φ : P → T , then P uses at least the
same number of priorities than PACD(T ).

In the case of deterministic automata, the results from [22] imply this proposition:

▶ Proposition 4.9. If A is a deterministic Muller automaton, then PACD(A) uses the optimal
number of priorities to recognize L(A).

Finally, we state the optimality of PACD(A) for size.

▶ Theorem 4.10 (Optimality of the number of states). Let T be a Muller transition system
and let PACD(T ) be its ACD-transition system. If P is another parity transition system such
that there is a locally bijective morphism φ : P → T , then |PACD(T )| ≤ |P|.

The proof of Theorem 4.10 follows the same lines as for Theorem 3.7, we refer to the
full version of this paper [4]. We note that from the hypothesis of Theorem 4.10 we cannot
deduce that there is a morphism from P to PACD(T ) or vice-versa.

ICALP 2021
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5 Applications

Determinisation of Büchi automata
The best theoretical bounds for the determinisation of Büchi automata are achieved by
Piterman’s construction [23]. In [26], Schewe revisits this construction and presents it as
two consecutive steps: a first one producing a deterministic Rabin automaton RB, and a
second one transforming RB into a parity automaton PB. This second step induces a locally
bijective morphism from PB to RB, therefore, thanks to Theorem 4.10 it is guaranteed that
the ACD-transformation PACD(RB) always yields a smaller deterministic parity automaton
that uses less priorities. In particular, by Proposition 4.9 the number of priorities used by
PACD(RB) are the optimal one for recognising L(B) (that is, ACD(RB) gives the parity index
of the language).

In many cases, the gain in both size and number of priorities is strict (we refer to the
full version for one example [4]). However, both steps of Piterman Schewe’s construction
are already optimal in the worst case [6, 27], and applying the ACD-transformation in this
worst-case example would generate the same parity automaton.

Relabelling of transition systems by acceptance conditions
We use the information provided by the alternating cycle decomposition to obtain results
about the possibility of relabelling Muller transition systems with parity, Rabin and Streett
conditions. The results presented here lift the seminal results of [30, Section 5] from conditions
to transition systems.

Given a Zielonka tree TF , we say that it has Rabin shape (resp. parity shape) if every
node with an even (reps. even or odd) priority assigned has at most one child. Given a
Muller transition system T , we say that its alternating cycle decomposition ACD(T ) is a
Rabin ACD (resp. parity ACD) if for every state q ∈ V , the tree tq has Rabin shape (resp.
parity shape).

▶ Theorem 5.1. Let T be a Muller transition system. The following conditions are equivalent:
1. We can define a Rabin (resp. parity) condition that is equivalent to F over T .
2. For every pair of loops l1, l2 ∈ Loop(T ), if l1 /∈ F and l2 /∈ F (resp. l1 and l2 are both in

F or both in P(Γ) \ F), then l1 ∪ l2 /∈ F (resp. l1 ∪ l2 ∈ F ⇔ l1 ∈ F).
3. ACD(T ) is a Rabin ACD (resp. parity ACD).
By duality, a symmetric result of the Rabin case holds for Streett conditions.

Similar results can be obtained for weak automata, see the full version for details [4].

▶ Corollary 5.2. Given a transition system graph TG and a Muller condition F ⊆ P(E), we
can define a parity condition p : E → N equivalent to F over TG if and only if we can define
both Rabin and Streett conditions over TG, R and S, such that (TG, F) ≃ (TG, R) ≃ (TG, S).

The previous results are stated for non-labelled transition systems. We must be careful
when translating these results to non-deterministic automata [1, Section 4]. However,
Proposition 2.1 allows us to obtain analogous results for deterministic automata.

▶ Corollary 5.3 (First proven in [1, Theorem 7]). Let A be a deterministic automaton such that
there are a Rabin condition R and a Streett condition S over A such that L(A, R) = L(A, S).
Then, there exists a parity condition p over A such that L(A, p) = L(A, R) = L(A, S).
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6 Discussions

In this work we have introduced the alternating cycle decomposition of a transition system,
uncovering the interplay between a transition system and its acceptance condition. In order
to formalise the notion of a “transformation” we have introduced locally bijective morphisms,
which open new lines of research concerning questions such as the complexity of minimising
automata with respect to these morphisms. We formulate the following conjecture, which
implies that lower bounds established for Muller, Rabin or Streett automata [6] yield lower
bounds for parity automata.

▶ Conjecture 6.1. If A is a minimal deterministic Muller (resp. Rabin) automaton re-
cognising L(A), then PACD(A) is a minimal deterministic parity automaton recognising
L(A).
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