
Bounds in ω-regularity

Mikołaj Bojańczyk
Warsaw University and LIAFA, Paris

bojan@mimuw.edu.pl

Thomas Colcombet
CNRS/IRISA, Rennes

colcombe@irisa.fr

Abstract

We consider an extension of ω-regular expressions where
two new variants of the Kleene star L∗ are added: LB and
LS. These exponents act as the standard star, but restrict
the number of iterations to be bounded (for LB) or to tend
toward infinity (for LS). These expressions can define lan-
guages that are not ω-regular.

We develop a theory for these languages. We study the
decidability and closure questions. We also define an equiv-
alent automaton model, extending Büchi automata. This
culminates with a — partial — complementation result.

1 Introduction

In this paper we introduce a new kind of language of in-
finite words. The new languages – called ωBS-regular lan-
guages – are defined using an extended form of ω-regular
expressions. The extended expressions can define proper-
ties such as “words of the form (a∗b)ω where the size of a∗b

blocks is bounded”. As witnessed by this example, ωBS-
regular languages are a proper extension of ω-regular lan-
guages.

The expressions for ωBS-regular languages are obtained
from the usual ω-regular expressions by adding two new
variants of the Kleene star L∗. These are called the bounded
exponent LB and the strongly unbounded exponent LS .
The idea behind B is that the language L in the expres-
sion LB must be iterated a bounded number of times. For
instance, the language from the first paragraph is described
by the expression (aBb)ω. The idea behind S is that the iter-
ations of the language L must tend toward infinity (i.e. have
no bounded subsequence). This is not the same as being
unbounded, which is more easily satisfied. In particular, the
complement of the language (aBb)ω is the language

(a + b)∗aω + ((a + b)∗aSb)ω

Work supported by the EU-TNR network GAMES. The first author
also supported by MNII grant 4 T11C 042 25 and a scholarship of the
Foundation for Polish Science

and not the (smaller) language

(a + b)∗aω + (aSb)ω .

For instance, the word aba1baba2baba3baba4b · · · belongs
to the first but not the second.

This paper is devoted to developing a theory for those
new languages.

The most important concept is a new type of automaton
over infinite words, called a bounding automaton. Bound-
ing automata can be used as an alternative definition of the
new languages. However, the translations between bound-
ing automata and ωBS regular expressions are more in-
volved than in the case of regular languages.

A bounding automaton is a finite automaton equipped
with a finite number of counters. These couters can be in-
cremented and reset, but not read. The counter values are
used in the acceptance condition, which depends on their
asymptotic values (whether counter values are bounded or
tend toward infinity). We show that bounding automata
recognize exactly the languages that can be defined using
ωBS-regular expressions. Thanks to simple automata con-
structions, we obtain closure of ωBS-regular languages un-
der union, intersection and projection.

Unfortunately, ωBS-regular languages are not closed
under complementation, nor can the bounding automata be
determinized. The following language witnesses the first
statement as it is ωBS-regular, but its complement is not:

Words of the form an1ban2b · · · where n1, n2, . . .

can be split in two subsequences: one bounded,
the other tending toward infinity.

Failure of complementation is bad news, especially from
a logical point of view. However, we are able to identify
two fragments of ωBS-regular languages that complement
each other. We show that the complement of a language
that only talks about bounded sequences is a language that
only talks about sequences tending toward infinity; and vice
versa. The difficult proof of this complementation result is
the technical core of the paper.

Finally, we present a logic that expresses ωBS-regular
languages. As is well known, languages defined by

ω-regular expressions are exactly the ones definable in
monadic second-order logic. What extension logic corre-
sponds to ωBS-regular expressions? One avenue is to add
a new quantifier, called the bounding quantifier B. A for-
mula BX. φ(X) is true if the size of sets satisfying φ(X)
is bounded. Every ωBS-regular language can be defined in
monadic second-order logic extended with B. Due to failure
of complementation, the converse does not hold.

Related work This work tries to continue the long last-
ing tradition of logic/automata correspondences [10] initi-
ated by Büchi [4, 5] and continued by Rabin [7]. We be-
lieve that bounding properties extend the received notion of
regularity and that languages defined by our extended ex-
pressions have every right to be called regular, even though
they are not captured by Büchi automata. For instance, ev-
ery ωBS-regular language L has a finite number of quo-
tients w−1L, Lw−1. (Moreover, the right quotients Lw−1

are regular languages of finite words.) Unfortunately, our
results fall short of these grand expectations, since we do
not have a full complementation result.

The quantifier B in the logic that describes ωBS-regular
languages was already introduced in [2]. Although [2] went
beyond words and considered infinite trees, the satisfiabil-
ity algorithm worked for a more restricted fragment of the
logic with no (not even partial) complementation result. In
particular, no appropriate notion of automata or regular ex-
pression was proposed.

Boundedness properties have been considered in model-
checking. For instance, [3] considered systems described
by push-down automata whose stack size is unbounded.

Our work on bounds can also be related to cardinality
restrictions. In[6], Klaedtke and Ruess considered an ex-
tension of monadic second-order logic with cardinality ex-
tensions of the form

|X1| + · · · + |Xn| ≤ |Y1| + · · · + |Ym| .

In general, such cardinality constraints (even |X | ≤ |Y |)
lead to undecidability. Even though cardinality constraints
can express all ωBS-regular languages, the decidable frag-
ments considered in [6] are insufficient for our purposes.

Structure of the paper. In Section 2, we formally de-
fine the ωBS-regular expressions that are the subject of
this paper. We introduce two restricted types of expres-
sions (where the B and S exponents are prohibited, respec-
tively) and overview the closure properties of the respec-
tive expressions. In Section 3, we introduce our automata
models and show that they are equivalent to the regular ex-
pressions. In Section 4, we state the main technical re-
sult, which concerns closure under complementation. In
Section 5, we show how our results can be applied to ob-
tain a decision procedure for satisfiability in an extension of
monadic second-order logic.

2 Regular expressions with bounds

In this section we define the different variants of ωBS-
regular expressions, overview the results concerning them
and show the strictness of their inclusions.

2.1 Definition

To the standard operations used in ω-regular expressions,
we add two variants of the Kleene star ∗: the B and S ex-
ponents. These are used to constrain the number of itera-
tions. When the B exponent is used, the number of iter-
ation has to be bounded. When the S exponent is used,
it has to tend toward infinity. For instance, the expres-
sion (aBb)ω represents the words in (a∗b)ω where the size
of sequences of consecutive a’s is bounded. Similarly, the
expression (aSb)ω requires the size of maximal sequences
of consecutive a’s to tend toward infinity. These new ex-
pressions are called ωBS-regular expression.

In the following we will say that a sequence of naturals
is strictly unbounded if it tends toward the infinite, i.e. has
no bounded subsequence. This behavior is denoted by the
letter S, while the bounded behavior is denoted by B.

In order to formally define ωBS-regular expressions, we
first use BS-regular expressions, which describe infinite se-
quences of finite words. Our ωBS-regular expressions are
built on top of BS-regular expression just as ω-regular ex-
pressions are built on top of regular expressions. A BS-
regular expression has the following syntax (a being some
letter of the given finite alphabet Σ, and M ranging over the
regular languages of finite words over Σ):

e = ∅ | a | e.e | e + e | M � e | e∗ | eB | eS .

Except for the two extra exponents B and S and the � oper-
ator, these expressions coincide syntactically with the stan-
dard regular expressions. However, the semantics cannot be
given in terms of languages of finite words. Instead, a BS-
regular expression is evaluated to a language of sequences;
by sequence we mean an element of (Σ∗)ω . We will denote
by ~u the sequence (u1, u2, . . .).

The semantic of BS-regular expressions is defined as
follows.
• ∅ is the empty language of sequences.

• a for a ∈ Σ is the language containing the single se-
quence (a, a, . . .).

• The concatenation of sequence languages is defined by

K.L = {(u1v1, u2v2 . . .) : ~u ∈ K,~v ∈ L} .

• The mix of sequence languages (which is not the
union) is

K + L = {~w : ~u,~v ∈ K ∪ L, ∀i.wi ∈ {ui, vi}} .

2

• The finite mix M � L for M a regular language of
finite words, is the set of sequences obtained by taking
a sequence from L and replacing a finite number of
coordinates with a word from M . This operator is
redundant as established in Proposition 2.4.

• The ∗-exponent of a language of sequences is defined
by grouping words into blocks:

L∗ = {(u1 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .) :

~u ∈ L, f nondecreasing } .

• The bounded exponent LB of a language of sequences
is defined like L∗ but we additionally require the val-
ues f(i + 1) − f(i) to be bounded, i.e. only factoriza-
tions of bounded size are allowed.

• The strictly unbounded exponent LS of a language of
sequences is defined like L∗ but we additionally re-
quire the values f(i + 1) − f(i) to be strictly un-
bounded, i.e. the size of the concatenations used in the
factorization must tend toward the infinite.

Languages of sequences obtained by nesting these opera-
tions — i.e. the language of sequences obtained by evaluat-
ing BS-regular expressions — are called BS-regular lan-
guages. The B-regular (resp. S-regular) languages corre-
spond to the particular case where the exponent S (resp. B)
is not used. When the context is clear, we do not distinguish
between an expression and the corresponding language.

For instance the BS-regular (also B-regular) expression
aB represents the sequences of words from a∗ where the
number of a’s is bounded:

aB = {(af(1), af(2), . . .) : f is bounded}

The sequence language aB .(b.aB)S consists of sequences
where the number of consecutive a’s is bounded, while the
number of b’s in each word of the sequence is strictly un-
bounded.

In this definition, we override the symbols +, ., ∗ from
regular expressions. However, there is a strong link be-
tween the two semantics. If one takes a standard regular
expression defining a language of finite words L and eval-
uates it as a BS-regular expression, the resulting language
of sequences is simply {~u : ∀i.ui ∈ L}.

Before proceeding to the definition of ωBS-regular lan-
guages, we first emphasize some closure properties of BS-
regular languages.

Fact 2.1 Every BS-regular language satisfies L = L + L.
Furthermore, for ~u in L and f a strictly unbounded se-
quence of naturals, the sequence (uf(1), uf(2), . . .) also be-
longs to L. In particular, L is closed under taking subse-
quences.

Proof
Structural induction. �

We are now ready to introduce the ωBS-regular expres-
sions. These describe languages of ω-words. From a se-
quence with nonempty words on infinitely many coordi-
nates, we can construct an ω-word by concatenation of all
the words:

(u1, u2, . . .)
ω = u1u2 . . .

This operation is naturally extended to languages of se-
quences by taking the ω power of every sequence in the
language.

Definition 2.2 An ωBS-regular language is a finite union
(denoted +) of languages of the form M.Lω, where M is a
regular language of finite words and L is BS-regular. When
only B-regular (resp. S-regular) languages are used for L

then the resulting language is called ωB-regular (resp. ωS-
regular).

This definition differs from the definition of ω-regular
expressions only in that the ω is applied to BS-regular lan-
guages of sequences instead of regular word languages. As
one may expect, the standard class of ω-regular languages
corresponds to the case of ωBS-regular languages where
neither B nor S is used.

For instance, the expression (aB .b)ω defines the lan-
guage of ω-words containing an infinite number of b’s
where the possible number of consecutive a’s is bounded.
The language (aS .b)ω corresponds to the case where the
length of maximal consecutive sequences of a’s tends to-
ward infinity. The language (a+b)∗aω +((a∗.b)∗.aS .b)ω is
a bit more involved. It corresponds to the language of words
where either there are finitely many b’s, or the number of
consecutive a’s is unbounded but not necessarily strictly un-
bounded. This is the complement of the language (aB .b)ω.

Fact 2.3 Emptiness is decidable for ωBS-regular lan-
guages.

Proof
An ωBS-regular language is nonempty if and only if one
of the languages M.Lω is such that the regular language
M is nonempty and the BS-regular language L admits in-
finitely many nonempty words in a sequence. The latter can
be shown decidable by structural induction. Essentially it
amounts to finding a letter in the BS-expression, and veri-
fying that none of the subexpressions containing this letter
is concatenated with an empty language. �

The finite mix operator � will turn out to be a convenient
technical device. However, it is not necessary for describing
ωBS-regular languages, as stated by:

3

Proposition 2.4 Every ωBS-regular expression (resp.
ωB-regular and ωS-regular ones) is equivalent to one with-
out � operator.

Note that this proposition does not mean that finite mix
can be eliminated from BS-regular languages of sequences.
For instance, the finite mix operator is necessary to define
the set of sequences a � b where a finite number of a’s is
used. However, after the ω power is applied, the expression
(a � b)ω can be rewritten into – and this is the subject of
Proposition 2.4 – the expression (a + b)∗bω.

2.2 Summary: The diamond

In this section we present Figure 1, which summarizes
the technical contributions of this paper. We call this figure
the diamond. Though not all the material necessary to un-
derstand this figure has been yet provided, we give it here
as a reference and guide to what follows.

The diamond illustrates the four variants of languages
of ω-words we consider: ω-regular, ωB-regular, ωS-regular
and ωBS-regular languages. The inclusions between those
four classes give a diamond shape. We show in Section 2.3
that the inclusions in the diamond are indeed strict.

To each class of languages corresponds a family of au-
tomata. The automata come in two variants: “normal au-
tomata”, and the equivalent “hierarchical automata”. The
exact definition of these automata as well as the correspond-
ing equivalences are the subject of Section 3 and Theo-
rem 3.1.

All the classes are closed under union by definition. It is
also easy to show that the classes are closed under projec-
tion, i.e. images under a letter to letter morphism (operation
denoted by π in the figure). From the equivalence of the dif-
ferent families of languages with families automata we ob-
tain closure by intersection for the four classes; see Corol-
lary 3.2. For the closure under complement, things are not
so nice. Indeed in Section 2.3 we show that ωBS-regular
language are not closed under complement. However, some
complementation results are still possible. Namely Theo-
rem 4.1 establishes that complementing an ωB-regular lan-
guage gives an ωS-language, and vice-versa. This is by far
the most involved result of this work and we only sketch
some ideas about its proof.

In Section 5 we will show how the closure results can be
used to partially answer the satisfiability problem for an ex-
tension of monadic second-order logic. For this purpose, we
establish Proposition 5.3 stating the closure of ωS-regular
languages under a less standard operation called U.

2.3 Limits of the diamond

In this section we show that all the inclusions depicted in
the diamond are strict. Moreover, we show that there exists

an ωBS-regular language whose complement is not ωBS-
regular.

We start by a simple lemma.

Lemma 2.5 Every ωB-regular language over the alpha-
bet {a, b} which contains a word with an infinite number
of b’s contains a word in (aBb)ω.

Proof
We show by a simple structural induction that a B-regular
language of sequences L satisfies:

• if L contains a sequence in a∗, it contains a sequence
in aB , and,

• if L contains a sequence in (a∗b)+a∗, it contains a se-
quence in (aBb)+aB .

The statement of the lemma follows. �

Corollary 2.6 The language (aSb)ω is not ωB-regular.
The language (aBb)ω is not ωS-regular.

Proof
The language (aSb)ω contains a word with an infinite
number of b’s, but its intersection with (aBb)ω is empty.
Being ωB-regular for this language would contradict
Lemma 2.5.

For the second part, assume that the language (aBb)ω

is ωS-regular, then so is the language (aBb)ω +(a+ b)∗aω.
Using Theorem 4.1, its complement ((a∗b)∗aSb)ω would
be ωB-regular. But this is not possible, by the same argu-
ment as above. A proof that does not use complementation
– along the same lines as in the first part – can also be given.
�

We now proceed to show that ωBS-regular languages
are not closed under complement. We start with a similar
lemma.

Lemma 2.7 Every ωBS-regular language over the alpha-
bet {a, b} that contains a word with an infinite number of b’s
also contains a word in (aBb + aSb)ω.

Proof
As for Lemma 2.5, we show the following properties of
a BS-regular language of sequences L by a simple struc-
tural induction:

• if L contains a sequence in a∗, it contains a sequence
in aB + aS , and,

• if L contains a sequence in (a∗b)+a∗, it contains a se-
quence in (aBb + aSb)+(aB + aS).

The result directly follows. �

4

ωBS-regular expressions
hierarchical ωBS-automata

ωBS-automata

ωS-regular expressions
hierarchical ωS-automata

ωS-automata

ωB-regular expressions
hierarchical ωB-automata

ωB-automata

ω-regular expressions
Büchi automata

⊂⊂

⊂⊂

C

∩,∪, C, π

∪,∩, π ∪,∩, π

∪,∩, π

Figure 1. The diamond

Corollary 2.8 The complement of L = (aBb + aSb)ω is
not ωBS-regular.

Proof
The complement of L contains the word

a1 ba1ba2 ba1ba2ba3 ba1ba2ba3ba4b . . . ,

and consequently, assuming it is ωBS-regular, one can ap-
ply Lemma 2.7 on it. It follows that the complement of L

should intersect L. Obviously a contradiction. �

3 Automata

In this section we introduce new types of automata over
infinite words, called ωBS-automata, and show their equiv-
alence with ωBS-regular expressions.

3.1 Statement of the equivalences

The key equivalence result of this section is the following
one.

Theorem 3.1
The following properties of a language of ω-words L are
equivalent:

1. L is ωBS-regular (resp. ωB-regular, resp. ωS-
regular),

2. L is accepted by a hierarchical ωBS-automaton (resp.
a hierarchical ωB-automaton, resp. a hierarchical
ωS-automaton),

3. L is accepted by an ωBS-automaton (resp. an ωB-
automaton, resp. an ωS-automaton).

The necessary definitions are in the two subsequent sec-
tions, the first one defining the most general form of ωBS-
automata, the second introducing their hierarchical form.

We mention here, somewhat ahead of time, an important
application of this theorem: the closure under intersection
of all the classes of languages.

Corollary 3.2 The classes of ωBS-regular, ωB-regular
and ωS-regular languages are closed under intersection.

Proof
The corresponding automata are closed under intersection.
�

3.2 General form of ωBS-automata

An ωBS-automaton, like any finite automaton, has an
input alphabet Σ, a finite set of states Q and an initial state
qI ∈ Q. The automaton also has a set of counters Γ, which
is partitioned into a set ΓB of bounding counters (we also
say B-counters or counters of type B) and a set ΓS of un-
bounding counters (we also say S-counters or counters of

5

type S). With every letter a ∈ Σ the automaton associates
its transition relation:

δa ⊆ Q × {i, r, ε}Γ × Q .

The intuition is that in a transition the automaton decides
what do with each counter: whether to increment it (i), reset
it (r), or leave it unchanged (ε). When the automaton only
has counters of type B (resp. of type S), then the automaton
is called an ωB-automaton (resp. an ωS-automaton). The
counter values are never read by the automaton; they are
only used for the acceptance condition.

A run ρ of an ωBS-automaton over some ω-word
a1a2 . . . is a sequence of transitions ρ = t1t2 · · · such that
for every i, ti belongs to δai

, the source state of t1 is qI and
for each i, the target state of the transition ti is the same as
the source state of the transition ti+1. During such a run, the
automaton updates the values of the counters. Initially, all
counters have the value 0. A counter c ∈ Γ is incremented
when the transition assigns i to it, it is reset to 0 when the
transition assigns r to it and it is left unchanged otherwise.
For a run ρ, we denote by c(ρ) the sequence of values that
the counter c assumes just before being reset. This sequence
can be finite if the counter is reset only a finite number of
times, or it can be infinite. A run ρ is accepting if for every
counter c, the sequence c(ρ) is infinite and furthermore, if c

is of type S then c(ρ) is strongly unbounded and if c is of
type B then c(ρ) is bounded.

As an example, consider the following automaton with a
single counter of type B (the counter action is in the paren-
thesis):

q p

b(ε)

b(r)

a(i), b(r) a(ε), b(ε)

This automaton accepts the language (aBb(a∗b)∗)ω. If the
counter is of type S, then the same automaton accepts the
language (aSb(a∗b)∗)ω .

Though we do not prove it here, it should be fairly clear
that no deterministic ωBS-automaton can accept these lan-
guages. For this reason, we are doomed to working with
non-deterministic automata. This is one of the reasons why
the complementation result is difficult.

3.3 Hierarchical automata

Hierarchical ωBS-automata are a more structured ver-
sion of ωBS-automata where the counters are required to
be nested. They are more closely related to ωBS-regular
expressions than the general form of ωBS-automata.

An ωBS-automaton is called hierarchical if its set of
counters is Γ = {1, . . . , n} and whenever a counter i > 1
is incremented or reset, the counters 1 . . . i − 1 are reset.
It is convenient to define for a hierarchical automaton its
counter type, defined as a word in {B + S}∗. The length of
this word is the number of counters; its i-th letter is the type
of counter i.

According to this definition, a transition (q, v, r) in a hi-
erarchical automaton can be of three forms:

• either v(l) = ε for every l = 1, . . . , n, or;

• there is some k such that v(l) = r for l = 1, . . . , k,
and v(l) = ε for l = k + 1, . . . , n, or;

• there is some k such that v(l) = r for l = 1, . . . , k−1,
v(k) = i and v(l) = ε for l = k + 1, . . . , n.

4 Complementation

The main technical result of this paper is the following
complementation theorem:

Theorem 4.1
The complement of an ωS-regular language is ωB-regular.
The complement of an ωB-regular language is ωS-regular.

The proof of this result is long. Here, we just try to give
some ideas underlying the proof. For the sake of the ex-
planation, we only consider the case of complementing an
ωS-regular language.

First consider the simple case of a language described by
an ωS-automaton A which has a single counter, and such
that in every run, between two resets, the increments of the
counter are consecutive. This means that in every run, be-
tween two resets of the counter, the counter is first left un-
changed during a while, then during the n-next following
steps the counter is always incremented, then it is not in-
cremented anymore before reaching the second reset. We
call increment interval an interval of positions in the word
corresponding to a maximal sequence of increments.

We now describe an ωB-automaton B accepting the
complement of the language recognised by A. It uses a sin-
gle B-counter which beats as a clock dividing the input ω-
word into pieces of bounded size (independantly from any
run of A). We say that an interval of positions in the word
is short (with respect to this clock) if there is at most one
beat of the clock in it. If the clock beats every n steps, then
short intervals have length at most n − 1. Reciprocally, if
an interval has length at most n, then it is short with respect
to every clock beating with a tempo greater than n. Using
those remarks, we can see the notion of being short as a fair
approximation of the length of an interval.

6

The complement automaton B works by guessing the
beats of a clock using non-determinism together with a B-
counter, and then checks the following fact: every run of A
which contains an infinite number of resets, contains an in-
finite number of short increment intervals. Once the clock
is fixed, checking this is definable in monadic second-order
logic. Using this remark it is simple to construct B.

It is easy to see that if B accepts an ω-word, then it is not
accepted by A. The converse implication requires to remark
the following: if no run of A is accepting, then there exists a
natural N such that in every run of A doing an infinite num-
ber of resets, there is less than N increments between two
resets infinitely often. Such a property can be established
using Ramsey-like arguments.

Let us turn now to the more general case of comple-
menting a single counter ωS-automaton (we do not con-
strain anymore the increments to be contiguous). Our tech-
nique uses Simon’s factorisation theorem for finite semi-
groups [9], and reduces the problem to a bounded number
of instances of the above construction. In this case, the
complement ωB-automaton uses one counter for each level
of the factorisation, the result being a structure of nested
clocks beating with different ‘granularity’. As above, once
the beats of the clocks are fixed, checking if a run makes
few increments is approximable in monadic second-order
logic. This makes it implementable by an ωB-automaton.

Finally, for treating the general case of ωS-automata, we
use automata in their hierarchical form and perform an in-
duction on the number of counters.

5 Monadic second-order logic with bounds

In this section, we introduce the logic MSOLB. This is
a strict extension of monadic second-order logic (MSOL),
where the new quantifier U is added (the original definition
in [2] uses the quantifier B which is the negation of U). This
quantifier expresses the fact that a property is satisfied by
arbitrarily large sets. We are interested in satisfiability: the
decision problem whether there exists an ω-word modeling
a given formula of MSOLB. We are not able to solve this
problem in its full generality. However, the diamond prop-
erties allow us to provide an interesting partial solution.

In Section 5.1 we introduce formally the logic MSOLB.
In Section 5.2 we explain how ωBS-regular languages can
be used to deal with intersection, complementation and ex-
istential quantification in a decision procedure for satisfia-
bility. In Section 5.3 we deal with the quantifier U. Finally,
in Section 5.4 we present an application of this logic to ω-
automatic structures.

5.1 The logic

Recall that monadic second-order logic is an extension
of first-order logic by set quantification. Hence a formula
of this logic is made of atomic predicates, boolean connec-
tives (∧,∨,¬), first-order quantification (∃x.ϕ and ∀x.ϕ)
and monadic second-order quantification (∃X.ϕ and ∀X.ϕ)
together with the membership predicate x ∈ X . Over ω-
words the universe is the set N of positions, while the atomic
predicates used are: a binary predicate x ≤ y for order on
positions, and for each letter a of the alphabet, a unary pred-
icate a(x) that tests if a position x has the label a.

In the logic MSOLB we add a new quantifier: the ex-
istential unbounding quantifier U which has the following
semantics:

UX.ϕ := ∀N ∈ N. ∃X. (ϕ ∧ |X | ≥ N) .

The quantified variable X is a set variable and |X | denotes
its cardinality. Informally speaking, UX.ϕ(X) says that the
formula ϕ(X) is true for sets X of arbitrarily large cardinal-
ity. If ϕ(X) is true for some infinite set X , then UX.ϕ(X)
is immediately true.

From this quantifier, we can construct other meaningful
quantifiers:

• The quantifier A — the universal above quantifier —
is the dual of U, i.e. AX.ϕ is a shortcut for ¬UX.¬ϕ.
It is satisfied if all the sets X above a given threshold
of cardinality satisfy property ϕ.

• Finally, the bounding quantifier B is syntactically
equivalent to the negation of the U quantifier. This
quantifier was the first chronologically studied[2]. It
says that a formula BX.ϕ holds if there is a bound on
the cardinality of sets satisfying property ϕ.

Over finite structures, MSOLB and MSOL are equiva-
lent: the quantifiers U is always false over finite structures
and consequently can be removed. Over infinite words,
MSOLB defines strictly more languages than MSOL. For
instance the formula

BX. [∀x ∈ X.a(x)] ∧ [∀x ≤ y ≤ z.x, z ∈ X → y ∈ X]

corresponds over {a, b}ω to the language (aB .b)ω. Indeed,
the formula says there is a bound on the size of contiguous
segments made of a’s. As we have seen, this language is not
regular. Hence, this formula is not equivalent to any MSOL
formula. This motivates the following decision problem:

Is a given formula of MSOLB satisfied over some
infinite word?

We do not know the answer to this question in its full gener-
ality. However, using the diamond (Figure 1), we can solve
this question for a certain class of formulas. This is the sub-
ject of the next section.

7

5.2 A decidable fragment of MSOLB

The classical approach for solving satisfiability of
monadic second-order logic is to translate formulas into au-
tomata. To every operation in the logic corresponds a lan-
guage operation. As automata happen to be closed under
those operations, and emptiness is decidable for automata,
the satisfaction problem is decidable for MSOL. We use the
same approach for MSOLB. Unfortunately, our automata
are not closed under complement, hence we do not solve
the whole logic.

Those operations are summarized in the logical view of
the diamond, i.e. Figure 2. Closures under ∨ and ∧ are a di-
rect consequence of closure under∪ and ∩. Closure under ∃
corresponds to closure under projection, which is straight-
forward for non-deterministic automata. Negation ¬ is ob-
tained by the closure under complementation. Closures un-
der universal quantification follow as duals of the existential
quantifications. Closure under U of ωS-regular langages is
the subject of Section 5.3, while closure under A is obtained
by duality. We did not represent the closure under the B

quantifier on this picture. It would go from ωS-regular lan-
guages to ωB-regular languages.

Since emptiness for BS-regular languages is decidable
by Fact 2.3, we obtain:

Theorem 5.1
The satisfiability problem is decidable for the following for-
mulas:

• B-formulas. These include all of MSOL, are closed
under ∨,∧, ∀, ∃ and A. Moreover, the negation of an
S-formula is a B-formula.

• S-formulas. These include all of MSOL, are closed un-
der ∨,∧, ∀, ∃ and U. Moreover, the negation of a B-
formula is an S-formula.

• BS-formulas. These include all B-formulas and S-
formulas, and are closed under ∨,∧, ∃ and U.

All ωBS-regular languages can be described by an
MSOLB formulas:

Fact 5.2 Every ωBS-regular language (resp. ωB-regular,
resp. ωS-regular) is definable by a BS-formula (resp. a B-
formula, resp. an S-formula).

Proof
Guess a run of the automaton, and check that this run is
accepting using the new quantifiers. �

The converse fails for ωBS-regular language since these
languages are not closed under complementation. But it
holds for ωB-regular and ωS-regular languages.

5.3 Closure under existential unbounding quan-
tification

Here we show that the classes of ωS- and ωBS-regular
languages are closed under application of the quantifier U.
This closure is settled by Proposition 5.3.

Before we proceed, we describe the quantifier U as a lan-
guage operation, in the same way as existential quantifica-
tion corresponds to projection. Let Σ be an alphabet, and
consider a language L ⊆ (Σ × {0, 1})ω. Given a word
w ∈ Σω and a set X ⊆ N, let w[X] ∈ (Σ×{0, 1})ω be the
word obtained from w by setting the second coordinate to
1 on the positions from X and to 0 on the other positions.
We then define U(L) to be the set of those words w ∈ Σω

such that for every N ∈ N there is a set X ⊆ N of at least
N elements such that w[X] belongs to L.

Proposition 5.3 Both ωS and ωBS-regular languages are
closed under the operation U(L).

We begin with a simple auxiliary result. A partial se-
quence over an alphabet Σ is a word in ⊥∗Σω. A partial
sequence is defined on the positions where it does not have
value ⊥. We say two partial sequences meet if there is some
position where they are both defined and have the same let-
ter.

Lemma 5.4 Let I be an infinite set of partial sequences
over a finite alphabet. There is a partial sequence in I that
meets infinitely many partial sequences from I .

Proof
Let Σ be the finite alphabet. A constrainer for I is an infi-
nite word c over P (Σ) such that the i-th position of every
sequence in I is either undefined or belongs to ci. The size
of a constrainer is the maximal size of a set it uses infinitely.

The proof is by induction over the size of a constrainer
for I . This is sufficient since every set I admits the con-
strainer that has Σ on every coordinate. If I admits a con-
strainer of size 1 then we are done. Take a set I with a
constrainer c of size n. Take some sequence s in I . If s

meets infinitely many sequences from I , then we are done.
Otherwise let J ⊆ I be the (infinite) set of sequences that
do not meet s. Then one can verify that d is a constrainer
for J , where d is defined by di = ci \ {si}. Moreover, d is
of size n − 1. �

Let L be a language of infinite words over Σ×{0, 1} rec-
ognized by an ωBS-automaton. We want to show that the
language U(L) is also recognized by a bounding automaton.
Consider the following language:

K = {w[X] : w[Y] ∈ L, for some X ⊆ Y } .

This language is downward closed in the sense that if w[X]
belongs to K, then w[Y] belongs to K for every Y ⊆ X .

8

ωBS-regular languages

ωS-regular languages ωB-regular languages

ω-regular languages

⊂⊂

⊂⊂

¬

∨,∧,¬, ∃, ∀

∨,∧, ∃, ∀, U ∨,∧, ∃, ∀, A

∨,∧, ∃, U

Figure 2. Logical view of the diamond

Furthermore, clearly U(L) = U(K). Moreover, if L is rec-
ognized by a ωBS-automaton (resp. ωS-automaton), then
so is K. Let A be an ωBS-automaton recognizing K. We
will construct a ωBS-automaton recognizing U(K).

Given a word w ∈ Σω, a sequence of sets X1, X2, . . . ⊆
N is an unbounding witness for K if for every i, the word
w[Xi] belongs to K and the sizes of the sets are unbounded.
An unbounding witness is sequential if there is a sequence
of numbers a1 < a2 < · · · such that all members of Xi are
between ai and ai+1.

The following lemma is a simple application of the prop-
erty of K being downward closed.

Lemma 5.5 A word admitting an unbounding witness
for K admits a sequential one.

Let X1, X2, . . . be a sequential unbounding witness and
let a1 < a2 · · · be the appropriate sequence of numbers.
Let ρ1, ρ2, . . . be accepting runs of the automaton A over
the words w[X1], w[X2], . . . Such runs exist by definition
of unbounding witness. The sequence X1, X2, . . . is a good
witness if every two runs ρi and ρj agree on almost all po-
sitions.

Lemma 5.6 A word belongs to U(K) if and only if it ad-
mits a good witness.

Proof
By Lemma 5.5, a word belongs to U(K), if and only if
it admits a sequential witness. For every i, let si be the
partial sequence that has ⊥ on positions before ai+1 and
agrees with ρi after ai+1. By applying Lemma 5.4 to the
set {s1, s2 . . .}, we can find a run ρi and a set J ⊆ N such
that for every j ∈ J , the runs ρi and ρj agree on some posi-
tion xj after aj+1. For j ∈ J , let ρ′

j be a run that is defined
as ρj on positions before xj and is defined as ρi on positions

after xj . Since modifying the counter values over a finite set
of positions does not violate the acceptance condition, the
run ρ′j is also an accepting run over the word w[Xj]. For
every j, k ∈ J , the runs ρ′

j and ρ′k agree on almost all po-
sitions (i.e. positions after both xj and xk). Therefore the
witness obtained by using only the sets Xj with j ∈ J is a
good witness. �

Lemma 5.7 Words admitting a good witness can be recog-
nized by a bounding automaton.

Proof
Given a word w, the automaton is going to guess a sequen-
tial witness

a1 < a2 < · · · X1, X2, . . . ⊆ N

and a run ρ of A over w and verify the following properties:

• The run ρ is accepting;

• There is no bound on the size of the Xi’s;

• For every i, some run over w[Xi] agrees with ρ on al-
most all positions.

The first property can be obviously verified by a ωBS-
automaton. For the second property, the automaton nonde-
terministically chooses a subsequence of X1, X2, . . . where
the sizes are strongly unbounded. The third property is a
regular property. The statement of the lemma then follows
by closure of bounding automata under projection and in-
tersection. �

9

5.4 An example: unbounded out-degree

Let ϕ(X, Y) be a formula of MSOLB with two free set
variables. This formula can be seen as an edge relation on
sets. We show here that MSOLB can be used to say that this
edge relation has unbounded out-degree.

We begin by defining the notion of an X-witness. This
is a set witnessing that there are many successors of the
set X under ϕ. (The actual successors of X form a set of
sets, something MSOLB cannot talk about directly.) An X-
witness is a set Y such that every two elements x, y ∈ Y

can be separated by a successor of X , that is:

∀x, y ∈ Y ∃Z.ϕ(X, Z) ∧ (x ∈ Z ⇔ y 6∈ Z) .

(Therefore being an X-witness can be defined by an
MSOLB formula.) We claim that the graph of ϕ has un-
bounded out-degree if and only if there are X-witnesses
of arbitrarily large cardinality (for different sets X). This
claim follows from the following fact:

Fact 5.8 If X has more than 2n successors, then it has an
X-witness of size at least n. If X has n successors, then all
X-witnesses have size at most 2n.

Proof
For the first statement, we first show that X has at least n

successors that are boolean independent (none is a boolean
combination of the others). From n boolean indepen-
dent successors one can then construct by induction an X-
witness of size n.

For the second statement, consider X with n successors
as well as an X-witness. To each element w of the X-
witness, associate the characteristic function of ‘w ∈ Y ’
for Y ranging over the successors of X . If the X-witness
had more than 2n elements, then at least two would give the
same characteristic function, contradicting the definition of
an X-witness. �

An ω-automatic graph is one where each vertex is a
set of naturals, and the edge relation is defined by a for-
mula ϕ(X, Y) of MSOL over the naturals with successor
(see [1]). In this particular case, the existence of arbitrarily
large X-witnesses is expressed by a formula that belongs to
one of the classes with decidable satisfiability from Theo-
rem 5.1. This shows:

Proposition 5.9 It is decidable if an ω-automatic graph has
unbounded out-degree.

6 Future work

We conclude the paper with some open questions.

As we have defined them, ωBS-regular languages are
not closed under complementation. Can we find a larger
class that is? What are the appropriate automata?

Are there natural deterministic automata? The automata
in this paper seem to be inherently nondeterministic.

Our complementation proof is very complicated. It
would be worthwhile to find a simpler version. In particu-
lar, the computational complexity of the construction could
be reduced. In the present version, a single complementa-
tion step gives a non-elementary blowup of the automaton’s
state space.

Are there other meaningful and decidable extensions of
monadic second-order logic? For instance does adding the
predicate “the set of positions X is ultimately periodic” lead
to an undecidable logic? (This predicate can be used to de-
fine the language (abB)ω.)

Is there an algebraic model for ωBS-regular languages?
Can ω-semigroups be appropriately extended? Is there a
link with tropical semirings [8]?

Is there a corresponding (decidable) temporal logic?

References

[1] A. Blumensath and E. Grädel. Finite presentations of in-
finite structures: Automata and interpretations. Theory of
Computing Systems, 37:641 – 674, 2004.

[2] M. Bojańczyk. A bounding quantifier. In Computer Science
Logic, volume 3210 of Lecture Notes in Computer Science,
pages 41–55, 2004.

[3] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games
with unboundedness and regular conditions. In Foundations
of Software Technology and Theoretical Computer Science,
volume 2914 of Lecture Notes in Computer Science, pages
88–99, 2003.

[4] J. R. Büchi. Weak second-order arithmetic and finite au-
tomata. Z. Math. Logik Grundl. Math., 6:66–92, 1960.

[5] J. R. Büchi. On a decision method in restricted second-order
arithmetic. In Proc. 1960 Int. Congr. for Logic, Methodology
and Philosophy of Science, pages 1–11, 1962.

[6] F. Klaedtke and H. Ruess. Parikh automata and monadic
second–order logics with linear cardinality constraints.
Technical Report 177, Institute of Computer Science at
Freiburg University, 2002.

[7] M. O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Transactions of the AMS, 141:1–23,
1969.

[8] I. Simon. Recognizable sets with multiplicites in the trop-
ical semiring. In Mathematical Foundations of Computer
Science, volume 324 of Lecture Notes in Computer Science,
pages 107 – 120, 1988.

[9] I. Simon. Factorization forests of finite height. Theoretical
Computer Science, 72:65 – 94, 1990.

[10] W. Thomas. Languages, automata, and logic. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Lan-
guage Theory, volume III, pages 389–455. Springer, 1997.

10

