
1

Cost functions with several order of magnitudes
and the use of Relative Internal Set Theory

Thomas Colcombet

Abstract—Cost monadic logic extends monadic second-order
logic with the ability to measure the cardinal of sets. In particular,
it allows to decide problems related to boundedness questions.
In this paper, we provide new decidability results allowing the
systematic investigation of questions involving “relative bounded-
ness”. The first contribution in this work is to introduce a suitable
logic for such questions. The second is to show the decidability
of this logic over finite words. The third contribution is the use
of non-standard analysis: we advacate that developing the proofs
in the axiomatic system of “relative internal set theory” entails
a significant simplification of the proofs.

I. INTRODUCTION

The results of Büchi-Elgot-Trakhtenbrot stating the decid-
ability of the monadic second-order theory over finite words
is a central result in the verification of infinite structures [1],
[2], [3]. The major extensions of these results were due to
Büchi and Rabin, extending this decidability to infinite words
and infinite trees [4]. The culmination of these form of results
is probably the preservation of monadic second-order logic
under the iteration construction of Muchnik-Walukiewicz [5].

Another branch of automata related techniques is concerned
quantitative forms of verification. More specifically, we are
interested by the contributions intiated by Hashiguchi [6] when
he proved the decidability of the limitedness problem for func-
tions computed by distance automata, automata that associate
to the each input word a value in N∪{∞}. These results have
then be reproved and improved by Leung and Simon [7], [8],
and then extended to more expressive forms of automata by
Kirsten [9] and to finite trees in [10]. This line of research
has been fruitful for solving difficult problems in language
theory such as the finite power property and the emblematic
star-height problem [11], [9], the star height problem for trees
[10], or deciding the boundedness of fixpoints for monadic
logic [12].

Inspired by ideas from [13], these two branches of research
were unified in the theory of cost-functions [14], [15] where an
extension of monadic second-order logic that can capture the
quantitive aspects of distance autamata and their extensions
was introduced and proved decidable. This theory was also
successfully extended to finite trees [16] and infinite words.
The case of infinite trees remains open (solving it would
solve another important open problem in automata theory: the
decidability of the Mostowski hierarchy [17]), and only the
weak fragment of the logic (and a bit more) is understood so
far [18], [19].

There are several reasons to study such extensions of
monadic logic. The first one is indeed to solve difficult
questions related to monadic second-order logic and automata
theory. Another one is concerned with its consequences in

verification: such techniques open the door for new results of
model checking with quantitative objectives: question such as
“is the system able to achieve a goal while keeping its resource
consumption reasonable (to be understood as bounded here)?”
At a general level, these techniques raise the results concerning
monadic logic, which are Boolean in nature, to versions that
have mild quantitative capacities (knowing that almost all
versions of monadic logic with quantitative capabilities either
turn out to be undecidable, or to be no-more expressive than
the original logic). This approach may also appear useful in
contexts of theoretical computer science other than monadic
second-order logic.

We are concerned here with finite words, and extensions of
the results and the techniques in [14], [15]. In these works, cost
monadic logic was introduced. This logic extends monadic
(second-order) logic with the ability to test whether a set has
size at most n (using the construct |X| ≤ n using always a
single number variable n) providing this test occurs positively
in the formula (below an even number of negation). Such a
formula ϕ is used to describe a function [[ϕ]] which to each
word u associates the least n that makes the formula true
over u. What is shown decidable is the boundedness problem,
i.e., ∃n∀u [[ϕ]](u) ≤ n. This can also simply be stated as
∃n∀uϕ if we consider ϕ as implicitly referring to u. More
generally what is shown decidable is the domination relation
between two formulae of cost monadic logic, ϕ and ψ: on
every set of words, if [[ψ]] is bounded, then so is [[ϕ]]. This
is equivalent to ∀m∃n∀u (([[ψ]](u) ≤ m) → ([[ϕ]](u) ≤ n))
(see [15] for a thorough description). Equivalently, this can be
rephrased as deciding ∀m∃n∀u (ψ → ϕ).

We continue to develop this path of research in several ways.
The contributions of the paper can listed as follows.
• We introduce a new logic, magnitude monadic logic. In

this logic, formulae can begin with an arbitrary block of
number quantifier ∃m1∀m2 . . . ∀m2k followed with a formula
of monadic logic that can furthermore use predicates of the
form |X| ≤ mi providing these appear with a suitable
constraint of positivity. In particular, the domination between
formulae of cost monadic logic can be expressed in this logic.
• We generalise the proof techniques used for cost-

functions to this extended framework, introducing magnitude
monoids (that extend stabilization monoid), and showing that,
in a suitable sense, these have the same expressive power as
magnitude monadic logic. We derive decision procedure from
it. In particular this extends all decidability results concerning
cost functions over finite words in the literature.
• We perform our proofs in the framework of Relative

Internal Set Theory (RIST): a conservative extension of ZFC
introduced by Péreire [20] which implements the ideas of

2

non-standard analysis. This change in approach significantly
simplifies the technical aspects of the proof. This part is
motivated by ideas from Toruńczyk, who used profinite words
for modelling and solving cost-functions and describe other
objects [21], [22].

The rest of the paper is organised as follows. In Section II,
we introduce the notion of magnitude formulae, and in particu-
lar magnitude monadic logic. In Section III, we present briefly
relative internal set theory, and describe how its use drastically
simplifies many concepts related to magnitude logics. In
Section IV we introduce the algebraic object of magnitude
monoids. In Section V we develop several notions necessary
for giving semantics to magnitude monoids. In Section VI we
finally present the notion of recognizability by monoid, show
its equivalence with magnitude monadic logic, and solve it.

II. MAGNITUDE FORMULAE AND MONADIC LOGIC

A. Magnitude formulae

We start by introducing the principle of magnitude formulae
in a general context of some first-order logic. We expect
the reader familiar with logic terminology. First-order logic,
is defined here as usual using first-order variables x, y, . . . ,
and it is allowed to quantify over them existentially (∃xϕ),
universaly (∀xϕ), to use the boolean connectives (∨, ∧, ¬,→)
and terms constructed from the (a(x), R(x, y, f(z)), . . .). We
do not want to be precise concerning signatures, and details
should be clear from the context.

Given a variable n, ranging over non-negative integers
(from now, variables m,n,m1, . . . implicitly range over non-
negative integers), we say that a formula ϕ(n) uses n as
an upper bound if, for all valuations of other variables
and all n ≤ m, if ϕ(n) holds ϕ(m) also holds. A formula
syntactically uses n as an upper bound if, when negations
are pushed to the leaves, all occurrences of the variable n
appear in constructions of the form t ≤ n where t is a term. In
particular t > n or t = n are disallowed constructions. Dually
ϕ (syntactically) uses n as a lower bound if its negation
(syntactically) uses n as an upper bound. Remark that it is
easy to transform a formula ϕ(n) using n as a lower bound
into an equivalent one syntactically using it as a lower bound,
namely ψ(n) := ∃m (m ≤ n ∧ ϕ(m)).

A magnitude formula is a formula of the form:

Q1m1 Q2m2 . . . Qkmk ϕ ,

where Qi is either ∃ or ∀, m1 . . .mk are variables ranging over
non-negative integers, and ϕ is a formula that uses mi as an
upper bound if Qi is ∃ and as a lower bound otherwise, i.e., if
Qi is ∀. The formula ϕ is called a Q̄m̄-formula. Usually, we
abbreviate the sequence of quantifiers Q1m1 Q2m2 . . . Qkmk

as Q̄m̄. We call Q̄m̄ the quantifier context. It will most of
the time be fixed. The dual dQ̄m̄ of a quantifier context Q̄m̄
is obtained by exchanging ∃ for ∀ and vice versa.

Given a quantifier context Q̄m̄, it induces an order over
Nk defined by m̄ ≤Q̄ n̄ if, mi ≤ ni for all i such that Qi is
∃, and ni ≤ mi otherwise. This order has the property that
whenever m̄ ≤Q̄ n̄, ϕ(m̄) → ϕ(n̄) for all Q̄m̄-formula ϕ.

Remark also that “dualising” the quantifier context reverses
the order.

Examples of magnitude formula include boundedness for-
mulas ∃mφ, domination between cost function, the definition
of nowhere dense graphs.

Let us describe informally why we name such formulae
“magnitude formulae”. One can see the evaluation of such a
formula as a k-rounds game involving players ∃ and ∀. In
this game, the player Q1 plays firsts and choose m1 ∈ N,
then player Q2 chooses m2, and so on. After k rounds, the
existential player wins if the resulting valuation of m̄ makes
the formula ϕ true. Naturally ∃ wins such a game if and only
if Q̄m̄ ϕ holds. Under this view, the positivity and negativity
requirements in the use of m1, . . . ,mk in ϕ have as direct
consequence that, at each step of the game, the player to move
has all interest in choosing the highest value possible. Indeed,
if a player Q wins the game, and that in some branch of his
winning strategy he plays at round i the value mi, then the
strategy will still be winning playing any m′i ≥ mi instead.
For this reason it is sufficient to reason with strategies where
m1 is chosen “very large”, m2 is chosen “very large” in front
of m1, m3 is chosen “very large” in front of m1 and m2,
etc. . . In other words, m1, m2, . . . can be considered as having
increasing orders of magnitude. This intuition will be made
precise thanks to the use of Relative Internal Set Theory (see
section III).

B. Magnitude monadic second-order logic

In this paper, we are more specifically interested in formulae
of magnitude monadic logic. Let us recall that monadic
(second-order) logic has the syntax of first-order logic, where
variables are split into first order variables x, y, . . . inter-
preted as elements of the structure and monadic (second-
order) variables interpreted as sets of elements. A special
relation x ∈ Y interpreted as “x belongs to Y ” is allowed.
All the predicates of the structure are used with first order
variables. For instance on di-graphs (seen as a structure with
vertices as elements and using a signature with sole symbol
edge(x, y) interpreted as the edge relation), the formula

∀Z x ∈ Z ∧ (∀z∀z′ z ∈ Z ∧ edge(z, z′)→ z′ ∈ Z)→ y ∈ Z

expresses that every set that contains x and is closed under
the edge relation also contains y. In other words, it expresses
the existence of a path from x to y.

It is common to use monadic logic–and we will be doing
the same for magnitude monadic logic–over words. For doing
this, words need be seen as relational structures. Formally, for
a given alphabet A, a word u ∈ A∗ is seen as the relational
structure of elements 1, . . . , |u| (the positions in the word)
and is equipped with (a) the binary symbol < interpreted as
the natural order on integers, and (b) of the unary symbol
a interpreted as the set of positions of the words carrying
letter a for all a ∈ A. A language is a set of words over a
given alphabet. A language L is definable in monadic logic
if there is a formula ϕ of monadic logic such that for all
words u, u ∈ L if and only if ϕ is true on u (written u |= ϕ
read “u models ϕ”). The seminal Büchi-Elgot-Trakhtenbrot

3

result states that the languages of words definable in monadic
logic are exactly the regular languages, furthermore, these
equivalences are effective.

Let us turn ourselves to the definition of magnitude monadic
logic. Given a quantifier context Q̄m̄, a Q̄m̄-monadic for-
mula ϕ is a Q̄m̄-formula in the syntax of monadic logic
extended with the ability to use the variables m1, . . . ,mk

in new predicates of the form “|X| ≤ mi” where X is a
monadic variable, and |X| denotes the cardinality of X . Of
course, each formula being a Q̄m̄-formula, the use of the
new constructions is subject to the constraints of positivity
inherited from magnitude logic: every predicate of the form
|X| ≤ mi has to appear positively in ϕ if Qi is ∃, and
negatively otherwise.

A formula of magnitude logic is of the form:

Q̄m̄ ϕ

where Q̄m̄ is a quantifier context, and ϕ is a Q̄m̄-monadic
formula. Our objective is to solve questions such as (N, <) |=
Q̄m̄ ϕ, or (Q, <) |= Q̄m̄ ϕ (we are expecting to present these
results in the future journal version of the paper).

However, in this paper, we do not want to be involved with
infinite models. Indeed, the core of the technique deals with
finite words, and treating infinite words would simply mean
mixing the techniques with non immediately related notions
such as Wilke algebras [23] or ◦-monoids [24]. This would
result in many non-essential complications in the proofs. Then
what about solving satisfiability over finite words? Asking this
question would simply result in making magnitude monadic
logic trivial. Indeed, consider a Q̄m̄-monadic formula ϕ, and
consider ϕ∗ obtained from ϕ by syntactically replacing every
construct |X| ≤ mi by true. It is easy to check that on any
finite model, Q̄m̄ ϕ holds if and only if the monadic formula
ϕ∗ holds. Thus, this cannot be seen as the correct problem
concerning magnitude monadic logic over finite words.

For this reason, we introduce a variant of magnitude
monadic logic for finite words as follows. A magnitude
formula (for finite words) is a formula of the form:

Q̄m̄ ∃uϕ ,

where Q̄m̄ is a quantifier context, ∃u is a quantification
over finite words, and ϕ is a Q̄m̄-monadic formula, which
is interpreted over the word u. This kind of formulae exactly
capture the essence of magnitude monadic logic over finite
words. Remark that over infinite words, this quantification ∃u
is for free. Indeed, using standard encoding techniques, it can
be replaced by a block of existential monadic quantifiers in ϕ.
In this paper, we show the decidability of magnitude formula
for finite words.

An example of such formulae concerns cost-functions (see
introduction or [15]), if ϕ(n), ψ(n) are formula of cost
monadic logic, then

∃m∀n ∃u¬ψ(n) ∧ ϕ(m) ,

expresses the non-domination of [[ψ]] by [[ϕ]].

III. RELATIVE INTERNAL SET THEORY

We advocate in this paper the use of Relative Internal Set
Theory as a convenient context for developing the proofs.
We first present the general framework of Relative Internal
Set Theory in Section III-A, and then study some of its
consequences on magnitude formulae in Section III-B.

A. The framework

Relative Internal Set Theory1 (RIST) is a conservative
extension of ZFC. This means that we allow some new notions,
i.e., new keywords, to be used in the discourse, that have
no interpretation in ZFC. These new keywords are subject to
the application of specific axioms. However, any statement
that does not involve the new symbols is provable in ZFC
if and only if it is provable in RIST. Hence it is as valid
to perform proofs in this conservative extension as in usual
ZFC. This means that, despite the fact that we cannot prove
more results than in ZFC, we can use steps of reasoning
that are meaningless in ZFC, and that can make the proofs
simpler. In particular, RIST will permit to compare the order
of magnitudes of integers in a perfectly formal manner.

In this paper, we will not present RIST in its generality
since it would lead us to introduce notions that are out of the
scope of the present work. We will just present a conservative
extension of ZFC that has sufficient features for our purpose
(and is a serious restriction of RIST).

In the syntax of RIST, every expression usable in ZFC can
be used. In particular elements are related thanks to the binary
membership ∈ predicate. In RIST, we are furthermore allowed
to use the new unary symbols St0,St1, . . . The symbol Sti(x)
means that “x is standard at level i”2. We will say that x is
i-standard. This symbols can be applied to all objects: to
natural numbers, to sets, to functions, or to any mathematical
entity one can think of. An object which is i-standard but is not
i− 1-standard will be said strictly i-standard. The intuition
behind this is that 0-standard elements form, in themselves a
model of ZFC, the part of “easily accessible or constructible
objects”. There are also elements that are 1-standard and not
0-standard. These elements are “unreachable from 0-standard
elements” in the sense that it is impossible using 0-standard
parameters in any formula to witness their existence or non-
existence. Again, 1-standard elements form a model of ZFC.
The strictly 1-standard integers, for instance, can be thought as
“very large” natural numbers (in front of 0-standard numbers).
Strictly 1-standard reals can be for instance “very large” or
“infinitesimal”. The 2-standard elements play the same role in
front of 1-standard elements, and so on. We will see below
that concerning integers, the notion of being i-standard can be
thought of as “being of magnitude i”.

Elements that are 0-standard are simply called standard.
Standard elements are to be thought “simple”, or in our case

1In fact there exist several variants of it, RIST, FRIST, GRIST. . . The
choice of a specific instance does not make any difference for the subject in
question here.

2This is a simplification of the real RIST in which a binary predicate is
used, that means “being at least as standard as”. This weaker presentation
suits better our purpose.

4

representable in a computer. So formulae will implicitly be
standard, finite monoids will also be standard, and more gen-
erally any object which is intended to be used inside a decision
procedure will be standard. Other levels of “standardness” will
be used in the proofs only.

A formula that does not involve any of these new symbols
St0,St1, . . . is internal. The internal formula are exactly the
formula of ZFC. By opposition, a non-internal formula is
external. An i-external formula is a formula which does
not use the predicates St0, . . . ,Sti−1. We will note from now
∃Stiϕ for the formula ∃x Sti(x)∧ϕ, and similarily ∀Sti ϕ for
the formula ∀x Sti(x)→ ϕ.

Let us now describe what are the axioms of RIST.
Extension of ZFC every axiom of ZFC can be used. Thus,

every statement provable in ZFC is also provable. This means
in particular that any object that can be defined in ZFC can be
defined in RIST, and has exactly the same internal properties.
In particular it is possible to define the set of natural numbers
N, and as it is usual, it is possible to perform inductive proofs
on them (providing the induction hypothesis is an internal
formula!).
A particularly important example that is allowed is the
comprehension axiom schema: given a set E, an internal
formula ϕ(x, ȳ) and parameters ā, one can define the set
{x ∈ E : φ(x, ā)}. For instance, one can construct the set of
prime natural numbers. However it is illegal to apply compre-
hension to external formulae. For instance, {x ∈ N : St0(x)}
is an illegal notation since St0(x) is an external formula. This
is as illegal as it is illegal to form in ZFC the “set of all sets”.
Concerning this example, we will even see Lemma 3 stating
that if a set of natural numbers contain all standard numbers, it
also contains a non-standard number. Working in RIST (as in
any variant of non-standard analysis), requires to be extremely
sensitive to such considerations.

Order Every i-standard element is j-standard for all j ≥ i.
Strictness For all i = 0, 1, . . . , there exists n ∈ N which

is strictly i-standard. This axiom (which is again a weakening
of the idealisation axiom of RIST) guarantees that we have
enhanced our universe of discourse. Without it, it would be
impossible to prove that there exists a non-standard element.

Transfer For ϕ(x, ȳ) an internal formula and i-standard
parameters ā, then

∀x ϕ(x, ā) ↔ ∀Stix ϕ(x, ā) .

(dually ∃x ϕ(x, ā) ↔ ∃Stix ϕ(x, ā))

One can use this axiom iteratively on an internal formula, and
get that ϕ(ā) holds if and only if ϕSti(ā) holds for all internal
formula ϕ, where ϕSti is the formula ϕ relativised to the i-
standard elements.
An important consequence of this axiom is that every object
which is definable using an internal formula with i-standard
parameters, is i-standard. For this reason, all usual mathemat-
ical objects, such as ∅, N, R, 0, 1 or π are standard. It follows
also from this argument that if x is an i-standard element, then
every element definable from it using an internal formula is
also i-standard. For instance, given an i-standard integer, its
successor, its predecessor (if relevant), its square, . . . are also
i-standard.

Standardization Consider an i-external formula ϕ(x, ȳ)
(i.e., it can use the predicates Sti,Sti+1, . . . but not
St0,St1, . . . ,Sti−1), any parameters ā, and an i-standard set
X , then, there exists an i-standard set Y such that

∀Sti x ∈ Y ↔ (x ∈ X ∧ ϕ(x, ȳ)) .

We denote this set {x ∈ X : ϕ(x, ȳ)}Sti .

In fact, RIST has a richer set of axioms, that we do not disclose
in this paper. Enhanced versions of this theory, with similar
properties also exists, named FRIST and GRIST. In our case,
these distinctions are irrelevant since we are only interested in
relatively simple forms of proofs.

In any case, the important point is the correctness.

Theorem 1. [Péraire 92] RIST is a conservative extension of
ZFC.

This signifies that any internal formula ϕ provable in RIST
is also provable in ZFC. For this reason, all proofs are (safely)
performed in RIST from now, even if the original question is
formulated in ZFC. The use of RIST simply gives rise to new
powerful proof techniques.

Let us give now some immediate consequences of RIST.
The first one states that the “standardness level” behaves
monotonically with respect to natural numbers.

Lemma 1. For x ≤ y natural numbers, if y is i-standard,
then x is i-standard.

Proof: By contradiction, assume that there exist natural
numbers x ≤ y such that y is i-standard but x not. By stan-
dardization, consider the i-standard set Z = {z ∈ N : z ≤
x}Sti . Remark that every i-standard element in Z is bounded
by y. Thus by transfering the property “every set of natural
numbers which has an upper bound has a maximal element”,
there is a maximal i-standard natural number in Z. Let m
be this number. By definition of Z, m ≤ x. Since m is i-
standard while x is not, this means m < x. Furthermore,
“every natural number has a successor”. So by transfer, m has
an i-standard successor. This successor is smaller or equal to
x. This contradicts the maximality in the choice of m.

According to this lemma, natural numbers can be seen as
follows:

0

0 standard︷ ︸︸ ︷

1 standard︷ ︸︸ ︷

2 standard︷ ︸︸ ︷

. . .

The 0-standard numbers have a minimal element, but no max-
imal element (because the successor of a 0-standard integer is
0-standard by transfer). Then for i > 0, for the same reason,
strictly i-standard non-negative integers have no minimal nor
maximal i-standard element. This structure is the reason why
it is correct to see the successive levels of standardness for
non-negative integers as order of magnitudes.

An application of standardization is the ability to use
variants of the notion of induction that work only at a standard
level.

5

Lemma 2. Assume P (n) is an i-external property, such that
P (0) holds, and P (n) implies P (n+ 1), then P (n) holds for
all i-standard non-negative integers n.

Proof: By standardization, there exists an i-standard set Z
that contains an i-standard n if and only if P (n) does not hold.
For the sake of contradiction, assume there is some i-standard
n ∈ Z, then there exists a minimal n in Z (by transfer),
which furthermore is i-standard by Lemma 1. If n = 0 this
contradicts the hypothesis that P (0) holds. If n > 0, then by
minimality in its construction P (n− 1) holds, but not P (n).
This is again a contradiction to the hypotheses. Hence all i-
standard natural numbers n belongs to Z, and thus satisfy
P (n).

In particular, any induction of standard length is valid.
The following lemma is one of the most important ones in

(any version of) non-standard analysis. It characterizes the fact
that it is impossible to separate the “levels of standardness”
by means of sets.

Lemma 3 (Overspill). If a set contains all i-standard non-
negative integers then it contains a non-negative integer that
is not i-standard. Dually, if a set contains all non i-standard
non-negative integers, it also contains some i-standard non-
negative integer.

Proof: Consider a set N which contains all i-standard
natural numbers. Let x be a natural number that is not i-
standard (it exists) and define M = {n ≤ x : n ∈ N}.
This set M is bounded and hence (by transfer) has a maximal
element m. For the sake of contradiction, assume that m is
i-standard. Then (a) m+ 1 ∈ N since by transfer m+ 1 is i-
stanard and N contains all i-standard elements, and (b) m < x
since m ≤ x by definition and x is not i-standard while m
is. Hence by (a) and (b) m + 1 ∈ N . This contradicts the
maximality of m.

We will use the following consequence of it.

Lemma 4. If ψ(n) is i+1-external (possibly with parameters),
then if ψ(n) holds for all non-i-standard natural numbers n,
it also holds for some i-standard natural number n.

Proof: By standardization, consider the i+1-standard set
Z = {n ∈ N : ψ(n)}Sti+1 . Assume ψ(n) holds for all
non-i-standard natural numbers n, this implies that all strictly
i+1-standard natural numbers belong to Z. By transfer, since
Z is i+ 1 standard, this means that all non-i-standard natural
numbers belong to Z. Hence, by overspill (Lemma 3), Z
contains an i-standard natural number. Thus (definition of Z),
ψ(n) holds for some i-standard natural number.

B. Magnitude formulae in RIST

In this section we show why the use of RIST helps manipu-
lating magnitude formulae. These arguments are valid for any
magnitude formula, be it of monadic logic or not. In particular,
we will use them for general logical formulae.

Caution: we have introduced the notion of magnitude
formulae and Q̄m̄-formulae before RIST, i.e., as a notion of
ZFC. This means that these formula are always internal. It is
not allowed to uses standardness predicates in them.

Let us fix from now a quantifier context Q̄m̄ :=
Q1m1 . . . Qkmk. We denote by Q̄Stm̄ the sequence of quan-
tifiers

QSt1
1 m1Q

St2
2 m2 . . . Q

Stk
k mk .

Lemma 5. Given a magnitude formula Q̄m̄ ϕ without param-
eters,

Q̄m̄ ϕ holds if and only if Q̄Stm̄ ϕ holds.

Proof: We prove, by induction (of standard
length) on ` = 0, 1, . . . , k, that Q̄m̄ ϕ is equivalent to
QSt1

1 m1 . . . Q
St`
` m`Q`+1m`+1 . . . Qkmk ϕ. Each step is by

transfer.
For the moment, it is not clear why exchanging Q̄Stm̄ for

Q̄m̄ is of any help. This will be shown by the following
lemma. To state it, let us define, for ϕ(m̄) a syntactic Q̄m̄-
formula, the formula ϕ(ῑ) which is obtained from ϕ(m̄) by
replacing syntactically every construction of the form f(x̄) ≤
mi by Sti(f(x̄)) (in the case of Q̄m̄-monadic formulae, every
construction |X| ≤ mi is replaced by Sti(|X|)). This formula
is of course not internal anymore. The idea behind the notation
is that ιj would be something like an “integer” element that
would be above every j-standard natural number, and below
every non j-standard natural number. Of course, such an
element does not exist, but it is very convenient to use it as
a notation. Since every Q̄m̄-formula can be transformed into
a syntactically Q̄m̄-formula, we also allow ourselves to use
the notation ϕ(ῑ) in this case (but using directly the above
definition would be incorrect here).

Remark that n̄ ≤Q̄ m̄ is a Q̄m̄-formula. This means that we
can use the notation n̄ ≤Q̄ ῑ. Dually, we can write n̄ ≥Q̄ ῑ.
which is a dQ̄m̄-formula.

Proposition 6. For every Q̄m̄-formula ϕ(m̄),

Q̄Stm̄ ϕ(m̄) if and only if ϕ(ῑ) ,

if and only if ∃m̄ ≤Q̄ ῑ ϕ(m̄) ,

if and only if ∀m̄ ≥Q̄ ῑ ϕ(m̄) .

Proof: Assume Q̄m̄ is Q1m1 . . . Qkmk. We prove by
downward induction on ` = 0 . . . k that for all m1, . . . ,m`

that are respectively 1-standard, . . . , `-standard,

ψ` := QSt
l+1m`+1 . . . Q

St
k mk ϕ(m̄) holds

if and only if ϕ` := ϕ(ῑ[l+1,...,k]) holds ,

where ϕ(ῑ[`+1,...,k]) is obtained from ϕ(m̄) by replacing
syntactically every construction of the form f(x̄) ≤ mi for
some i = `+1 . . . k by Sti(f(x̄)). Of course, the induction hy-
pothesis holds for ` = k since ψk = ϕk. Assume now that the
induction hypothesis holds for ` > 0 and that m1, . . . ,m`−1

are fixed as in the induction hypothesis. Assume also, without
loss of generality, that Q` is ∃ (the case of ∀ is dual).

Assume first that ψ`−1 holds. This means that there exists
some `-standard m` such that ψ` holds. By induction hypoth-
esis, this means that ϕ` holds. Then, whenever f(x̄) ≤ m`

holds (for some term f(x̄)), St`(f(x̄)) also holds. Since every

6

such test occur positively in ϕ`, we can replace everywhere in
it f(x̄) ≤ m` constructs by St`(f(x̄)), and obtain that ϕ`−1

holds.
Conversely, assume ϕ`−1 holds. Consider a non-`-standard

m`. Then by Lemma 1, St`(f(x̄)) implies f(x̄) ≤ m`. Hence
ϕ` holds for all non ` − 1-standard m`. Thus, since ϕ` is `-
external, using Lemma 4, ϕ` holds for some `-standard m`.
We can apply the induction hypothesis and get that ψ` holds
for some `-standard m`, and hence ψ`−1 holds.

The two other equivalences use the same arguments.

Example 1. We provide here an example of magnitude
monadic logic for finite words. The formula is

∀m1∃m2 ∃uϕ(m̄) with ϕ(m̄) := m1 < |u|a ∧ |u|a ≤ m2

(here |u|a represents the number of occurrences of the letter
a: it is simple to write ϕ as a ∀m1∃m2-monadic formula).
This formula is obviously true. A proof of it requires to give,
for all m1, values for m2 and u that make the formula true.
For instance, one can choose m2 = m1 + 1 and u = am2 .

What have we shown by the above explanations? Simply
that it is equivalent to solve the formula:

∃uϕ(ῑ) , namely ∃u¬St1(|u|a) ∧ St2(|u|a) .

Hence, a single (non-standard) word such that the number of
occurrences of the letter a is strictly 2-standard is a witness
of the truth of the formula. We see here all the interest of
using RIST. By Skolemisation, finding a witness of the truth of
some magnitude monadic logic requires to manipulate higher
order objects (in the above example, a function which to
each m1 associates m2 and u). Now that we have shifted
the presentation to RIST, a witness is a single word (but non-
standard in general: this is the price to pay).

IV. MAGNITUDE STABILISATION MONOIDS

The core of our approach for solving as well as under-
standing the expressive power of magnitude monadic logic
over finite words is to provide an equivalent algebraic notion,
magnitude monoids, that allows ourselves to define properties
of words that are recognizable by magnitude monoids. This
object is an extension of the notion of stabilisation monoids
for cost functions.

A. Semigroups and monoids

A semigroup S = (S, ·) is a set S equipped with an
associative operation “·”. A monoid is a semigroup such that
the product has a neutral element 1, i.e., such that 1 · x =
x · 1 = x for all x ∈ S. We extend the product to products of
arbitrary length by defining π from S+ to S by π(a) = a
and π(ua) = π(u) · a. If the semigroup is a monoid of
neutral element 1, we further set π(ε) = 1. All semigroups
are monoids, and conversely it is sometimes convenient to
transform a semigroup S into a monoid S1 simply by the
adjunction of a new neutral element 1.

An idempotent in S is an element e ∈ S such that e ·e = e.
We denote by E(S) the set of idempotents in S. An ordered
semigroup (S, ·,≤) is a semigroup (S, ·) together with an

order ≤ over S such that the product · is compatible with ≤;
i.e., a ≤ a′ and b ≤ b′ implies a · b ≤ a′ · b′. An ordered
monoid is an ordered semigroup, the underlying semigroup
of which is a monoid.

B. Magnitude stabilisation monoids

Let us fix ourselves a quantifier context Q̄m̄ :=
Q1m1 . . . Qkmk.

Definition 1. An Q̄-magnitude semigroup is a structure S =
(S, ·,≤,]1, . . . ,]k) such that:
• (S, ·,≤) is an ordered monoid of finite standard size3,
• For all i = 1 . . . l,]i is a mapping from E(S) to E(S)

denoted exponentially. Implicitely we define]0 as the identity
over E(S). Each]i is called the stabilisation of level i. The
idempotents e such that e = e]i are said i-stable. Idempotents
that are stable for all i = 1 . . . k are said stable.
• For all i, j, and all idempotents e, (e]i)]j = e]max(i,j) .
• If e ≤ f are two idempotents, then e]i ≤ f]i .
• For all i = 1 . . . k, if Qi is ∃, then e]i ≤ e]i−1 , and

e]i−1 ≤ e]i otherwise,
• For all a, b such that a · b and b · a are idempotents, (a ·

b)]i = a · (b · a)]i · b.
A magnitude monoid M is a magnitude semigroup that has
a stable neutral element 1.

The dual of a magnitude monoid is obtained by reversing
the order. IfM is a Q̄m̄-magnitude monoid then its dual dM
is a dQ̄-magnitude monoid, i.e., for the dual quantifier context.

A stabilisation monoid (see [15]) exactly corresponds to
a ∃-magnitude monoid. Though one cannot use directly the
results concerning stabilisation monoids to establish results
for magnitude monoids, most proofs are essentially similar.

We did not describe so far what was the semantics of
magnitude monoid. This require several extra definitions (see
below). Informally, what should be kept in mind is that e]i
represents the effect of iterating a strictly i-standard number
of times the idempotent e. Under this view, rules such as
(a · b)]i = a · (b · a)]i · b have a natural meaning.

What is a bit more subtle is the use of the order, and in
particular the rule stating that if Qi is ∃, then e]i ≤ e]i−1 ,
and e]i−1 ≤ e]i otherwise. This rule serves two purposes.
On the one hand, it reflects the positivity assumptions in the
use of cardinal predicates in magnitude monadic logic. At
the same time this constraint is necessary for developing the
tools describing the semantics of magnitude monoids: under-
computations, over-computations and computations. This will
be the subject of the next section.

Example 2. We expand on Example 1. Thus, Q̄m̄ is again
∀m1∃m2, and the formula expresses that there exists a word
with more than m1 occurrences of a’s, and at most m2.

The idea is that we will separate the four following kind of
words:
λ is the neutral element, and it corresponds to all words

consisting solely of letters different from a.

3This standardness assumption is to be used with RIST. Otherwise finiteness
suffices.

7

1 corresponds to words that contain at least one a, but at
most m1 of them. Interpreted in RIST, this means words
that have a 1-standard number of occurrences of a.

2 corresponds to words that contain more than m1 occur-
rences of a, but at most m2 of them. Interpreted in RIST,
this means words that have a strictly 2-standard number
of occurrences of a.

3 corresponds to words that contain more than m2 occur-
rences of a. Interpreted in RIST, this means words that
have a non 2-standard number of occurrences of a.

It is quite clear how to construct the product. For instance
1 · 2 = 2 means that concatenating a word with a 1-standard
number of occurrences of a to a word with a strictly 2-standard
number of occurrences of a yields a word with a strictly 2-
standard number of occurrences of a. Also, stabilisations are
obvious.]i should be thought to as iterating (an idempotent)
a strictly i-standard number of times. Thus we immediately
get, for instance, that 1]2 = 2]2 = 2]1 = 2.

Overall, we get the following table:

x\y λ 1 2 3]1]2]3
λ λ 1 2 3 λ λ λ
1 1 1 2 3 1 2 3
2 2 2 2 3 2 2 3
3 3 3 3 3 3 3 3

It remains to provide the order. What is mandatory according
to the definition is 2 ≥ 1 since Q1 is ∀ and 1 = 1]1 ≤ 1]2 = 2.
Similarly 2 ≥ 3. This suffices.

Keeping the quantifiers ∀m1∃m2 in mind, this means that it
is always better for the truth of a formula when the size of sets
are in the interval (m1,m2]. Thus the order on the elements
of the monoids reflect the positivity assumptions that are used
in the logic.

V. SEMANTICS OF MAGNITUDE MONOIDS

It not yet clear how to work with magnitude monoids.
Indeed, so far, we have no ways to “evaluate” a magnitude
monoid on a particular input. The key objects in this context
are the ones of computations, under-computations and over-
computations. These are generalisations of the ideas from [15],
themselves highly inspired from the work of Simon [29], all
being adapted to the presentation in RIST.

A. Computation trees

Consider m̄ in Nk−1, that is implicitely extended with m0 =
0 and mk = ∞ and increasing (i.e., m0 < m1 < · · · <
mk−1 < mk). An m̄-under computation T for a word u ∈
S+ of height h is an unranked order tree such that each node
is labeled with T (x) ∈ S and:
• T has |u| leaves, and for all i = 1 . . . |u|, T (xi) ≤ ai

where xi is the ith leaf of T when read from left to
right, and ai is the ith letter of u,

• for every non-leaf node x labeled c := T (x) of children
labeled c1, . . . , cn when read from left to right one of the
following situation holds:
binary node: n = 2 and c ≤ c1 · c2,

idempotent node: c1 = c2 = · · · = cn = e ∈ E(S),
n ≥ 3 and c ≤ e]i , where i = 0 . . . k is is the only
index such that mi ≤ n < mi+1,

• no branch has length more than h.
Unless specified, the height of an under-computation is always
standard. Sometimes a better bound may be specified.

An n̄-over-computation is an n̄-under-computation for the
dual magnitude monoid. This amounts the reverse the order
of S in the definition. An n̄-computation is at the same
time an n̄-under-computation and an n̄-over-computation. This
amounts to replace in the above definition the order of S for
the equality.

Proposition 7. The property “being an m̄-under-computation
of height at most h” is a Q̄m̄-formula.

Proof idea: Assume Qi is ∃, and that T is an m̄-under-
computation over some u. Now, replace mi by some m′i ≥ mi,
yielding the new tuple m̄′. We claim that T is also a m̄′-under-
computation.

Indeed, what could happen that would prevent that? The
answer is that the index i in the definition of an idempotent
node may change. Inspecting more closely the definition, the
only relevant situation is the one of an idempotent node of
degree n such that mi ≤ n < mi+1, but after the change,
mi−1 ≤ n < m′i. Let c and e be as in the definition of an
idempotent node. The fact that T is a m̄-under-computation
means that c ≤ e]i . But, since Qi is ∃, this means that e]i ≤
e]i−1 . Hence c ≤ e]i−1 , which means that the definition of an
idempotent node for m̄′ is also satisfied.

The case when Qi is ∀ cannot be deduced from the ∃-case,
but is similar.

Doing this for every suitable mi, we prove that an m̄-under-
computation is a m̄′-under-computation for all m̄′ ≥Q̄ m̄.

A consequence of this proposition, according to Proposi-
tion 6, is that it is valid to use ῑ-under-computation. This is
the object that we will be using most of the time from now.
In practice, an ῑ-under-computation is defined exactly as an
m̄-computation but for the following new rule which replaces
the case of idempotent nodes:
idempotent node’: c1 = c2 = · · · = cn = e ∈ E(S), n ≥ 3

and c ≤ e]i , where i is such that if i > 1, n is i-standard,
and if i < k, n is not i+ 1-standard.

We will use this presentation from now. Still, we need to
be careful: though tempting, it is not allowed to talk about
ῑ-computations. A natural definition could be given, which
would amount to replace in the above definition of ῑ-under-
computation the order over the semigroup by an equality.
However, we could not guarantee the existence of such an
object for all words. This is why we have to work with under
and over-computations.

Example 3. Consider the magnitude monoid M of Exam-
ple 2. Following the intuition in this example, call a word
over M∗ of “kind λ” if it contains only λ’s. Call it of “kind
1” if it contains at least one 1, a 1-standard number of them,
and no 2 nor 3. Call it of “kind 2” if it does not contain a
3, it contains a 2-standard number of 1 or 2, and contains
at least one occurrences of 2 or a strictly 2-standard number

8

of occurrences of 1. Finally, call a word of “kind 3” in the
remaining cases, which are if either it contains a 3, or it
contains a non 2-standard number of occurrences of 1 or 2.

One can prove, by induction (of standard length, using
Lemma 2) that an ῑ-under-computation (recall that these are
implicitly of standard height) over a word u of kind x
necessary has a value c ≤ x. One can also prove that an ῑ-over-
computation over u has always a value c ≥ x. Furthermore,
one can prove that there exists always an ῑ-under-computation
of value x as well as an ῑ-over-computation of value x. The
following results we show that this “kind” is always uniquely
determined, and it is called the evaluation of the word in the
magnitude monoid.

B. Existence of computations

We have presented the notions of under-computations, over-
computations and computations. This will be used as means
for evaluating words over magnitude semigroups. The first
result one provides states the existence of this object. This
means that every word can be evaluated.

Theorem 2 (existence of computations). For all words u
over a magnitude semigroup S and all n̄, there exists an n̄-
computation for u of height at most 3|S|.

This result generalizes Theorem 3.3 in [15] which holds
only for statbilization monoids. Though it requires to be
redone, the proof is exactly the same, i.e., based on the
analysis of Green’s relations. In our case, since magnitude
semigroups are of standard size, this means that the height of
the computation is standard.

As we already mentioned, it would be invalid to talk about
ῑ-computations. Despite that, we can derive a result in RIST
from Theorem 2, as follows.

Proposition 8. For all words u ∈ S+, there exists an element
a such that
• there is an m̄-computation for u of height at most 3|S|

and value a for some m̄ ≤Q̄ ῑ,
• there is an m̄-computation for u of height at most 3|S|

and value a for some m̄ ≥Q̄ ῑ.

Proof: All computations in this proof have height at most
3|S|.

Fix a word u ∈ S+. Call a limit value for u some x ∈M
such that “for all m̄ ≤Q̄ ῑ there exists an n̄-computation of
value x for u for some m̄ ≤Q̄ n̄ ≤Q̄ ῑ”. Assume that such
an x would not exist, this would mean that there exists some
m̄ ≤Q̄ ῑ such that there is no m̄-computation for u (we use
here the standardness of the magnitude semigroup to exhaust
all possible candidate to be limit values). This would contradict
Theorem 2.

Hence there exists some limit value x for u. Being a limit
value means that there exists some m̄-computation for u of
value x for some m̄ ≤Q̄ ῑ.

Consider now the following formula ψ(m̄): “there exists
an n̄-computation for u of value x for some n̄ ≥Q̄ m̄”. Of
course, the higher is m̄ for ≤Q̄, the less true is the property.
This means that it is a dQ̄m̄-formula. Hence we can apply

Proposition 6 on the formula ∀m̄ ≤Q̄ ῑ ψ(m̄) and get that
∃m ≥Q̄ ῑ ψ(m̄). It follows that there exists an m̄-computation
for some m̄ ≥Q̄ ῑ.

The problem is that so far, we do not know if this value is
unique. This is the subject of the next section.

C. Unicity of computation

Now that we have seen that a computation witnessing the
value of a word can always be produced, we have to prove that
this is meaningful, and in particular, this means that several
different computations essentially yield the same result. This
is formalised by the following statement.

Theorem 3 (unicity). For all words u ∈ S+, all ῑ-under-
computations for u of value a and and all ῑ-over-computations
for u of value b,

a ≤ b .

This theorem, at the same time generalises the result for
cost-functions, Theorem 3.4 in [15]. This is the most involved
part of the proof, and in particular the place where it is needed
to analyse the structure of under and over-computations. It
follows essentially the same structure of proof as in [15], that
would be slightly complexified by the use of several order of
magnitudes, and clearly simplified by the use of RIST.

When combined with Proposition 8, we obtain the following
fundamental definition.

Definition 2. For all words u, there exists a unique element
a ∈ S such that Proposition 8 holds. This element is noted
ρS(u) and is called the evaluation of u in S. It is also the
sole element which is at the same time the value of an ῑ-under-
evaluation for u and of an ῑ-over-evaluation for u.

Let us remark that the definition were given so far for
magnitude semigroups. Extending it to magnitude monoids re-
quires to allow occurrences of the neutral element everywhere
in a computation. There is essentially no difficulty here. See
for instance [15] where this is entirely done for cost functions.

VI. RECOGNIZABLE Q̄Stm̄-LANGUAGES

A. Definition

A Q̄Stm̄-language is an external set of words over a given
alphabet definable by a formula of the form Q̄Stm̄ ϕ where ϕ
is a Q̄m̄-formula. An external set means that it is not strictly
speaking a set, but rather a definable property (indeed Q̄Stm̄ ϕ
is an external formula and hence it is disallowed to form the
set of words that satisfy it). Despite its external nature, we use
some set terminology for Q̄Stm̄-languages, and in particular
we use union, intersection or projection of such objects. This is
valid since these operations are in fact first order constructions
that can be handled at the level of the logic.

Given a Q̄m̄-magnitude monoid M, a mapping h from an
alphabet A to M and a filter F ⊆M (an upward closed subset
for the order ofM), we say that a word u ∈ A+ is ῑ-accepted
by M, h, F if

ρM(h̃(u)) ∈ F ,

9

where h̃ is the extension of h into a mapping from A∗ to M∗.
The Q̄Stm̄-language recognized is the external set [[M, h, F]]
that contains u if u is ῑ-accepted by M, h, F .

B. Elementary closure properties

Boolean closures are easy to obtain.

Lemma 9. If K and L are recognizable Q̄Stm̄-languages,
then the same holds for K ∩ L and K ∪ L. Furthermore {P
is a recognizable dQ̄Stm̄-language.

We do not develop these points. Complement is obtained
by dualizing the magnitude monoid, and exchanging the filter
for its complement. Union and intersection are obtained by
product construction as usual.

It is also important for us to have some constant Q̄Stm̄-
languages. We start with regular languages.

Lemma 10. All (standard) regular languages are recognizable
Q̄Stm̄-languages.

Proof: Let L be a regular language. This means that it is
recognizable by a monoid. Hence there exists a finite monoid
M = (M, ·), a subset F ⊆ M , and a mapping h from A to
M such that u ∈ L if and only if π(h̃(u)).

We turn M into the Q̄m̄-magnitude monoid M′ :=
(M, ·, I dE(M), . . . , I dE(M)). Hence, we extend the monoid
with a trivial equality order, and the stabilizations are set to
the identity. This is the canonical way to transform a monoid
into a magnitude monoid. It is easy to prove by induction on its
height that for all under-computations for some u ∈ M∗, the
value is π(u). It follows that for all words u, ρM(u) = π(u),
and as a consequence [[M′, h, F]] = L.

The other properties that we need to recognize are described
by the following lemma.

Lemma 11. If Qi is ∃ then the words that have an i-standard
number of occurrences of a letter ‘a’ form a recognizable
Q̄Stm̄-language.

Dually, if Qi is ∀ then the words that have a non i-standard
number of occurrences of a letter ‘a’ form a recognizable
Q̄Stm̄-language.

Proof: We use a three element monoid, {1, a, 0}. The
element 1 is the usual neutral element and 0 is an absorbing
element. The element a corresponds to the words that have
at least one occurrence of the letter a, but only an i-standard
number of them. The element 0 gathers all the other words,
namely the ones that have a non-i-standard number of occur-
rences of a. We obtain the following table.

x\y 1 a 0]1 . . .]i−1]i . . .]k
1 1 a 0 1 1 1 1
a a a 0 a . . . a 0 . . . 0
0 0 0 0 0 0 0 0

And the order is simply the least one such that 0 ≤ a. As
expected h sends all letters to 1 but a which is sent to 0,
and F = {1, a}. Proving the correctness of this construc-
tion requires an inductive analysis of the under and over-
computations. We do not perform it here.

C. Magnitude expressions and decidability

Magnitude expressions are the natural extensions of
Hashiguchi’s]-expressions to the case of magnitude monoids.
These are used in order to explore the structure of magnitude
monoids and to provide witnesses of non-emptiness.

A magnitude expression over a (standard) set X is a (stan-
dard) term built using the operations ·,]1, . . . ,]k, and using
constants from X . Hence, this is a term in the signature of
magnitude monoids. A magnitude expression over a magnitude
monoid is valid if it can be evaluated in it. This means that]i
operations are applied only to idempotents. A valid expression
f has a value which is simply denoted val(f). Given some
X ⊆M , 〈X〉] is the set of values of expressions over X .

An expression is said of level i if it does not use the
operations]i+1, . . . ,]k. Given some X ⊆ M , 〈X〉≤i is the
set of values of expressions of level i over X . An expression
is strictly of level i if it is of level i but not of level i−1. This
means that it uses at least once the operation]i. Given some
X ⊆M , 〈X〉=i is the set of values of expressions strictly of
level i over X .

Given natural numbers n̄ = (n1, . . . , nk) and a magnitude
expression f , the n̄-unfolding of f is the word obtained from
f by substituting ni syntactically for each]i, and evaluating
the resulting expressions (here uni means repeating ni times
the word u). It transforms an expression over X into a word
in X∗.

Lemma 12. Given a valid magnitude expression f over some
magnitude monoid M and some n̄, then there is an n̄-
evaluation for the n̄-unfolding of f of height at most |f | (the
size of f), and value val(f).

Proof: By induction on the structure of f .
These magnitude expressions are used for decision proper-

ties. This is done in the following lemma.

Lemma 13. The problem, given a recognizable Q̄Stm̄-
language L to decide whether there exists a word u ∈ L is
decidable. The problem to decide if there exists a word u ∈ L
of strictly i-standard length is also decidable.

Proof: Assume L recognized by M, h, I . Consider now
the (computable) set Z := 〈h(A)〉] where h(A) is the set of
images of letters of the alphabet A under h. We claim that

Z ∩ F 6= ∅ if and only if P (u) holds for some u,

from which the decidability follows.
Indeed, assume that Z ∩ F is non-empty. This means that

there exists a Q̄Stm̄-magnitude expression f of value a ∈
Z ∩ F . Consider some 0 < n1 < · · · < nk such that ni ≥Q̄ ῑ
(this is possible). Let v be the n̄-unfolding of f . According
to Lemma 12 there exists an n̄-computation for v of value
val(f) ∈ F . Since n̄ ≥Q̄ ῑ, this is also an ῑ-under-computation
for v. Hence ρM(v) ≥ a ∈ F , which means ρM(v) ∈ F . It
follows that any word u ∈ h̃−1(v) (and there are some) is a
witness that L is non-empty.

Conversely, assume that u is accepted. This means a :=
ρM(h̃(u)) ∈ F . From the fundamental definition, this means
that there is an m̄-computation for h̃(u) of value a for some
m̄. By induction (of standard length), (?) the value of a

10

computation over a word v ∈ X∗ for some X ⊆M belongs to
〈X〉]: indeed, each binary node in a computation corresponds
to a product, and each idempotent node corresponds to a
stabilisation. Hence a ∈ Z. Thus a is a witness that Z ∩ F is
non-empty.

For treating the case of strictly i-standard words, one uses
Z := 〈h(A)〉=]i , i.e., we restrict our attention to computations
for words of strictly i-standard length. The remaining of the
proof is the same, but for the fact that one should check instead
of (?) that the value of a computation over a word v ∈ X∗ of
strictly i-standard length for some X ⊆M belongs to 〈X〉=]i .
This is again a simple induction (of standard length).

D. Projection
The last, and important, closure property is the projection.

Lemma 14. If L is a recognizable Q̄Stm̄-language over
alphabet A, and h a mapping from A to B∗, then h̃(L) is
a recognizable Q̄Stm̄-language.

This is obtained by a form or powerset construction.

E. And the logic?
We are finally able to put all pieces together. Recall the

definition of magnitude monadic logic. Given a Q̄m̄-monadic
formula ϕ over the signature of words, it defines naturally the
Q̄Stm̄-language containing words such that u |= Q̄Stm̄ ϕ. We
say that the Q̄Stm̄-language is definable in Q̄Stm̄-monadic
logic.

Theorem 4. A Q̄Stm̄-language of finite words is definable
in Q̄Stm̄-monadic logic if and only if is recognizable by a
Q̄Stm̄-magnitude monoid.

This is the standard technique used, e.g, by Büchi: For
proving the decidability of monadic logic, one is required to
provide effective closure of a class of languages under union,
intersection, complement and projection as well as provide
sufficient constant languages in it. This is exactly what we have
done so far for recognizable Q̄Stm̄-languages with Lemmas 9,
10, 11 and 14. The only novelty needed here, is, thanks to
Proposition 6, to use the equivalence of formulae of the form
Q̄Stm̄ ∃X ψ with ∃X Q̄Stm̄ ψ (and similarly for universal
quantifiers).

For the converse direction this requires proving that the
“existence of an n̄-under-computation of height at most 3|M |
and value in F ” is definable in Q̄m̄-monadic logic. Indeed,
such a tree being of bounded depth, it can be guessed using
monadic variables.

If we combine it with Lemma 13, we obtain decidability.

Theorem 5. The emptiness of a Q̄Stm̄-language definable in
Q̄Stm̄-monadic logic is decidable. Magnitude monadic logic
over finite words is decidable.

For the second statement, consider a formula of magnitude
monadic logic Q̄m̄ ∃uϕ. By Lemma 5, Q̄m̄∃uϕ holds if
and only if Q̄Stm̄ ∃uϕ holds, which itself is equivalent to
∃u Q̄Stm̄ ϕ using Proposition 6. Hence it is reduced to the
emptiness of a Q̄Stm̄-language definable in Q̄Stm̄-monadic
logic.

REFERENCES

[1] C. C. Elgot, “Decision problems of finite automata design and related
arithmetics,” Trans. Amer. Math. Soc., vol. 98, pp. 21–52, 1961.

[2] B. A. Trakhtenbrot, “Finite automata and monadic second order logic
(russian),” Siberian Math. J, vol. 3, pp. 103–131, 1962.

[3] J. R. Büchi, “On a decision method in restricted second order arith-
metic,” in Proceedings of the International Congress on Logic, Method-
ology and Philosophy of Science. Stanford Univ. Press, 1962, pp. 1–11.

[4] M. O. Rabin, “Decidability of second-order theories and automata on
infinite trees,” Trans. Amer. Math. soc., vol. 141, pp. 1–35, 1969.

[5] I. Walukiewicz, “Monadic second-order logic on tree-like structures,”
Theoretical Computer Science, vol. 275, no. 1–2, pp. 311–346, 2002.

[6] K. Hashiguchi, “Limitedness theorem on finite automata with distance
functions,” J. Comput. Syst. Sci., vol. 24, no. 2, pp. 233–244, 1982.

[7] H. Leung, “An algebraic method for solving decision problems in finite
automata theory,” Ph.D. dissertation, Pennsylvania State University,
Department of Computer Science, 1987.

[8] I. Simon, “On semigroups of matrices over the tropical semiring,”
RAIRO ITA, vol. 28, no. 3-4, pp. 277–294, 1994.

[9] D. Kirsten, “Distance desert automata and the star height problem,”
RAIRO, vol. 3, no. 39, pp. 455–509, 2005.

[10] T. Colcombet and C. Löding, “The nesting-depth of disjunctive µ-
calculus for tree languages and the limitedness problem,” in Computer
science logic, ser. Lecture Notes in Comput. Sci. Berlin: Springer,
2008, vol. 5213, pp. 416–430.

[11] K. Hashiguchi, “Relative star height, star height and finite automata
with distance functions,” in Formal Properties of Finite Automata and
Applications, 1988, pp. 74–88.

[12] A. Blumensath, M. Otto, and M. Weyer, “Boundedness of monadic
second-order formulae over finite words,” in 36th ICALP, ser. Lecture
Notes in Computer Science. Springer, Jul. 2009, pp. 67–78.

[13] M. Bojańczyk and T. Colcombet, “Bounds in ω-regularity,” in LICS 06,
2006, pp. 285–296.

[14] T. Colcombet, “The theory of stabilisation monoids and regular cost
functions,” in Automata, languages and programming. Part II, ser.
Lecture Notes in Comput. Sci. Berlin: Springer, 2009, vol. 5556, pp.
139–150.

[15] ——, “Regular cost functions, part I: logic and algebra over words,”
Log. Methods Comput. Sci., 2013, special issue of ICALP09.

[16] T. Colcombet and C. Löding, “Regular cost functions over finite trees,”
in LICS, 2010, pp. 70–79.

[17] T. Colcombet and C. Löding, “The non-deterministic Mostowski hi-
erarchy and distance-parity automata,” in Automata, languages and
programming. Part II, ser. Lecture Notes in Comput. Sci. Berlin:
Springer, 2008, vol. 5126, pp. 398–409.

[18] M. V. Boom, “Weak cost monadic logic over infinite trees,” in MFCS,
2011, pp. 580–591.

[19] D. Kuperberg and M. V. Boom, “Quasi-weak cost automata: A new
variant of weakness,” in FSTTCS, 2011, pp. 66–77.

[20] Y. Péreire, “Théorie relative des ensembles internes.”
[21] S. Toruńczyk, “Languages of profinite words and the limitedness prob-

lem,” Ph.D. dissertation, Warsaw University, 2011.
[22] S. Toruńczyk, “Languages of profinite words and the limitedness prob-

lem,” in ICALP (2), ser. Lecture Notes in Comput. Sci., vol. 7392, 2012,
pp. 377–389.

[23] T. Wilke, “An Eilenberg theorem for ∞-languages,” in Automata,
Languages and Programming, ser. Lecture Notes in Computer Science,
vol. 510. Springer, 1991, pp. 588–599.

[24] O. Carton, T. Colcombet, and G. Puppis, “Regular languages of words
over countable linear orderings,” in ICALP (2), ser. Lecture Notes in
Computer Science, L. Aceto, M. Henzinger, and J. Sgall, Eds., vol.
6756. Springer, 2011, pp. 125–136.

[25] T. Colcombet, “Green’s relations and their use in automata theory,” in
LATA, ser. Lecture Notes in Computer Science, A. H. Dediu, S. Inenaga,
and C. Martı́n-Vide, Eds., vol. 6638. Springer, 2011, pp. 1–21, invited
lecture.

[26] G. Lallement, Semigroups and Combinatorial Applications. Wiley,
1979.

[27] J.-E. Pin, Varieties of Formal Languages. North Oxford Academic,
London and Plenum, New York, 1986.

[28] P. A. Grillet, Semigroups. An introduction to the structure theory. Pure
and Applied Mathematics, Marcel Dekker. 193. New York, NY: Marcel
Dekker, Inc. ix, 398 p, 1995.

[29] I. Simon, “Factorization forests of finite height,” Theoretical Computer
Science, vol. 72, pp. 65–94, 1990.

11

[30] ——, “A short proof of the factorization forest theorem,” Tree Automata
and Languages, pp. 433–438, 92.

[31] M. Kufleitner, “The height of factorization forests,” in MFCS, vol. 5162,
2008, pp. 443–454.

[32] T. Colcombet, “Factorization forests for infinite words and applications
to countable scattered linear orderings,” Theoret. Comput. Sci., vol. 411,
no. 4-5, pp. 751–764, 2010.

12

VII. PROOF OF THE EXISTENCE OF COMPUTATION

In this section of the appendix, we prove the existence of
computations:

Theorem 2 (existence of computations). For all words u
over a magnitude semigroup S and all n̄, there exists an n̄-
computation for u of height at most 3|S|.

This result generalizes Theorem 3.3 in [15] which holds
only for stabilisation monoids. Though it requires to be redone,
the proof is exactly the same (and the proof below is almost
a copy-paste of the proof in [15]).

More precisely, we establish that for all words u over
a magnitude semigroup S and all n̄, there exists an n-
computation for u of height at most 3|S|. Hence, we are
more precise that simply “of standard height”. Remark that the
convention in this context is to measure the height of a tree
without counting the leaves. This result is a form of extension
of the factorisation forest theorem due to Simon [29]:

Theorem 6. [Simon [29], [30]] Define a Ramsey factorisa-
tion to be an n-computation in the pathological case all the
stabilisation are the identity over idempotents.
For all non-empty words u over a finite semigroup S, there
exists a Ramsey factorisation for u of height4 at most 3|S|−1.

Some proofs of the factorisation forest theorem can be found
in [31], [32], [25]. Our proof could follow similar lines as the
above one. Instead of that, we try to reuse as much lemmas
as possible from these constructions.

For proving Theorem 2, we will need one of Green’s
relations, namely the J -relation (while there are five relations
in general). Let us fix ourselves a semigroup S. We denote
by S1 the semigroup extended (if necessary) with a neutral
element 1 (this transforms S into a monoid). Given two
elements a, b ∈ S, a ≤J b if a = x · b · y for some x, y ∈ S1.
If a ≤J b and b ≤J b, then aJ b. We write a <J b to
denote a ≤J b and b 6≤J a. The interested reader can see,
e.g., [25] for an introduction to the relations of Green (with a
proof of the factorisation forest theorem), or monographs such
as [26], [28] or [27] for deep presentations of this theory.
Finally, let us call a regular element in a semigroup an
element a such that a · x · a = a for some x ∈ S1.

The next lemma gathers some classical results concerning
finite semigroups.

Lemma 15. Given a J -class J in a finite semigroup, the
following facts are equivalent:
• J contains an idempotent,
• J contains a regular element,
• there exist a, b ∈ J such that a · b ∈ J ,
• all elements in J are regular,
• all elements in J can be written as e · c for some

idempotent e ∈ J ,
• all elements in J can be written as c · e for some

idempotent e ∈ J .
Such J -classes are called regular.

4The exact bound of 3|S| − 1 is due to Kufleitner [31]. It is likely that
the same bound could be achieved for Theorem 2. We prefer here a simpler
proof with a bound of 3|S|.

We will use the following technical lemma.

Lemma 16. If f = e · x · e for eJ f two idempotents, then
e = f .

Proof: We use some standard results concerning finite
semigroups. The interested reader can find the necessary
material for instance in [27]. Let us just recall that the relations
≤L, ≤R and L and R are the one-sided variants of ≤J and
J (L stands for “left” and R for “right”). Namely, a ≤L b
(resp. a ≤R b) holds if a = x · b for some x ∈ S1 (resp.
a = b · x), and L =≤L ∩ ≥L (resp. R =≤R ∩ ≥R). Finally,
H = L ∩R.

The proof is very short. By definition f ≤L e since e·x·e =
f . Since by assumption fJ e, we obtain fLe (a classical result
in finite semigroups). In a symmetric way fRe. Thus fHe.
Since an H-class contains at most one idempotent, f = e (it is
classical than anyH-class, when containing an idempotent, has
a group structure; since groups contain exactly one idempotent
element, this is the only one).

The next lemma shows that the stabilisation operation
behaves in a very uniform way inside J -classes (similar
arguments can be found in the works of Leung, Simon and
Kirsten).

Lemma 17. If eJ f are idempotents, then e]iJ f]i . Further-
more, if e = x · f · y for some x, y, then e]i = x · f]i · y.

Proof: For the second part, assume e = x ·f ·y and eJ f .
Let f ′ = (f · y · e · x · f). We easily check f ′ · f ′ = f ′.
Furthermore fJ e = (x · f · y) · e · (x · f · y) ≤J f ′ ≤J f .
Hence fJ f ′. It follows by Lemma 16 that f ′ = f . We now
compute e]i = (x · f · f · y)]i = x · f · (f · x · y · f)]i · f · y =
x · f · f]i · f · y = x · f]i · y (using consistency and f = f ′).

This proves that eJ f implies e]i ≤J f]i . Using symmetry,
we obtain e]iJ f]i .

Hence, if J is a regular J -class, there exists a unique J -
class J] which contains e]i for one/all idempotents e ∈ J .
If J = J]i , then J is called i-stable, otherwise, it is called
i-unstable. The following lemma shows that stabilisation of
level i is trivial over i-stable J -classes.

Lemma 18. If J is an i-stable J -class, then e]i = e for all
idempotents e ∈ J .

Proof: Indeed, we have e]i = e · e]i · e and thus by
Lemma 16, e]i = e.

The situation is different for unstable J -classes. In this case,
the stabilisation always goes down in the J -order.

Lemma 19. If J is an i-unstable J -class, then e]i <J e for
all idempotents e ∈ J .

Proof: Since e]i = e·e]i , it is always the case that e]i ≤J
e. Assuming J is i-unstable means that eJ e]i does not hold,
which in turn implies e]i <J e.

We say that a word u = a1 . . . an in S+ is J-smooth, for J
a J -class, if u ∈ J+, and π(u) ∈ J . It is equivalent to say that
π(aiai+1 · · · aj) ∈ J for all 1 ≤ i < j ≤ n. Indeed for all 1 ≤
i < j ≤ n, aiJ π(a1 . . . an) ≤J π(aiai+1 · · · aj) ≤J ai ∈ J .
Remark that, according to Lemma 15, if J is irregular, J-
smooth words have length at most 1. We will use the following

13

lemma from [25] as a black-box. This is an instance of the
factorisation forest theorem, but restricted to a single J -class.

Lemma 20. [Lemma 14 in [25]] Given a finite semigroup S,
one of its J -classes J , and a J-smooth word u, there exists
a Ramsey factorisation for u of height at most 3|J | − 1.

Remark that Ramsey factorisations and n-computations do
only differ on what is allowed for a node of large degree, i.e.,
above n. That is why our construction makes use of Lemma 20
to produce Ramsey factorisations, and then based on the
presence of nodes of large degree, constructs a computation
by gluing pieces of Ramsey factorisations together.

Lemma 21. Let J be a J -class, u be a J-smooth word, and
n̄ be as above. Then one of the two following items holds:

1) there exists an n̄-computation for u of value π(u) and
height at most 3|J | − 1, or;

2) there exists an n̄-computation for some non-empty prefix
w of u of value5 a <J J and height at most 3|J |.

Proof: Remark that if J is irregular, then u has length 1
by Lemma 15, and the result is straightforward.

The case of J unstable remains. Let us say that a node in
a factorisation is n̄-incorrect if its degree d lies in [ni, ni+1)
for some i for which i-unstable. Indeed, this is the only case
where a Ramsey factorisation and a computation differ. Our
goal is to “correct” the value of incorrect nodes. If there is a
Ramsey factorisation for u which has no incorrect node, then
it can be seen as an n-computation, and once more the first
conclusion of the lemma holds.

Otherwise, consider the least non-empty prefix u′ of u
for which there is a Ramsey factorisation of height at most
3|J | − 1 which contains an n̄-incorrect node. Let F be such a
factorisation and x be a big node in F which is maximal for
the descendant relation (there are no other big nodes below).
Let F ′ be the subtree of F rooted in x. This decomposes
u′ into vv′v′′ where v′ is the factor of u′ for which F ′ is a
Ramsey factorisation. For this v′, it is easy to transform F ′

into an n̄-computation T ′ for v′: just replace the label e of
the root of F ′ by e]i where i is the one from the definition of
n̄-incorrectness. Indeed, since there are no other n̄-incorrect
nodes in F ′ than the root, the root is the only place which
prevents F ′ from being an n̄-computation. Remark that from
Lemma 19, the value of F ′ is <J J .

If v is empty, then v′ is a prefix of u, and F ′ an n-
computation for it. The second conclusion of the lemma holds.

Otherwise, by the minimality assumption and Lemma 20,
there exists a Ramsey factorisation T for v of height at most
3|J |−1 which contains no big node. Both T and T ′ being n̄-
computations of height at most 3|J |−1, it is easy to combine
them into an n̄-computation of height at most 3|J | for vv′.
This is an n̄-computation for vv′, which inherits from F ′ the
property that its value is <J J . It proves that the second
conclusion of the lemma holds.

We are now ready to establish Theorem 2.

5A closer inspection would reveal that a ∈ J]. This extra information is
useless for our purpose.

Proof: The proof is by induction on the size of a left-
right-ideal Z ⊆ S, i.e., S1 · Z · S1 ⊆ Z (remark that a left-
right-ideal is a union of J -classes). We establish by induction
on the size of Z the following induction hypothesis:

IH: for all words u ∈ Z+ + Z∗S there exists an
n̄-computation of height at most 3|Z| for u.

Of course, for Z = S, this proves Theorem 2.
The base case is when Z is empty, then u has length 1, and

a single node tree establish the first conclusion of the induction
hypothesis (recall that the convention is that the leaves do not
count in the height, and as a consequence a single node tree
has height 0).

Otherwise, assume Z non-empty. There exists a maximal J -
class J (maximal for ≤J) included in Z. From the maximality
assumption, we can check that Z ′ = Z \ J is again a left-
right-ideal. Remark also that since Z is a left-right-ideal, it is
downward closed for ≤J . This means in particular that every
element a such that a <J J belongs to Z ′.

Claim: We claim (?) that for all words u ∈ Z+ + Z∗S,
1) either there exists an n̄-computation of height 3|J | for u,

or;
2) there exists an n̄-computation of height at most 3|J | for

some non-empty prefix of u of value in Z ′.
Let w be the longest J-smooth prefix of u. If there exists

no such non-empty prefix, this means that the first letter a of
u does not belong to J . Two subcases can happen. If u has
length 1, this means that u = a, and thus a is an n̄-computation
witnessing the first conclusion of (?). Otherwise u has length
at least 2, and thus a belongs to Z. Since furthermore it does
not belong to J , it belongs to Z ′. In this case, a is an n̄-
computation witnessing the second conclusion of (?).

Otherwise, according to Lemma 21 applied to w, two
situations can occur. The first case is when there is an n̄-
computation T for w of value π(w) and height at most 3|J |−1.
There are several sub-cases. If u = w, of course, the n̄-
computation T is a witness that the first conclusion of (?)
holds. Otherwise, there is a letter a such that wa is a prefix of
u. If wa = u, then π(wa)[T, a] is an n̄-computation for wa
of height at most 3|J |, witnessing that the first conclusion of
(?) holds. Otherwise, a has to belong to Z (because all letters
of u have to belong to Z except possibly the last one). But,
by maximality of w as a J-smooth prefix, either a ∈ Z ′, or
π(wa) ∈ Z ′. Since Z ′ is a left-right-ideal, a ∈ Z ′ implies
π(wa) ∈ Z ′. Then, π(wa)[T, a] is an n̄-computation for wa
of height at most 3|J | and value π(wa) ∈ Z ′. This time, the
second conclusion of (?) holds.

The second case according to Lemma 21 is when there
exists a prefix v of w for which there is an n̄-computation
of height at most 3|J | of value <J J . In this case, v is also a
prefix of u, and the value of this computation is in Z ′. Once
more the second conclusion of (?) holds. This concludes the
proof of Claim (?).

As long as the second conclusion of the claim (?) applied
on the word u holds, this decomposes u into v1u

′, and we
can proceed with u′. In the end, we obtain that all words
u ∈ Z+ + Z∗S can be decomposed into u1 . . . uk such

14

that there exist n̄-computations T1, . . . , Tk of height at most
3|J | for u1, . . . , uk respectively, and such that the values of
T1, . . . , Tk−1 all belong to Z ′ (but not necessarily the value of
Tk). Let a1, . . . , ak be the values of T1, . . . , Tk respectively.
The word a1 . . . ak belongs to Z ′+ + Z ′∗S. Let us apply the
induction hypothesis to the word a1 . . . ak. We obtain an n̄-
computation T for a1 . . . ak of height at most 3|Z ′|. By simply
substituting T1, . . . , Tk to the leaves of T , we obtain an n̄-
computation for u of height at most 3|J | + 3|Z ′| = 3|Z|.
(Remark once more here that the convention is to not count
the leaves in the height. Hence the height after a substitution
is bounded by the sum of the heights.)

VIII. UNICITY OF COMPUTATIONS

Let us recall the unicity theorem we want to prove.

Theorem 3 (unicity). For all words u ∈ S+, all ῑ-under-
computations for u of value a and and all ῑ-over-computations
for u of value b,

a ≤ b .
One says that a word u ∈ S+ m̄-under-evaluates to b if

there exists an m̄-under-computation for u of value b. One will
also say that ε under-evaluates to b for all b ≤ 1. Of course, we
can also say that u ῑ-under-evaluates to b. The same definitions
apply for m̄-over-computations.

Given a sequence of words u1, . . . , u`, one says that
u1, . . . , u` m̄-under-evaluates to b1, . . . , b` if ui m̄-under-
evaluates to bi for all i = 1 . . . `.

Let us stress right now the following tricky point, which
may seem obvious, but requires care.

Lemma 22. Let u1, . . . , un be words. If there exists ai such
that ui ῑ-under-evaluates to ai for all i = 1 . . . n, then
there exists a1, . . . , an such that u1, . . . , un ῑ-under-evaluate
to a1, . . . , an.

Proof: Indeed, since the definition of an ῑ-under-
computation is external, there is no reason a1, . . . , an exists
as an object (a sequence). However, using the Proposition 6
with the fact that being an m̄-under-computation is a Q̄m̄-
property, the property “for all i there exists ai such that
ui ῑ-under-evaluates to ai” is equivalent to “for all i there
exists ai such that ui m̄-under-evaluates to ai” for some
m̄ ≤Q̄ ῑ. Hence, once m̄ fixed, one can construct a1, . . . , an
such that u1, . . . , un m̄-under-evaluate to a1, . . . , an. We now
have the expected conclusion that u1, . . . , un ῑ-under-evaluate
to a1, . . . , an.

This witnesses something one should be very sensitive to
when performing proofs in non-standard analysis. Whenever
some external property of existence of elements (here the ai’s)
is proved for an uncontrolled number of items (here n can be
arbitrary large, and in particular non-standard), then it is not
possible a priori to aggregate them (here build a1, . . . , an)
unless some extra argument is used. Being a Q̄m̄-formula
gives such an argument.

We shall not mention anymore Lemma 22, and use it
implicitly whenever needed.

Lemma 23. Let u = a1 . . . a` ∈ S∗ of standard length then
u ῑ-under-evaluates to b if and only if b ≤ π(a1 . . . a`)

Consider a computation (under or over) T over a word u
that is not reduced to its leaf. We will say it factorizes u
into u1, . . . , u` with values b1, . . . , bm if u = u1 . . . u`, the
children of the root of T are T1, . . . , T` when read from left
to right, Ti is a computation (under or over) for ui for all
i = 1 . . . `, and bi is the value of Ti for all i = 1 . . . `.

Lemma 24. Let u1u2 ∈ S∗, then if u1u2 ῑ under-evaluates to
c, there exists b1b2 such that u1, u2 ῑ under-evaluates to b1, b2
with c ≤ b1 · b2.

Proof: Let u = u1u2. Remark first that if u1 or u2 is ε,
this is obvious. Otherwise, the proof is by induction on the

15

height of the ῑ-under-computation T for u. This is possible
since T is of standard height, according to Lemma 2. Note
first that T cannot be reduced to a leaf since u has length
at least 2. Otherwise T decomposes u into v1, . . . , vm with
values c1, . . . , cm. There are several cases.
• It is a binary node, i.e., m = 2. Then two symmetric sub-

cases can happen: (a) u1 = v1w and v2 = wu2, or (b) v1 =
u1w and u2 = wv2, for some w ∈ S∗. Let us treat the case
(a). Since v2 under-evaluates to c2 and can be decomposed
into w, u2, we can apply the induction hypothesis. We get
that w, u2 ῑ-under-evaluate to b, b2 such that c2 ≤ b · b2. Since
furthermore v1 ῑ-under-evaluates to c1, this means u1, u2 ῑ-
evaluate to c1 · c, b2, and (c1 · b) · b2 = c1 · (b · b2) ≥ c1 · c2 ≥ c.
• It is a stabilisation node of level i, i.e., m is strictly i-

standard and c1 = · · · = cm = e which is an i − 1-stable
idempotent. In this case, there exists words w1, w2 and some
n among 1, . . . ,m such that

u1 = v1 . . . vn−1w1 , vn = w1w2 and u2 = w2vn1
. . . vm .

One can apply the induction hypothesis over vn wich is
decomposed into w1, w2. We get that w1, w2 ῑ-under-evaluate
to d1, d2 such that e = cn ≤ d1 · d2. Furthermore, since m is
strictly i-standard, both n and m−n are i-standard, and either
n or m− n is strictly i-standard. Let us assume without loss
of generality that n is strictly i-standard.
Since n is strictly i-standard (and thus n− 1 too), v1 . . . vn−1

ῑ-under-evaluates to e]i . Hence u1 = v1 . . . vmw1 ῑ-under-
evaluates to b1 := e]i · d1. If m−n is also strictly i-standard,
then similarly u2 ῑ-under-evaluates to b2 := d2 · e]i . We get
that u1, u2 ῑ-under-evalutate to b1, b2 and b1 · b2 ≥ e]i · d1 ·
d2 · esharpi = e]i ≤ c. Otherwise m − n is i − 1-standard.
This means, since e is i − 1-stable, that u2 ῑ-under-evaluates
to b2 := d2 · e. We get that u1, u2 ῑ-under-evalutate to b1, b2
and b1 · b2 ≥ e]i · d1 · d2 · e = e]i ≥ c.

From this lemma, we can generalise to decompositions of
standard length as follows.

Lemma 25. Given a word u ∈ S∗ decomposed into
u1, . . . , u` ∈ S∗ with ` standard, that ῑ-under-evaluates to
c, then u1, . . . , u` ῑ-under-evaluate to b1, . . . , b` such that
b1 . . . b` ῑ-under-evaluates to c.

Proof: This is a simple induction on `. According to
Lemma 2, and since ` is standard, this is correct. For ` = 0
(this means u = ε), the result is obvious. Otherwise, applying
Lemma 24, u1, u2u3 . . . u` ῑ-under-evaluate to b1, d such that
b1 ·d ≥ c. We now apply the induction hypothesis on u2 . . . u`,
and obtain that u2, . . . , u` ῑ-under-evaluate to b2, . . . , b` such
that b2 · · · b` ῑ-under-evaluate to d. Thus u1, . . . , u` ῑ-under-
evaluate to b1, . . . , b` and b1 . . . b` ῑ-under-evaluate to b1 · d ≥
c.

The key lemma is the following.

Lemma 26. Given a word u ∈ S∗ decomposed into
u1, . . . , u` ∈ S∗, that ῑ-under-evaluates to c, then u1, . . . , u`
ῑ-under-evaluate to b1, . . . , b` such that b1 . . . b` ῑ-under-
evaluates to c.

Before proving this statement, let us show why it is suffi-
cient for establishing Theorem 3.

Proof: Let T be a ῑ-over-computation for some u of value
b. We prove, by induction (of standard length) on the height
of T that if u ῑ-under-evalutates to a, a ≤ b;

Of course, for T reduced to a single leaf the result holds.
Otherwise T has a binary root, and factorizes u into u1, u2

with values b1, b2. This means that b ≥ b1 ·b2. Using 24, u1, u2

ῑ-under-evaluates to a1, a2 such that a ≤ a1 · a2. By inductin
hypothesis, a1 ≤ b1 and a2 ≤ b2. Hence a ≤ a1 ·a2 ≤ b1 ·b2 ≤
b.

The last case is when T has an idempotent node as root. In
this case T factorizes u into u1, . . . , un with values b1 = b2 =
· · · = bn = e idempotents. We have b ≥ e]i for i such that n is
strictly i-standard. Applying Lemma 26, u1, . . . , un ῑ-under-
evaluate to a1, . . . , an such that a1 . . . an ῑ-under evaluate to
a. Using the induction hypothesis, ai ≤ e for all i = 1 . . . n.
We need now prove that a ≤ e]i . This is done by a simple
induction (of standard length) on the height of an ῑ-under-
computation. Hence a ≤ b.
Lemma 27. If x1, y1, x2, y2 . . . , xm, ym ∈ M (m ≥ 1) and
e is an idempotent such that xh · yh ≤ e for all h = 1 . . .m,
then (y1 · x2)(y2 · x3) · · · (ym−1 · xm) ῑ-under-evaluates to z
such that:

e]g ≤ x1 · z · ym ,

where g is such that m is g-standard, e]g′ ≤ xh · yh for
some g′ ≤ g for all h, and, either m is strictly i-standard, or
e]g ≤ xh · yh for some h.

Proof: The principle of the proof is to take some ῑ-over-
computation for (y1·x2)(y2·x3) · · · (ym−1·xm) of value z, and
prove the statement for this z. This is done by induction and
case distinction. The result then follows from Proposition 8

Hence, let us concentrate now on the proof of Lemma 26.
The proof is by induction on the height of the ῑ-under-
evaluation T for u of value a. We slightly change the induction
hypothesis for more ease. Consider a word u that ῑ-under-
evaluates to a and is decomposed into u1, . . . , un. Our goal
is to prove that u1, . . . un ῑ-under-evaluate to a1, . . . , an such
that a2 . . . an−1 ῑ-under-evaluates to c such that a ≤ a1 ·c ·an.

Assume T factorizes u into v1, . . . , v` with values
b1, . . . , b`. The proof proceeds with an analysis of the different
situation of overlap that can happen between the vi’s and the
uj’s.

Case of a leaf: ` = 1. The result is obvious.

Case of a binary node: ` = 2. Let c1, c2 be the values of
the two children of the root. This means that the following
decomposition holds:

v1 = u1 . . . um−1w1 , um = w1w2 ,

andv2 = w2um+1 . . . un .

By induction hypothesis this means that
u1, . . . , um−1, w1, w2, um+1, . . . , un ῑ-under-evaluates
to a1, . . . , am−1, b1, b2, am+1, . . . , an such that

16

vih

u′′h−1 u′h

ujh−1+1 ujh−1 ujh

vih+1−1vih+1

· · ·

u′′h

ujh−1

· · ·
a′′h−1︷ ︸︸ ︷ a′h︷ ︸︸ ︷ a′′h︷ ︸︸ ︷

︸ ︷︷ ︸
eh

ch︷ ︸︸ ︷

︸ ︷︷ ︸
yh

︸ ︷︷ ︸
xh

︸ ︷︷ ︸
xh+1

ajh−1+1

︷ ︸︸ ︷
ajh−1︷ ︸︸ ︷

ajh︷ ︸︸ ︷

e︷ ︸︸ ︷ e︷ ︸︸ ︷ e︷ ︸︸ ︷

Fig. 1. Decomposition in the case of an idempotent node

a2 . . . am−1, am+1 . . . an−1 ῑ-under-evaluate to d1, d2.
such that c1 ≤ a1 · d1 · b1 and c2 ≤ b2 · d2 · an. It follows that
um ῑ-under-evaluates to am := b1 · b2, and that a2 · · · an−1

ῑ-under-evaluates to d := d1 · am · d2. Furthermore we have
a1 · d · an = a1 · d1 · b1 · b2 · d2 · an = c1 · c2 ≥ c.

Case of an idempotent node: All the children of the root are
labeled e, i.e., v1, . . . , v` ῑ-under-evaluate to e, . . . , e, and the
degree is `. We aim at proving that
• u1, . . . , un ῑ-under-evaluate to some a1, . . . , an,
• a2 . . . an−1 ῑ-under-evaluate to some c,
• and a1 · c · an ≤ e]g where g is such that n is strictly

g-standard.
We rely on a suitable decomposition of the words: there

exist 0 = i0 < i1 < · · · < im < im+1 = ` + 1
and 1 = j0 < · · · < jm = n, as well as words ε =
u′0, u

′′
0 , u
′
1, u
′′
1 , . . . , u

′
m, u

′′
m = ε such that

vih = u′′h−1 ujh−1+1 . . . ujh−1 u
′
h for all h = 1 . . .m,

(?)
and ujh = u′h vih+1 . . . vih+1−1 u

′′
h for all h = 0 . . .m.

(??)

The best is to present it through a drawing, as in Figure 1. It
is annotated with all the variables that will be used during
the proof. The two main rows represent the two possible
decompositions of the word into vi’s and uj’s.

Such a decomposition is not unique. It is sufficient to
guarantee that each separation between some us and some
us+1 fall in some vih , and that each vih contains such a
separation.

We can apply the induction hypothesis on each equation
(??). Hence, it follows that u′′h−1, ujh−1+1, . . . , ujh−1, u

′
h

n-under-evaluate to a′′h−1, ajh−1+1, . . . , ajh−1, a
′
h and

ajh−1+1 . . . ajh−1 ῑ-under-evaluates to ch, such that
a′′h−1 · ch · a′h ≤ e. Set furthermore a′0 = a′′m = 1. We
get that u′h, u

′′
h n-valuate to a′h, a

′′
h for all h = 0 . . .m. Define

furthermore for all h = 0 . . .m, eh as

eh =

{
1 if (ih+1 − ih − 1) = 0

e]r if 0 < (ih+1 − ih − 1) is strictly r-standard.

Since each vh ῑ-under-evaluate to e, each vh also ῑ-
under-evaluates to e. Now eh has been chosen such that

vih+1 . . . vih+1−1 ῑ-under-evaluates to eh. Thus from (??), ujh
ῑ-under-evaluates to ajh for all h = 0 . . .m that we define as
ajh = a′h · eh · a′′h. At this point, we have that

C1 u1, . . . , un ῑ-under-evaluate to a1, . . . , an.
To head toward the conclusion, we will use Lemma 27.

Thus, let us set xh to be a′′h−1 and yh to be ch · a′h · eh for all
h = 1 . . .m. We have

xh · yh = (a′′h−1 · ch · a′h) · eh = e · eh. (†)
It is clear that since ` is g-standard, the same holds for m.
Furthermore, eh = e]r for some r ≤ g, for all h. Furthermore,
since ` is strictly g standard, then either m is strictly g-
standard, or some eh equals e]g .

We can apply Lemma 27 to

x1, y1, x2, . . . , xm, ym

and obtain that (y1 · x2) . . . (ym−1 · xm) ῑ-under-evaluates to
some z subject to the conclusion of the lemma.

Let us now establish the following claims C2 and C3.
C2 a2 . . . an−11 ῑ-under-evaluates to (z · cm).

Indeed, for all h = 1 . . .m, ch is chosen such that
ajh−1+1 . . . ajh−1 ῑ-under-evaluates to ch, thus ajh−1+1 . . . ajh
ῑ-under-evaluates to:

ch · ajh = ch · a′h · eh · a′′h = yh · xh+1 ,

by just unfolding the definitions. Since furthermore (y1 ·
x2) . . . (ym−1 · xm) ῑ-under-evaluates to z, it follows that
a2 . . . ajm−1

ῑ-under-evaluates to z. Furthermore, by choice
of cm, ajm−1+1 . . . an−1 ῑ-under-evaluates to cm. Thus
a2 . . . an−1 ῑ-under-evaluates to (z · cm) as claimed.

C3 e]g ≤ a1 · (z · cm) · ak from Lemma 27.
Gathering the claims C1, C2, C3, we get that u1, . . . , uk

n-evaluate to a1, . . . , ak, that a2 . . . ak−1 ῑ-under-evaluates to
c = z ·cm and that a1 ·c ·ak ≤ e. This is exactly the induction
hypothesis for the idempotent node case.

17

IX. PROJECTION

We shall prove the following lemma:

Lemma 14. If L is a recognizable Q̄Stm̄-language over
alphabet A, and h a mapping from A to B∗, then h̃(L) is
a recognizable Q̄Stm̄-language.

This is a powerset construction; more precisely a con-
struction of ideals. Let M, h, F be recognizing some Q̄Stm̄-
language L ⊆ A∗. Let also z be a mapping from A to B.

An ideal is a subset of M which is downward closed for
≤. The set of ideals of M is simply denoted ↓(M). Given
some A ⊆ M , A↓ is the least ideal that contains A, namely
the downward closure of A.

We construct a new Q̄m̄-magnitude monoid M↓ that has
as set of elements ↓(M), as order ⊆, and such that

A ·B = {a · b : a ∈ A, b ∈ B}↓ ,

and for all i = 1 . . . k and all idempotent E,

E]i = {ρM(a1 . . . an) : n is strictly i-standard,
and a` ∈ E for all ` = 1 . . . n}↓ .

Remark that E]i can be effectively computed thanks to
Lemma 13.

One shall first prove:

Lemma 28. M↓ is a Q̄m̄-magnitude monoid.

Proof: By case analysis. In fact, following [15] this can
be derived from the subsequent results.

The interesting part is to prove the correctness of this
construction.

We will use the following notation. U, V, . . . implicitly
range over words over the alphabet ↓(M), and u, v, . . . over
words over M . We also denote by u ∈ U the component-
wise membership, i.e., that |u| = |U | and for all i = 1 . . . |u|,
ui = Ui (where ui and Ui denote the respective i-th letters of
u and U respectively).

Lemma 29. For all U that ῑ-under-evaluates to A and all
a ∈ A, there exists a word u ∈ U that ῑ-under-evaluates to a.

Proof: The proof is by induction on the height of the
ῑ-under-computation T for U of value A.

If T is a leaf, this is straightforward.
If T has a binary root, of children T ′, T ′′ of values A′, A′′.

Then a ∈ A means that there exists a′ ∈ A and a′′ ∈ A′′

such that a ≤ a′ · a′′. Let us apply the induction hypothesis
on T ′, a′ and T ′′, a′′. We obtain that U = U ′U ′′ such that
there exists u′ ∈ U ′ that ῑ-under-evaluate to a′ and u′′ ∈ U ′′
that ῑ-under-evaluates to a′′. Hence u′u′′ ῑ-under-evaluates to
a ≤ a′ · a′′.

If the root of T is an idempotent node, of children
T1, . . . , Tn of values A1 = · · · = An = E idempotent, and
decomposing U into U1 . . . Un. Assume n strictly `-standard.
This means that A ⊆ E]` . Hence, by definition of E]` ,
a ∈ A is the value of a word a1 . . . an with a1, . . . , an ∈ E.
One can apply the induction hypothesis for all Ti, ai yielding
some word ui ∈ Ui that ῑ-under-evaluates to ai for all

i = 1 . . . n. By plugging6 on top of it the ῑ-under-computation
witnessing that a1 . . . an ῑ-under-evaluates to a, we obtain that
u1u2 . . . un ∈ U ῑ-under-evaluates to a.

However, be careful, hidden in the last argument is the
use of the Q̄m̄-nature of m̄-under-computations. Indeed, in
general, this is not because we can, separately, choose ui
for a all i, that we can aggregate them into a single word
u = u1 . . . un. This is because being an ῑ-under-computation is
an external formula, and thus no set in general can constructed
from this definition. In the present case, from the fact that there
exists ui for all i that ῑ-under-evaluates to ai, you can deduce
thanks to Proposition 6 that there exists m̄ ≤ ῑ such that for
all i there exists ui that m̄-under-evaluates to ai. These can be
aggregated since the notion of m̄-under-evaluation is internal.
Using again Proposition 6 the result is recovered.

Lemma 30. For all U that ῑ-over-evaluates to A, and all
u ∈ U , u ῑ-over-evaluates to some a ∈ A.

Proof: The proof is by induction on the height of the
ῑ-over-computation T for U of value A.

If T is restricted to its root, it is once more obvious.
If T has a binary root of children T1, T2 of values A1, A2,

corresponding to U = U1U2 and u = u1u2. By induction
hypothesis, u1 ῑ-over-evaluates to some a1 ∈ A1 and u2 ῑ-
over-evaluates to some a2 ∈ A2. Since A ⊇ A1 ·A2, this mean
a = a1s · a2 ∈ A. Furthermore u = u1u2 ῑ-over-evaluates to
a.

If the root of T is an idempotent node, of children
T1, . . . , Tn of values A1 = · · · = An = E idempotent, and
decomposing U into U1 . . . Un and u into u1 . . . un. Assume
n strictly `-standard. By induction hypotheses, ui ῑ-over-
evaluates to ai ∈ Ai for all i = 1 . . . n. Now7 a1 . . . an
is a word over E and strictly `-standard length `. Since
A ⊇ E]i and by definition of E]i there exists an ῑ-over-
computation over a1 . . . an and value a ∈ A. Plugging these
over evaluations together, we obtain that u1 . . . un ῑ-over-
evaluates to a ∈ A.

It is now easy to conclude the proof of Lemma 14.
Proof: Assume L recognized by M, h, F , and z from A

to B given. Let h′ be mapping any b ∈ B to (h(z−1(b)))↓.
Let finally F ′ = {I ∈ ↓ : I ∩F 6= ∅}. We claim that v ∈ B∗
is accepted by M↓, h′, F ′ if and only if v ∈ z̃(L).

Assume first that v is accepted by M↓, h′, F ′. This means
that U = h̃′(v) ῑ-under-evaluates to A ∈ F ′. Hence there
is some a ∈ A ∩ F according to the definition of F ′. By
Lemma 29 this mean that some u ∈ U ῑ-under-evalutes to
a ∈ F . Finally, by definition of h′, there exists some v ∈ B∗
and some w ∈ A∗ such that z̃(w) = v and h̃(w) = u. This
means that w is accepted by M, h, F . Thus v ∈ Z̃(L).

Assume now that v is not accepted by M↓, h′, F ′. This
means that there is an ῑ-over-computation for V = h̃′(v) of
value A 6∈ F ′. This means in particular that A ∩ F = ∅. Let
us prove that for no u ∈ L, v = z̃(u). For this, consider any
u such that v = z̃(u). This means by definition of h′ that
h̃(u) ∈ V . Hence, we can apply Lemma 30, and get that h̃(u)

6See the subtlety below.
7The same subtlety involving the dQ̄m̄-nature of m̄-over-computations

need be used here.

18

ῑ-over-evaluates to some a ∈ A. But since A ∩ F = ∅, this
means that a 6∈ F . Hence u is not accepted by M, h, F .

	Introduction
	Magnitude formulae and monadic logic
	Magnitude formulae
	Magnitude monadic second-order logic

	Relative Internal Set Theory
	The framework
	Magnitude formulae in RIST

	Magnitude stabilisation monoids
	Semigroups and monoids
	Magnitude stabilisation monoids

	Semantics of magnitude monoids
	Computation trees
	Existence of computations
	Unicity of computation

	Recognizable St-languages
	Definition
	Elementary closure properties
	Magnitude expressions and decidability
	Projection
	And the logic?

	References
	Proof of the existence of computation
	Unicity of computations
	Projection

