
Tree-Walking Automata Cannot Be

Determinized

Miko laj Bojańczyk 1 Thomas Colcombet 2

Institute of Informatics, Warsaw University

Banacha 2, 02-097 Warsaw, Poland

{ bojan, colcombet }@mimuw.edu.pl

Abstract

Tree-walking automata are a natural sequential model for recognizing languages of
finite trees. Such automata walk around the tree and may decide in the end to
accept it. It is shown that deterministic tree-walking automata are weaker than
nondeterministic tree-walking automata.

Key words: Tree-walking automata, deterministic tree-walking automata.

Introduction

A tree-walking automaton is a natural type of finite automaton over trees.
The automaton is a finite memory device that walks around a tree, choosing
what move to make according to its current state and the local environment
(the label of the current node and whether this node is a left son, a right son,
the root or a leaf). The automaton accepts the tree if it ever reaches one of
the designated accepting states. Even though tree-walking were introduced in
the early seventies by Aho and Ullman [AU71], very little is known about this
model.

This situation is different in the case of the “usual” tree automata – branch-
ing tree automata – which are a very well understood object. Both top-down
and bottom-up nondeterministic branching tree automata recognize the same
class of languages. Languages of this class are called regular, the name being
so chosen because it enjoys many nice properties of the class of regular word

1 Supported by Polish Kbn grant No. 4 T11C 042 25.
2 Supported by the European Community Research Training Network Games.

Preprint submitted to Elsevier Science 27 May 2006

languages. In particular, this class is closed by all the boolean operations. The
deterministic variants of branching tree automata are similarly well under-
stood – deterministic bottom-up branching tree automata also recognize all
regular tree languages, while deterministic top-down branching tree automata
recognize a strict subclass of the class of regular languages.

It is a classical result that every language recognized by a tree-walking au-
tomaton is regular. It is also known that those languages are closed by inter-
section and union. However most other fundamental questions pertaining to
tree-walking automata remain unanswered:

(1) Is every regular language recognized by a tree-walking automaton?
(2) Can tree-walking automata be determinized?
(3) Is the class of languages recognized by tree-walking automata closed un-

der complementation?

It is believed that the answers to all three questions above are negative. There
has been much related research, which can be roughly grouped in two cate-
gories: nondefinability results for weakened models of tree-walking automata
[NS00,Boj03] and definability results for strengthened models of tree-walking
automata [KS81,EH99,EHvB99]. The three questions stated above, however,
have remained open.

In this paper we answer to question 2: we prove that there exists a language
that is recognized by a tree-walking automaton, but by no deterministic one.

1 Tree walking automata and the separating language

In this section we define tree-walking automata, specify our separating lan-
guage and prove it is recognized by a nondeterministic tree-walking automa-
ton.

Preliminaries

The trees we deal with in this paper are finite, binary trees labeled by a given
finite alphabet Σ. A Σ-tree is a mapping from N ⊆ {0, 1}∗ to Σ, where N
is a finite, nonempty, prefix-closed set such that for any v ∈ N , v0 ∈ N iff
v1 ∈ N . Elements of N are called nodes of the tree. The maximal elements are
called leaves, the minimal element ε is called the root. Every node v of a tree
t has a type belonging to Types = {o, l, r} × {f, l} where the first component
express whether the node is the root, a left son or a right son, and the second

2

component tells wheter the node is a leaf or the father of other nodes. A
direction is an element in Dir = {↑, ε, 0, 1}, where ↑ stands for ‘up’, ε stands
for ‘stay’, 0 stands for ‘down left’ and 1 for ‘down right’.

Definition 1 A (nondeterministic) tree-walking automaton is a tuple A =
(Q, Σ, I, F, δ), where Q is a finite set of states, I, F ⊆ Q are the initial and
accepting states, and δ is the transition relation of the form

δ ⊆ Q × Types × Σ × Q × Dir .

In a tree, a configuration is a pair of a node and a state. In a given con-
figuration, the automaton looks at its current state, the type of the current
node and its label; it then picks – according to δ – a new state along with a
direction and moves according to this direction. A run is a sequence of con-
figurations, where every two consecutive configurations are consistent with δ
in the manner described above. A run is accepting if it starts and ends in the
root of the tree, the first state being in I and the last state being in F . The
automaton A accepts a tree if it has an accepting run over it. A set of Σ-trees
L is recognized by A if A accepts exactly the trees in L. We use TWA to de-
note the class of tree languages recognized by some tree-walking automaton.
An automaton is deterministic if it has one initial state and the transition
relation is a function from Q×Types×Σ to Q×Dir. We write TWA, DTWA
for the classes of languages recognized respectively by nondeterministic and
deterministic tree-walking automata.

We would like to point out here that reading the type of a node is an essential
feature of tree-walking automata. Indeed, Kamimura and Slutzki showed in
[KS81] that tree-walking automata that do not have access to this information
cannot recognize all regular languages since they are unable of even search-
ing in a tree in a systematic manner. In particular, such weaker tree-walking
automata cannot perform depth-first searches.

Example A The alphabet is {a, b}. Consider the following tree-walking au-
tomaton that accepts exactly the trees with at least one b. The states are p
and q. The only initial state is p and the only accepting state is q. The au-
tomaton nondeterministically finds a node labelled by b in the tree using the
state p and then changes to state q. The transitions of states q then allows the
automaton to walk back to the root. Formally, the transitions are:

(p, t, a, p, d) for any t ∈ {o, l, r} × {f} and d ∈ {0, 1};

(p, t, b, q, ε) for any t ∈ Types;

(q, t, x, q, ↑) for any t ∈ {l, r} × {f, l}, x ∈ {a, b} .

3

Example B We now present a deterministic tree-walking automaton which
also recognizes the language of the previous example. To make sure that it
skips no b in its search, the automaton performs a depth-first search. The
states are p, p′, q and r. The only initial state is p and the only accepting state
is r. The states p and q are used in a depth-first search from left-to right,and p′

is used in this search as an intermediate state. The state r is used to walk back
to the root. The transition relation is:

(p, t, a, p, 0) for any t ∈ {o, l, r} × {f};

(p, t, a, q, ε) for any t ∈ {o, l, r} × {l};

(q, t, a, p′, ↑) for any t ∈ {l, r} × {f, l};

(p′, t, a, p, 1) for any t ∈ {o, l, r} × {f};

(p, t, b, r, ε) for any t ∈ Types;

(r, t, x, r, ↑) for any t ∈ {l, r} × {f, l} and x ∈ {a, b} .

The above examples show that even when tree-walking automata can be de-
terminized, the determinized automaton may need to walk around the tree in
a completely different way.

The separating language L

In this section we specify our separating language L, which witnesses the strict-
ness of the inequality DTWA (TWA. We also present a nondeterministic
tree-walking automaton which recognizes L. Our proof that no deterministic
tree-walking automata can recognize L is more involved and will be spread
across the subsequent sections.

a aa aa a

∈ L 6∈ L

Fig. 1. The two kinds of well-formed trees

The language L involves a very simple kind of trees, which we call well-formed
trees: {B, a}-trees that have all nodes labeled by the blank symbol B but
for three leaves that are labeled by a. The set of well-formed trees can be
recognized by a deterministic tree-walking automaton.

4

There are two possible kinds of well-formed trees: ones where the deepest
common ancestor of the two leftmost a’s is above the rightmost a; and the
other ones. The language L is the set of well-formed trees of the first kind.
This definition is illustrated in Figure 1.

Lemma 2 The language L is recognized by a nondeterministic tree-walking
automaton.

Proof We will only give here an informal description of the automaton. This
automaton first checks that the tree is well-formed, then goes to the rightmost
a. This can be done without using determinism. From this node, it goes toward
the root and chooses nondeterministically some node v. It then accepts the tree
if there are exactly two a’s that are at the right of the leftmost leaf below v.
A depth-first search from left-to right starting at position v can perform this
verification.

One can verify that there exists an accepting run of this automaton if and only
if the tree belongs to L. Indeed, when the tree belongs to L the automaton
chooses v to be the deepest common ancestor of the two rightmost a’s. On
the other hand, if a tree is well-formed but does not belong to L, for every
ancestor v of the rightmost a, there are either one or three a’s to the right of
the leftmost leaf below v. �

2 Patterns

In this section, we introduce the key technical concept of patterns and outline
how they can be used to show that no deterministic tree-walking automaton
recognizes L. A concept similar to our patterns was used in [BH67] to analyze
automata on a two-dimensional tape.

From now on we fix a deterministic tree-walking automaton

A = (Q, {qI}, F, δ) .

We aim at proving that A does not recognize the language L.

Patterns and pattern equivalence

A pattern ∆ is a {B, ∗}-tree where the symbol ∗ is used solely in the leaves.
For technical reasons, we require the leaves labeled with ∗ to be left sons. The
i-th ∗-labeled leaf (numbered from left to right, starting with 0) is called the

5

i-th-(leaf) port. Port ε is the root. The arity of the pattern is the number of
leaf ports. We use Patn to denote the set of n-ary patterns.

Given an n-ary pattern ∆ and n patterns ∆0, . . . , ∆n−1, the composition
∆[∆0, . . . , ∆n−1] is obtained from ∆ by simultaneously substituting each ∆i

for the i-th port. We may use ∗ instead of some substituted patterns in a com-
position, the intended meaning being that the corresponding ports remain
untouched. When all ∆i’s are ∗ but for ∆k we simply write ∆[∆k/k]. If ∆ is a
unary pattern, we write ∆ ·∆′ instead of ∆[∆′]. Given a set P of patterns, we
denote by C(P) the least set of patterns that contains P and is closed under
composition.

Definition 3 The automaton’s transition relation over an n-ary pattern ∆,

δ∆ ⊆ Q × {ε, 0, . . . , n − 1} × Q × {ε, 0, . . . , n − 1} ,

contains a tuple (q, i, r, j) if the automaton can go from state q in port i to
state r in port j, without visiting any port along the way. Moreover, the ports
are treated as having type (l, f), i.e. non-leaf left sons.

The last clause in the above definition is postulated in order to make compo-
sition work. In particular the port ε is not seen as the root and the leaf ports
are not seen as leaves.

From the point of view of the automaton, the transition relation sums up all
important properties of the pattern and we consider two patterns equivalent
if they induce the same relation. More precisely, for two patterns ∆ and ∆′ of
same arity, we write

∆ ' ∆′ iff δ∆ = δ∆′ .

The essence of this equivalence is that if one replaces a sub-pattern by an
equivalent one, the automaton is unable to see the difference. This is summa-
rized by the following fact:

Fact 4 The relation ' is a congruence with respect to pattern composition.

Outline of the proof

In order to prove that A cannot recognize L, we will produce three patterns:
a nullary pattern ∆0, a unary pattern ∆1 and a binary pattern ∆2. We then
prove that compositions of these patterns satisfy several desirable properties.
In particular, the following equivalence holds:

∆2[∗, ∆2] ' ∆2[∆2, ∗] . (1)

6

Having this equivalence, proving that A does not recognize L becomes a simple
matter. Consider a context where a B-labeled tree is attached to the root port,
and to each leaf port is attached a tree with exactly one a. If we insert the
left pattern from (1) into this context, we obtain a tree in L, and if we insert
the right pattern, we obtain a tree outside L. However, since the patterns are
equivalent, the automaton L cannot distinguish the two resulting trees and
will either accept both or reject both, hence A does not recognize L.

Since the deterministic automaton A was chosen arbitrarily, it follows that
L 6∈ DTWA. Together with Lemma 2, we obtain this paper’s contribution:

Theorem 5 The class DTWA is strictly included in the class TWA.

What remains to be done is to construct the patterns ∆0, ∆1 and ∆2, what
we do in Section 3; and then study properties of those patterns using the
determinism of A, what we do in Section 4. The culmination of this study is
Lemma 18, establishing the key equivalence (1).

3 Basic patterns

In this section, we define the patterns ∆0, ∆1 and ∆2 and prove basic proper-
ties related to their composition, namely Lemmas 8, 9 and 10.

First we state a result concerning finite semigroups. Recall that a semigroup
is a set together with an associative binary operation, which we write multi-
plicatively here. The following can be easily shown using Greene’s relations
(see [How96] for an introductory text); for completeness however we provide
here an elementary proof of the result.

Lemma 6 For every finite semigroup S and any u, v ∈ S, there exist u′, v′ ∈ S
such that the elements U = u·u′ and V = v·v′ satisfy the following equations:

U = U ·U = U ·V and V = V ·U = V ·V .

Proof For s ∈ S, we write Ss for the set of elements of the form t · s, with
t ∈ S. An element s of S is said idempotent if s·s = s. If we fix N to be the
factorial of |S|, a classical result states that for any s ∈ S, sN is idempotent.

Consider now the si’s and ti’s defined inductively as follows:

s1 := uN , ti := (v ·si)
N , and si+1 := (u·ti)

N .

Clearly every si is of the form u·u′ for some u′ and every ti is of the form v·v′

7

for some v′. Moreover, for any i < j we have

sj, tj ∈ Sti ∩ Ssi .

Since S is finite, for some integers n < m both sn = sm and tn = tm hold. Let
us fix U = sn and V = tn. By construction, U and V are idempotent, hence
we only need to verify U ·V = U and V ·U = V . Let us show U ·V = V :

U ·V = sn ·tn = sm ·tn = sm = U .

The third equation follows from the fact that sm belongs to Stn and tn is
idempotent. The proof of the equation V ·U = V is similar. �

This lemma will be used in the construction of the patterns ∆0, ∆1 and ∆2.The
insightful reader will notice that it does not involve the determinism of A.

Let us denote by Bk the full binary tree of depth k where all nodes are labeled
by B. As the pattern equivalence relation ' is of finite index, there exists
m, n such that Bn ' Bm and Bn appears at least twice in Bm as a subtree
rooted in a left son. Formally, there exists a binary pattern ∆X such that
∆X [Bn, Bn] = Bm. Let us fix ∆0 to be Bn and consider the following patterns:

∆u = ∆X [∗, ∆0] and ∆v = ∆X [∆0, ∗] .

The following fact is proved by an obvious induction on the structure of ∆:

Fact 7 Every pattern ∆ ∈ C({∆u, ∆v}) satisfies ∆ · ∆0 ' ∆0.

Let S be the semigroup whose elements are patterns in C({∆u, ∆v}) and where
the multiplication operation is the composition of unary patterns. By Lemma 4
the equivalence ' is a congruence over S. Since furthermore S is finite mod-
ulo ', by Lemma 6 there exists unary patterns ∆u′ and ∆v′ in C({∆u, ∆v})
such that the two patterns ∆U = ∆u·∆u′ and ∆V = ∆v·∆v′ satisfy the following
equivalences:

∆U ' ∆U ·∆U ' ∆U ·∆V and ∆V ' ∆V ·∆U ' ∆V ·∆V . (2)

Let us finally set ∆1 to be ∆U and ∆2 to be ∆1·∆X [∆u′·∆1, ∆v′·∆1]. We write
CA for the set C({∆0, ∆1, ∆2}) and Cn

A for the set CA ∩ Patn.

The following lemma shows that plugging a ∆1 pattern next to any port of a
pattern in CA leads to an equivalent pattern.

Lemma 8 Let ∆ be an n-ary pattern in CA. All the patterns ∆1 · ∆ and
∆[∆1/0], · · · , ∆[∆1/n − 1] are equivalent to ∆.

8

Proof The case of ∆ = ∆0 follows from Fact 7. The case of ∆ = ∆1 follows
from (2). The remaining cases follow from (2) and the fact that every pattern
of arity at least two has a ∆1 pattern next to each port. �

The following lemma shows that, from the point of view of the automaton A,
all patterns of a given small arity in CA look the same:

Lemma 9 For k = 0, 1, 2 all patterns ∆ in Ck
A are equivalent to ∆k.

Proof We prove first that ∆2[∆0, ∗] ' ∆1 :

∆2[∆0, ∗] = ∆1 ·∆X [∆u′ ·∆1 ·∆0, ∆v′ ·∆1]

' ∆1 ·∆X [∆0, ∆v′ ·∆1]

' ∆1 ·∆v ·∆v′ ·∆1

= ∆U ·∆V ·∆U

' ∆U = ∆1 .

Symmetrically, we get ∆2[∗, ∆0] ' ∆1.

The lemma is then proved by induction on the structure of the pattern ∆.
This pattern has ∆0, ∆1 or ∆2 at root, and the subpatterns have arity at
most two. By induction, each subpattern is equivalent to one of ∆0, ∆1 or ∆2.
The conclusion of the lemma follows by one of the two equivalences we just
proved, or Lemma 8. �

Application to run analysis

We now use Lemmas 8 and 9 to exhibit some more properties of the patterns.

The following result shows that entering and exiting a pattern by the same port
does not really depend on the pattern. This result, apart from its importance
in the remainder of the proof, is also a good illustration of proof techniques
used afterward.

Lemma 10 For all patterns ∆ ∈ CA of nonzero arity and all states q, r:

(q, ε, r, ε) ∈ δ∆ iff (q, ε, r, ε) ∈ δ∆1
,

(q, i, r, i) ∈ δ∆ iff (q, 0, r, 0) ∈ δ∆1
for i ∈ {0, . . . , n − 1} .

Proof Let ∆ be a pattern of arity n ≥ 1 and suppose (q, ε, r, ε) belongs to
δ∆. The corresponding run does not visit any leaf ports and can therefore still

9

be used no matter what is plugged into them. In particular, the same run can
still be used in the pattern

∆[

n−1 times
︷ ︸︸ ︷

∆0, . . . , ∆0, ∗] .

Since this pattern is equivalent to ∆1 by Lemma 9, we conclude that (q, ε, r, ε)
belongs to δ∆1

.

Let us now suppose that (q, ε, r, ε) belongs to δ∆1
. By the same reasoning as

above, the corresponding run can still be used in δ∆1
·∆ . By Lemma 8, this

pattern is equivalent to ∆. Therefore (q, ε, r, ε) belongs to δ∆.

The case of leaf ports is shown analogously. Let i be a leaf port of the pattern
∆ and let (q, i, r, i) belong to δ∆. By Lemma 8, we have

∆1 ' ∆i[

i−1 times
︷ ︸︸ ︷

∆0, . . . , ∆0, ∗,

n−i times
︷ ︸︸ ︷

∆0, . . . , ∆0] .

Since the run that went from (q, i) to (r, i) in ∆ will also work in the above
pattern, we obtain that (q, 0, r, 0) belongs to δ∆1

. The reverse implication is
proved analogously using the equivalence ∆ ' ∆[∆1/i]. �

4 Removing oscillation

From now on, we will be using the fact that the automaton A is deterministic.
A consequence of the determinism of A is that for any pattern ∆ of arity n,
the relation δ∆ is a partial function

δ∆ : Q × {ε, 0, . . . , n − 1} → Q × {ε, 0, . . . , n − 1} .

This function may be partial even if the original transition function was not,
since the automaton can be trapped in a loop inside the pattern. From now
on we use a functional notation for δ relations.

One sort of behavior that makes notation more cumbersome is what we call
oscillation. This is when the automaton comes back to the same port in the
pattern from which it entered. For this reason we introduce in this section a
new simpler type of transition relation intended to replace δ, the γ function.

Consider a unary pattern of the form ∆1 · ∆1, with the nodes v < w corre-
sponding to the leaf ports of the two ∆1 patterns. For a state q, consider the
unique maximal run of A which starts in (q, v) and visits none of the ports of
∆1 · ∆1. If this run visits v a finite number of times, the ε-successor sε(q) of

10

q is defined to be the state in which v is last visited. If the run loops around
v, the ε-successor is undefined.

Notice that the ε-successor is defined in terms of ∆1 patterns, but thanks
to Lemma 10, we could have used any patterns of non-zero arity in place of
both ∆1 patterns. The ε-successor function describes the loops possible at the
junction node between two patterns of non-zero arity.

We say that a state q is an upward state if it appears after A has traversed
a pattern ∆1 in the up direction, i.e. δ∆1

(r, 0) = (q, ε) holds for some state r.
Similarly we say that q is a downward state if δ∆1

(r, ε) = (q, 0) holds for some
state r. We use QU and QD to denote the sets of upward and downward states
respectively.

We now introduce a new type of transition function that we will use instead of
the δ functions. This new function is meant to eliminate oscillation of the au-
tomaton. This step can be interpreted as the construction of a non-oscillating
version of the original automaton A. For ∆ ∈ Cn

A , the partial function

γ∆ : (QD ×{ε})∪ (QU ×{0, . . . , n − 1}) → (QU ×{ε})∪ (QD ×{0, . . . , n − 1})

is defined by γ∆(q, i) = δ∆(sε(q), i). From now on, we simplify slightly the
notation by using γ0, γ1 and γ2 for γ∆0

, γ∆1
and γ∆2

respectively.

We remark here, somewhat ahead of time, that the function γ∆ turns out to
be completely defined for any pattern ∆ ∈ CA. This is because – thanks to the
choice of the function’s domain – we can be sure that the automaton does not
loop. The formal proof is provided by Lemma 14.

Lemma 11 For q ∈ QD, γ1(q, ε) = (q, 0). For q ∈ QU , γ1(q, 0) = (q, ε).

Proof Let q ∈ QD. By definition, there is some r such that δ∆1
(r, ε) = (q, 0).

Consider the pattern ∆1·∆1, with v labeling the interface between the two ∆1

patterns and a run on this pattern which starts in (r, ε). The first time the
node v is passed, state q is assumed, since δ∆1

(r, ε) = (q, 0). The last time v is
passed state sε(q) is assumed, by definition of sε. The first time the leaf port
is reached, state q is assumed, since δ∆1·∆1

(r, ε) = δ∆1
(r, ε) = (q, 0). Hence

γ1(q, ε) = δ∆1
(sε(q), ε) = (q, 0).

The proof for q ∈ QU is obtained by swapping the roles of ports ε and 0. �

The next lemma shows that γ admits no oscillation:

Lemma 12 For any ∆ ∈ CA of arity n ≥ 1, states q, r and any port i,

if γ∆(q, i) = (r, j) then i 6= j .

11

Proof We only treat the case where q is a downward state and i = ε. Let p
be the ε-successor of q. Were the statement in the lemma false, we would have
j = ε. This would mean that δ∆(p, ε) = (r, ε). By Lemma 10, δ∆1

(p, ε) = (r, ε)
holds, a contradiction with the definition of p as an ε-successor. �

Here follows a simple description of the behavior of downward states in a ∆2

pattern.

Lemma 13 For a downward state q, γ2(q, ε) is either (q, 0) or (q, 1).

Proof Let γ2(q, ε) = (r, i). By Lemma 12, i is either 0 or 1. Without loss
of generality we assume that i = 0. Since ∆1 ' ∆2[∗, ∆0], we obtain that
γ1(q, ε) = (r, 0). This, together with Lemma 11, shows that r = q. �

Lemma 14 The function γ∆ is completely defined for patterns ∆ ∈ CA.

Proof Consider a pattern ∆ of nonzero arity n and assume that γ∆(q, i) is
undefined for some port i. Let us consider first the case when i is a leaf port.
If we plug all the other leaf ports of ∆ with a ∆0 pattern, we get a pattern
equivalent to ∆1. The same run that either looped or blocked in ∆ would do
the same in the new pattern. But this implies that γ1(q, 0) is undefined, a
contradiction with Lemma 11. The case when i is the root port is proved the
same way.

For the case of ∆ = ∆0, let us assume for a moment that when entering from
(q, ε), the automaton gets lost in the pattern. But then, by the equivalences
∆1 ' ∆2[∗, ∆0] ' ∆2[∆0, ∗] and by Lemma 13, A would also get lost in ∆1

when entering from (q, ε), a contradiction with Lemma 11. �

Finally, the following lemma shows that in order to establish the equivalence
of two patterns, it is enough to study the γ functions.

Lemma 15 Two patterns in CA are equivalent if and only if they have the
same γ functions.

Proof The left to right implication follows straight from the definition of the
function γ, which is defined in terms of the δ function.

For the right to left implication, consider a possible argument (q, i) of the
γ∆, γ∆′ functions. We only do the case of i = ε, the case for leaf ports being
analogous. Let q be a downward state. If δ∆1

(q, ε) is either undefined or (r, ε),
then the same happens in δ∆ and δ∆′, since the patterns ∆, ∆1 · ∆, and ∆′,
∆1 · ∆′ are all equivalent. Otherwise q is its own ε-successor and in this case

δ∆(q, ε) = δ∆(sε(q), ε) = γ∆(q, ε) = γ∆′(q, ε) = δ∆′(sε(q), ε) = δ∆′(q, ε) .

12

�

From now on, the γ function is used instead of the δ function.

5 Depth-first search

In this last part we show that – from the point of view of the γ function –
the automaton can only do depth-first searches over patterns in CA. Using this
characterization, we prove the main technical lemma of this paper, Lemma 18.
Due to the domain of γ we need to consider two cases: downward states in the
root port and upward states in the leaf ports.

We already have a good description of the behavior of downward states when
entering in the root port. This was the subject of Lemma 13.

The behavior of upward states is more involved. When starting in a leaf port,
an upward state may go in the direction of the root, but it may also try to
visit some other leaf port (a case that has no equivalent for downward states).
The following definition, along with Lemma 17, gives a classification of the
possible behaviors of upward states.

Definition 16 Let q be a downward state and r an upward state. We say the
pair (q, r) has left to right depth-first search behavior if

γ2(q, ε) = (q, 0), γ0(q, ε) = (r, ε), γ2(r, 0) = (q, 1), and γ2(r, 1) = (r, ε).

A right to left depth-first search behavior is defined symmetrically by swapping
ports 0 and 1. An upward state r has ascending behavior if

γ2(r, 0) = γ2(r, 1) = (r, ε) .

The following lemma shows that Definition 16 is exhaustive.

Lemma 17 An upward state r either has ascending behavior or there exists
a downward state q such that the pair (q, r) has depth-first search behavior
(either left to right or right to left).

Proof Let r be an upward state. The proof is by cases as to which one of
the equalities γ2(r, 0) = (r, ε) or γ2(r, 1) = (r, ε) hold. If both hold, r has
ascending behavior. We show that if the first does not hold, then for some
downward state q, the pair (q, r) has left to right depth-first search behavior.
Symmetrically, if the second equality does not hold, there is some downward
state q such that the pair (q, r) has right to left depth-first search behavior.

13

We only do the case where γ2(r, 0) 6= (r, ε). By Lemma 12 we have

γ2(r, 0) = (q, 1) (3)

for some downward state q. Let p be the upward state such that

γ0(q, ε) = (p, ε) . (4)

Since ∆1 ' ∆2[∗, ∆0] and γ1(r, 0) = (r, ε) (Lemma 11), we obtain that

γ2(p, 1) = (r, ε) , (5)

and hence γ1(p, 0) = (r, ε). Since γ1(p, 0) = (p, ε) holds by Lemma 11, we
obtain r = p.

Since q is a downward state, then by Lemma 13 the value of γ2(q, ε) must be
either (q, 0) or (q, 1). But the second case cannot hold, since together with
equations (3) and (5) this would mean that there is a loop γ∆2[∗,∆0](q, ε) =
(r, ε), a contradiction with Lemma 12. This means that

γ2(q, ε) = (q, 0) . (6)

The equality p = r and the equations (3), (4), (5) and (6) show that (q, r) has
left to right depth-first search behavior. �

Now that we know exactly how the automaton behaves for upward and down-
ward states, we obtain the following as consequence of Lemmas 13 and 17:

Lemma 18 The patterns ∆ = ∆2[∆2, ∗] and ∆′ = ∆2[∗, ∆2] are equivalent.

Proof We will show that the two patterns have the same γ functions.

For q a downward state, by Lemma 13, we have

γ∆(q, ε) = γ∆′(q, ε) = (q, 0) or γ∆(q, ε) = γ∆′(q, ε) = (q, 2) .

Let r be an upward state and let i be a leaf port. By Lemma 17, the state
either has ascending behavior or depth-first search behavior. If it has ascending
behavior, then

γ∆(r, i) = γ∆′(r, i) = (r, ε) .

If the pair (q, r) has left to right depth-first search behavior, then

γ∆(r, i) = γ∆′(r, i) =

(q, i + 1) for i ∈ {0, 1}

(r, ε) if i = 2 .

The case of right to left depth-first search behavior is analogous. �

14

Notice that the above lemma implies that any two patterns of same arity in
CA are equivalent. This is because each pattern can be rewritten into the other
using the equivalences from Lemmas 9 and 18.

Conclusion

We have established that tree-walking automata cannot be determinized. This
result also implies that deterministic tree-walking automata do not recognize
all regular tree languages. Both results are new.

The proof was obtained by showing that a deterministic tree-walking automa-
ton is unable to inspect the branching structure of a tree. It would be nice if
variants of this approach could be applied to other languages. One interesting
example is the majority election language that has been conjectured in [NS00]
to separate tree-walking automata from branching automata. This language
is constructed of ternary trees whose leaves are labeled either by 0 or by 1. A
tree belongs to this language if it consists of a single leaf labeled by 1, or if at
least two of its three subtrees belong to the language. We do not know whether
our technique can be applied to show that this language is not accepted by
any deterministic tree-walking automaton.

An important tool used our proof is the definition of the patterns ∆0, ∆1

and ∆2. These patterns are an alternative to the classical pumping argument.
As we already mentioned, some of the properties concerning these patterns are
still valid in the nondeterministic case. This suggests that the patterns may be
useful in the natural continuation of this work: showing that nondeterministic
tree-walking automata are weaker than branching tree automata.

References

[AU71] A. V. Aho and J. D. Ullman. Translations on a context-free grammar.
Information and Control, 19(5):439–475, dec 1971.

[BH67] M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In
Symposium on Switching and Automata Theory, pages 155–160, 1967.

[Boj03] M. Bojańczyk. 1-bounded TWA cannot be determinized. In 23rd

Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS’03, volume 2914 of Lecture Notes in

Computer Science, pages 62,73. Springer, 2003.

[EH99] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In
G. Paum J. Karhumaki, H. Maurer and G. Rozenberg, editors, Jewels are

15

forever, contributions to Theoretical Computer Science in honor of Arto

Salomaa, pages 72–83. Springer-Verlag, 1999.

[EHvB99] J. Engelfriet, H. J. Hoogeboom, and J.-P. van Best. Trips on trees. Acta

Cybernetica, 14:51–64, 1999.

[How96] J. M. Howie. Fundamentals of Semigroup Theory. Oxford University
Press, 1996.

[KS81] T. Kamimura and G. Slutzki. Parallel two-way automata on directed
ordered acyclic graphs. Information and Control, 49(1):10–51, 1981.

[NS00] F. Neven and T. Schwentick. On the power of tree-walking
automata. In 27th International Colloquium on Automata, Languages

and Programming, ICALP’00, volume 1853 of LNCS, 2000.

16

