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Abstract
In this paper we regard languages and their acceptors – such as deterministic or weighted auto-
mata, transducers, or monoids – as functors from input categories that specify the type of the
languages and of the machines to categories that specify the type of outputs.

Our results are as follows: a) We provide sufficient conditions on the output category so that
minimization of the corresponding automata is guaranteed. b) We show how to lift adjunctions
between the categories for output values to adjunctions between categories of automata. c) We
show how this framework can be instantiated to unify several phenomena in automata theory,
starting with determinization and minimization (which have been previously studied from a
coalgebraic and duality theoretic perspective). We also show how subsequential transducers can
be seen as functors valued in a Kleisli category and explain Choffrut’s minimization algorithm.
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1 Introduction

There is a long tradition of interpreting results of automata theory using the lens of category
theory. Typical instances of these scheme interpret automata as algebras (together with a
final map) as put forward in [1, 3, 13], or as coalgebras (together with an initial map), see for
example [15]. This dual narrative proved very useful [6] in explaining at an abstract level
Brzozowski’s minimization algorithm and the duality between reachability and observability
(which goes back all the way to the work of Arbib, Manes and Kalman).

In this paper, we adopt a slightly different approach, and we define directly the notion of
an automaton (over finite words) as a functor from a category representing input words, to a
category representing the computation and output spaces. The notions of a language and of
language accepted by an automaton are adapted along the same pattern.

We provide several developments around this idea. First, we recall (see [11]) that the
existence of a minimal automaton for a language is guaranteed by the existence of an
initial and a final automaton in combination with a factorization system. Additionally, we
explain how, in the functor presentation that we have adopted, the existence of initial and
final automata for a language can be phrased in terms of Kan extensions. We also show
how adjunctions between categories can be lifted to the level of automata for languages in
these categories (Lemma 3.2). This lifting accounts for several constructions in automata
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theory, determinization to start with. We then use this framework in the explanation of two
well-known constructions in automata theory.

The most involved contribution (Theorem 4.4) is to rephrase the minimization result of
Choffrut for subsequential transducers in this framework. We do this by instantiating the
category of outputs with the Kleisli category for the monad TX = B∗ ×X + 1, where B is
the output alphabet of the transducers. In this case, despite the lack of completeness of the
ambient category, one can still prove the existence of an initial and of a final automaton, as
well as, surprisingly, a factorization system.

The second concrete application is a proof of correctness of Brzozowski’s minimization
algorithm. Indeed, determinization of automata can be understood via a lifting of the Kleisli
adjunction between the categories Rel (of sets and relations) and Set (of sets and functions);
and reversing nondeterministic automata can be understood via a lifting of the self-duality
of Rel. Brzozowski’s minimization algorithm can be understood by lifting the adjunction
between Set and its opposite category Setop, thus recovering results from [6].

Related work. Many of the constructions outlined here have already been explained from
a category-theoretic perspective, using various techniques. For example, the relationship
between minimization and duality was subject to numerous papers, see for example [5–7]
and the references therein. The coalgebraic perspective on minimization was also emphasised
in papers such as [2,17]. Undertstanding determinization and codeterminization by lifting
adjunctions to coalgebras was considered in [16], and is related to our results from Section 5.2.
Subsequential transducers were understood coalgebraically in [14].

The paper which is closest in spirit to our work is a seemingly forgotten paper [4].
However, in this work, Bainbridge models the state space of the machines as a functor. Left
and right Kan extensions are featured in connection with the initial and final automata, but
in a slightly different setting. Lemma 3.2, which albeit technically simple, has surprisingly
many applications, builds directly on his work.

2 Languages and Automata as Functors

In this section, we introduce the notion of automata via functors, and this is the common
denominator of the different contributions of this paper. We introduce this definition starting
from the special case of classical deterministic automata.

In the standard definition, a deterministic automaton is a tuple:

〈Q,A, q0, F, δ〉

where Q is a set of states, A is an alphabet (not necessarily finite), q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δa : Q→ Q is the transition map for all letters a ∈ A.
The semantic of an automaton is to define what is a run over an input word u ∈ A∗, and
whether it is accepting or not. Given a word e = a1 . . . an, the automaton accepts the word
if δan

◦ · · · ◦ δa1(q0) ∈ F , and otherwise rejects it.
If we see q0 as a map init from the one element set 1 = {0} to Q, that maps 0 to q0, and

F as a map final from Q to the set 2 = {0, 1}, where 1 means ‘accept’ and 0 means ‘reject’,
then the semantic of the automaton is to associate to each word u = a1 . . . an the map from 1
to 2 defined as final ◦ δan ◦ · · · ◦ δan ◦ init. If this map is (constant equal to) 1, this means
that the word is accepted, and otherwise it is rejected.
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Pushing this idea further, we can see the semantic of the auto-
maton as a functor from the category spanned by the graph to
the right to Set, and more precisely one that sends the object
in to 1 and out to 2. In the above category, the arrows from in
to out are of the form .w/ for w an arbitrary word in A∗.

in states out.

a

/

Furthermore, since a language can be seen as a map from A∗ to 1→ 2, we can model it
as a functor from the full subcategory on objects in and out to the category Set, which maps
in to 1 and out to 2.

In this section we fix an arbitrary small category I and a full subcategory O. We denote
by ι the inclusion functor

O I .ι

We think of I as a specification of the inner computations that an automaton can perform,
including black box behaviour, not observable from the outside. On the other hand, the full
subcategory O specifies the observable behaviour of the automaton, that is, the language it
accepts. In this interpretation, a machine/automaton A is a functor from I to a category
of outputs C, and the “behaviour” or “language” of A is the functor L(A) obtained by
precomposition with the inclusion O Iι . We obtain the following definition:

I Definition 2.1 (languages and the categories of automata for them).
A C-language is a functor L : O → C and a C-automaton is a functorA : I → C.
A C-automaton A accepts a C-language L when A ◦ ι = L; i.e. the following
diagram commutes:

O C

I

L

ι
A

We write Auto(L) for the subcategory of the functor category [I, C] where
1. objects are C-automata that accept L.
2. arrows are natural transformations α : A → B so that the natural transformation obtained

by composition with the inclusion functor ι is the identity natural transfomation on L,
that is, α ◦ ι = idL.

2.1 Minimization of C-automata
In this section we show that the notion of a minimal automaton is an instance of a more
generic notion of minimal object that can be defined in an arbitrary category K whenever
there exist an initial object, a final object, and a factorization system (E ,M).

Let X,Y be two objects of K. We say that:

X (E ,M)-divides Y if X is an E-quotient of anM-subobject of Y .

Let us note immediately that in general this notion of (E ,M)-divisibility may not be
transitive1. It is now natural to define an object M to be (E ,M)-minimal in the category, if
it (E ,M)-divides all objects of the category. Note that there is no reason a priori that an
(E ,M)-minimal object in a category, if it exists, be unique up to isomorphism. Nevertheless,
in our case, when the category has both initial and a final object, we can state the following
minimization lemma:

1 There are nevertheless many situations for which it is the case; In particular when the category is
regular, and E happens to be the class of regular epis. This covers in particular the case of all algebraic
categories with E-quotients being the standard quotients of algebras, and M-subobjects being the
standard subalgebras.
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I Lemma 2.2. Let K be a category with initial object I and final object F and let (E ,M) be
a factorization system for K. Define for every object X:

Min to be the factorization of the only arrow from I to F ,
Reach(X) to be the factorization of the only arrow from I to X, and Obs(X) to be the
factorization of the only arrow from X to F .

Then
Min is (E,M)-minimal, and
Min is isomorphic to both Obs(Reach(X)) and Reach(Obs(X)) for all objects X.

Proof. The proof essentially consists of a diagram:

X

I Reach(X) Obs(Reach(X)) F

Min

Using the definition of Reach and Obs, and the fact that E is closed under composition, we
obtain that Obs(Reach(X)) is an (E ,M)-factorization of the only arrow from I to F . Thus,
thanks to the diagonal property of an factorization system, Min and Obs(Reach(X)) are
isomorphic. Hence, furthermore, since Obs(Reach(X)) (E ,M)-divides X by construction, the
same holds for Min. In a symmetric way, Reach(Obs(X)) is also isomorphic to Min. J

An object X of K is called reachable when X is isomorphic to Reach(X). We denote by
Reach(K) the full subcategory of K consisting of reachable objects. Similarly, an object X
of K is called observable when X is isomorphic to Obs(X). We denote by Obs(K) the full
subcategory of K consisting of observable objects.

We can express reachability Reach and obserbavility Obs as the right, respectively the left
adjoint to the inclusion of Reach(K), respectively of Obs(K) into K. It is indeed a standard
fact that factorization systems give rise to reflective subcategories, see [8]. In our case, this
is the reflective subcatgeory Obs(K) of K. By a dual argument, the category Reach(K) is
coreflective in K. We can summarize these facts in the next lemma.

I Lemma 2.3. Let K be a category with initial object I and final object F and let (E ,M) be
a factorization system for K. We have the adjunctions

Reach(K) ⊥ K ⊥ Obs(K) .

Obs

Reach

In what follows we will instantiate K with the category Auto(L) of C-automata accepting
a language L. Assuming the existence of an initial and a final automaton for L – denoted
by Ainit(L), respectively Afinal(L) – and, of a factorisation system, we obtain the functorial
version of the usual notions of reachable sub-automaton Reach(A) and observable quotient
automaton Obs(A) of an automaton A. The minimal automaton Min(L) for the language L
is obtained via the factorization

Ainit(L) Min(L) Afinal(L) .

Lemma 2.2 implies that the minimal automaton divides any other automaton recognising
the langauge, while Lemma 2.3 instantiates to the results of [6, Section 9.4].
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2.2 Minimization of C-automata: sufficient conditions on C
In this section we provide sufficient conditions on C so that the category Auto(L) of C-automata
accepting a C-language L satisfies the three coditions of Lemma 2.2.

We start with the factorization system. It is well known that given a factorization system
(E ,M) on C, we can extend it to a factorization system (E[I,C],M[I,C]) on the functor category
[I, C] in a pointwise fashion. That is, a natural transformation is in E[I,C] if all its components
are in E , and analogously, a natural transformation is in M[I,C] if all its components are
inM. In turn, the factorization system on the functor category [I, C] induces a factorization
system on each subcategory Auto(L).

I Lemma 2.4. If C has a factorization system (E ,M), then Auto(L) has a factorization
system (EAuto(L),MAuto(L)), where EAuto(L) consists of all the natural transformations with
components in E andMAuto(L) consists of all natural transformations with components inM.

The proof of Lemma 2.4 is the same as the classical one that shows that factorization systems
can be lifted to functor categories.

I Lemma 2.5. If the left Kan extension LanιL of L along ι exists, then it is an initial object
in Auto(L), that is, Ainit(L) exists and is isomorphic to LanιL.

Dually, if the right Kan extension RanιL of L along ι exists, then so does the final
object Afinal(L) of Auto(L) and Afinal(L) is isomorphic to RanιL.

Proof Sketch. Assume the left Kan extension exists. Then the canonical natural transform-
ation L → LanιL ◦ ι is an isomorphism since ι is full and faithful. Whenever A accepts
L, that is, A ◦ ι = L, we obtain the required unique morphism LanιL → A using the
universal property of the Kan extension. The argument for the right Kan extension follows
by duality. J

I Corollary 2.6. Assume C is complete, cocomplete and has a factorization system and let L be
a C-language. Then the initial L-automaton and the final L-automaton exist and are given by
the left, respectively right Kan extensions of L along ι. Furthermore, the minimal C-automaton
Min(L) accepting L is obtained via the factorization LanιL Min(L) RanιL .

I Remark. Depending on the category I, we may relax the conditions in Corollary 2.6,
see Lemma 3.1. Furthermore, we emphasise that these conditions are only sufficient. In
Section 4 we consider the example of sequential transducers and we instantiate C with a
Kleisli category. Although this category does not have powers, the final automaton exists.

3 Word Automata

Hereafter, we restrict our attention to the case of word
automata, for which the input category I is the three-
object category with arrows spanned by ., / and a for
all a ∈ A, as in the diagram on the right and where the

in states out.

a

/

composite of states states statesw w′ is given by the concatenation ww′.
Let O to be the full subcategory of I on objects in and out. We consider C-languages,

which are now functors L : O → C. If L(in) = X and L(out) = Y we call L an (C, X, Y )-
language. Similarily, we consider C-automata that are functors A : I → C. If A(in) = X and
A(out) = Y we call A an (C, X, Y )-automaton.

We can refine the statement of Corollary 2.6 as follows.
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I Lemma 3.1 (from [11]). If C has countable products and countable coproducts, and a fac-
torization system, then the minimal C-automaton accepting L is obtained via the factorization
in the next diagram.∐

u∈A∗
L(in)

L(in) Min(L) L(out)

∏
u∈A∗

L(out)

L?

L

ε

i f

ε?

The initial automaton Ainit(L) has as state space the copower
∐

u∈A∗
L(in). The map

ε = Ainit(L)(.) : L(in)→
∐
u∈A∗

L(in)

is the coproduct injection corresponding to ε ∈ A∗. The map

L? = Ainit(L)(/) :
∐
u∈A∗

L(in)→ L(/)

is given on the component of the coproduct corresponding to u ∈ A∗ by L(.u/). Lastly, for
each a ∈ A the map Ainit(L)(a) is given on the component of the coproduct that corresponds
to u ∈ A∗ as the coproduct injection corresponding to the word ua.

In [11] we gave a direct proof of initiality, but here we can also notice that this is exactly
what the colimit computation of the left Kan extension of L alon ι yields – using the fact
that there are no morphisms from out to states in I and the only morphism on which you
take the colimit are of the form .w : in→ states for all w ∈ A∗.

For the final automaton, the proof follows by duality.

3.1 Lifting Adjunctions to Categories of Automata
In this section we will juggle with languages and automata interpreted over different categories
connected via adjunctions.

Assume we have an adjunction between two categories C and D

C ⊥ D ,
F

G

with F a G : D → C. Let (−)∗ and (−)∗ denote the induced natural isomorphisms between
the homsets. In particular, given objects I in C and O in D, we have bijections

C(I,GO) D(FI,O)
(−)∗

(−)∗
(1)

These bijections induce a one-to-one correspondence between (C, I, GO)-languages and
(D, F I,O)-languages, which by an abuse of notation we denote by the same symbols:

(C, I, GO)-languages (D, F I,O)-languages
(−)∗

(−)∗
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Indeed, given a (C, I, GO)-language L : O → C we obtain a (D, F I,O)-language L∗ : O →
D by setting L∗(.w/) = (L(.w/))∗ ∈ D(FI,O). Conversely, given a (D, F I,O)-language L′
we obtain a (C, I, GO)-language (L′)∗ by setting (L′)∗(.w/) = (L′(.w/))∗.

I Lemma 3.2. Assume LC and LD are (C, I, GO)-, respectively (D, F I,O)-languages so
that LD = (LC)∗. Then the adjunction F a G lifts to an adjunction F a G : Auto(LD) →
Auto(LC). The lifted functors F and G are defined as F , resp. G on the state object, that
is, the following diagram commutes

Auto(LC) ⊥ Auto(LD)

C ⊥ D

State

F

G
State

F

G

where the functor State : Auto(LC) → C is the evaluation at states, that is, it sends an
automaton A : I → C to A(states).

Proof sketch. The functor F maps an automaton A : I → C from Auto(LC) to the D-
automaton FA : I → D mapping . : in → states to F (A(.)), a : states → states to F (A(a))
and / : states→ out to the adjoint transpose (A(/))∗ : FA(states)→ O of A(/) : A(states→
GO. In a diagram

I A(states) GO FI FA(states) O
A(.)

A(a)

A(/) F FA(.)

FA(a)

(A(/))∗

The functor G is defined similarly on an D-automaton B.

FI B(states) O I GB(states) GO
B(.)

B(a)

B(/) G (B(.))∗

GB(a)

G(B(/))

We show next that we have an isomorphism

Auto(LD)(FA,B) ∼= Auto(LC)(A, GB)

Indeed, consider a morphism α : FA → B in Auto(LD). We define a natural transformation
α∗ : A → GB by setting its component at states as the adjoint transpose (αstates)∗ of

αstates : FA(states)→ B(states) .

It is now easy to verify that α∗ is indeed an automata morphism in Auto(LC) and that the
mapping α 7→ α∗ gives rise to the desired isomorphism. J

4 Choffrut’s minimization of subsequential transducers

In [9,10] Choffrut establishes a minimality result for subsequential transducers, which are
deterministic automata that output a word while processing their input. In this section, we
show that this result can be established in the functorial framework of this paper.
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We first present the model of subsequential transducers in Section 4.1, show how these
can be identified with automata in the Kleisli category of a suitably chosen monad, and
state the minimization result, Theorem 4.4. The subsequent sections provide the necessary
material for proving the theorem.

4.1 Subsequential transducers and automata in a Kleisli category
Subsequential transducers are (finite state) machines that compute partial functions from
input words in some alphabet A to output words in some other alphabet B. In this section,
we recall the classical definition of these objects, and show how it can be phrased categorically.

I Definition 4.1. A subsequential transducer is a tuple

T = (Q,A,B, q0, t, i, (− · a)a∈A, (− ∗ a)a∈A) ,

where
A is the input alphabet and B the output one,
Q is a (finite) set of states.
q0 is either undefined or belongs to Q and is called the initial state of the transducer.
t : Q ⇀ B∗ is a partial termination function.
u0 ∈ B∗ is either undefined and is defined if and only if q0 is, and is the initialization
value.
− · a : Q ⇀ Q is the partial transition function for the letter a, for all a ∈ A.
− ∗ a : Q ⇀ B∗ is the partial production function for the letter a for all a ∈ A; it is
required that q ∗ a be defined if and only if (q · a) is.

The subsequential transducer computes a partial function [[T ]] : A∗ ⇀ B∗ defined as:

[[T ]](a1 . . . an) = u0(q0 ∗ a1)(q1 ∗ a2) . . . (qn−1 ∗ an)t(qn) for all a1 . . . an ∈ A∗,

where each qi is either undefined or belongs to Q, with q0 inherited from the definition of T ,
and qi = qi−1 · ai for all i = 1 . . . n.

These subsequential transducers are modeled in our framework as automata in the
category of free algebras for the monad T , that we describe now.

I Definition 4.2. The monad T : Set→ Set is defined by

T (X) = B∗ ×X + 1

with unit ηX and multiplication µX defined for all x ∈ X and w, u ∈ B∗ as:

µX : T 2X → T X
ηX : X → B∗ ×X + 1 (w, (u, x)) 7→ (wu, x)

x 7→ (ε, x) (w,⊥) 7→ ⊥
⊥ 7→ ⊥

where we denote by ⊥ the unique element of 1 (used to model the partiality of functions).

Recall that the category of free T -algebras, i.e., the Kleisli category Kl(T ) for T , has
as objects sets X,Y, . . . and as morphisms f : X 9 Y functions f : X → B∗ ×X + 1 in Set
(that is partial functions from X to B∗ × Y ).



T. Colcombet and D. Petrişan XX:9

Let T be a subsequential transducer. The initial state of the transducer q0 and the
initialization value u0 together form a morphism i : 1 9 Q in the category Kl(T ). Similarly,
the partial transition function and the partial production function for a letter a of the input
alphabet A are naturally identified to Kleisli morphisms δa : Q9 Q in Kl(T ). Finally, the
partial termination function together with the partial production function are nothing but a
Kleisli morphism of the form t : Q 9 1. To summarise, we obtained that a subsequential
transducer T in the sense of [10] is specified by the following morphisms in Kl(T ):

1 Q 1/
i

/

δa

/
t

that is, by a functor AT : I → Kl(T ) or equivalently, a (Kl(T ), 1, 1)-automaton. The
subsequential function realised by the transducer T is a partial function A∗ ⇀ B∗ and is fully
captured by the (Kl(T ), 1, 1)-language LT : O → Kl(T ) accepted by AT , which is obtained
as AT ◦ ι. Indeed, this Kl(T )-language gives for each word w ∈ A∗ a Kleisli morphism
LT (.w/) : 1 9 1, or equivalently, outputs for each word in A∗ either a word in B∗ or the
undefined element ⊥.

Putting all this together, we can state the following lemma, which validates the categorical
encoding of subsequential transducers:

I Lemma 4.3. Subsequential transducers are in one to one correspondence with (Kl(T ), 1, 1)-
automata, and partial maps from A∗ to B∗ are in one to one correspondence with (Kl(T ), 1, 1)-
languages. Furthermore, the acceptance of languages is preserved under these bijections.

In the rest of this section we will see how to obtain Choffrut’s minimization result as an
application of Lemma 2.2. I.e., we have to provide in the category of (Kl(T ), 1, 1)-automata,
1. an initial object,
2. a final object, and,
3. a factorization system.

The existence of the initial transducer is addressed in Section 4.3, the one of the final
transducer is the subject of Section 4.4. In Section 4.5 we show how to construct a factorization
system. Putting together all these results, we obtain:

I Theorem 4.4 (Categorical version [9, 10]). For all (Kl(T ), 1, 1)-language, there exists a
minimal (Kl(T ), 1, 1)-automaton for it.

Let us note that only the existence of the automaton is mentioned in this statement, and the
way to compute it effectively is not addressed as opposed to Choffrut’s work. Nevertheless,
Lemma 2.2 describes what are the basic functions that have to be implemented, namely
Reach and Obs.

The rest of this section is devoted to establish the three above mentionned points.
Unfortunately, as it is usually the case with Kleisli categories, Kl(T ) is neither complete,
nor cocomplete. It does not even have binary products, let alone countable powers. Also,
the existence of a factorization system does not generally hold in Kleisli categories. Hence,
providing the above three pieces of information requires a bit of work.

In the next section we present an adjunction between (Kl(T ), 1, 1)-automata and (Set, 1, B∗+
1)-automata which is then used in the subsequent ones for proving the existence of initial
and final automata. We finish the proof with a presentation of the factorization system.



XX:10 Automata Minimization: a Functorial Approach

4.2 Back and forth to automata in set
In order to understand what are the properties of the category of (Kl(T ), 1, 1)-automata,
an important tool will be the ability to see alternatively a subsequential transducer as an
automaton in Kl(T ) as we have seen above, or as an automaton in Set, since Set is much
better behaved than Kl(T ). These two points of view are related through an adjunction,
making use of the results of Section 3.1 and Lemma 2.4.

Indeed, we start from the well known adjunction between Set and Kl(T ):

Set ⊥ Kl(T ) .

FT

UT

(2)

We recall that the free functor FT is defined as the identity on objects, while for any function
f : X → Y the morphism FT f : X 9 Y is defined as ηY ◦ f : X → T Y . For the other
direction, the functor UT maps an object X in Kl(T ) to T X and a morphism f : X 9 Y

(which is seen here as a function f : X → T Y ) to µY ◦ T f : T X → T Y .
A simple, yet important observation is that the language of interest, which is a partial

function L : A∗ ⇀ B∗ can be modeled either as a (Kl(T ), 1, 1)-language LKl(T ), or, as a
(Set, 1, B∗ + 1)-language LSet. This is because for each w ∈ A∗ we can identify L(w) either
with an element of Kl(T )(1, 1) or, equivalently, as an element of Set(1, B∗ + 1).

LKl(T ) : O → Kl(T ) LSet : O → Set
in 7→ 1 in 7→ 1

out 7→ 1 out 7→ B∗ + 1
.w/ 7→ L(w) : 1 9 1 .w/ 7→ L(w) : 1→ B∗ + 1

To see how this fits in the scope of Section 3.1, notice that LKl(T ) is an (Kl(T ), FT 1, 1)-
language, while LSet is an (Set, 1, UT 1)-language and they correspond to each other via the
bijections described in (1).
Applying Lemma 3.2 for the Kleisli adjunction (2)
we obtain an adjunction FT a UT between the
categories of Kl(T )-automata for LKl(T ) and of Set-
automata accepting LSet, as depicted in the diagram
on the right.
We will make heavy use of this correspondence in
what follows.

Auto(LSet) ⊥ Auto(LKl(T ))

Set ⊥ Kl(T ) .

State

FT

UT
State

FT

UT

4.3 The initial Kl(T )-automaton for the language LKl(T )

The functor FT is a left adjoint and consequently preserves colimits and in particular the
initial object. We thus obtain that the initial LKl(T )-automaton is FT (Ainit(LSet)), where
Ainit(LSet) is the initial object of Auto(LSet). This automaton can be obtained by Lemma 3.1
as the functor Ainit(LSet) : I → Set specified by Ainit(LSet)(states) = A∗ and for all a ∈ A

Ainit(LSet)(.) : 1→ A∗ Ainit(LSet)(/) : A∗ → B∗ + 1 Ainit(LSet)(a) : A∗ → A∗

0 7→ ε w 7→ L(w) w 7→ wa
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Hence, by computing the image of Ainit(LSet) under FT , we obtain the following description
of the initial Kl(T )-automaton Ainit(LKl(T )) accepting LKl(T ): Ainit(LKl(T ))(states) = A∗

and for all a ∈ A

Ainit(LKl(T ))(.) : 1 9 A∗ Ainit(LKl(T ))(/) : A∗ 9 1 Ainit(LKl(T ))(a) : A∗ 9 A∗

0 7→ (ε, ε) w 7→ L(w) w 7→ (ε, wa)

4.4 The final Kl(T )-automaton for the language LKl(T )

The case of the final Kl(T )-automaton is more complicated, since it is not constructed as
easily. However, assuming the final automaton exists, it has to be sent by UT to a final
Set-automaton. Moreover, by Lemma 4.5, in order to to prove that a given Kl(T )-automaton
A is a final object of Auto(LKl(T )) it suffices to show that UT (A) is the final object in
Auto(LSet). The proof of the following lemma generalises the fact that UT reflects final
objects and can be proved in the same spirit.

I Lemma 4.5. The functor UT : Auto(LKl(T ))→ Auto(LSet) reflects final objects.

Proof. Recall that we have the following two adjunctions for the categories Kl(T ) of Kleisli
algebras, respectively EM(T ) of Eilenberg-Moore algebras, and the comparison functor
K : Kl(T )→ EM(T ) between them.

Kl(T ) EM(T )

Set

K

UT

UTFT

FT
(3)

The partial function L : A∗ ⇀ B∗ from Section 4.2 can also be modelled as an (EM(T ), T1, T1)-
langauge LEM(T ) : O → EM(T ). Applying Lemma 3.2 for the adjunction F T a UT we obtain
an adjunction F T a UT between the categories of EM(T )-automata for LEM(T ) and of Set-
automata for LSet. We also have a lifting K : Auto(LKl(T ))→ Auto(LEM(T )) of the comparison
functor K, which maps a Kl(T )-auotmaton A to the EM(T )-automaton K ◦ A. We obtain
the following situation, which is just a lifting of diagram (3) to the categories of automata.

Auto(LKl(T )) Auto(LEM(T ))

Auto(LSet)

K

UT

UTFT
FT

One can readily check that the functor UT is the composite UT ◦K. The functor K is full
and faithful (a property inherited from K) and thus reflects final objects. On the other hand,
the final object in Auto(LEM(T )) can be computed using Lemma 3.1, since the underlying
category EM(T ) has all limits. Moreover, this final automaton is the reflection of the final
Set-automaton Afinal(LSet). J

We are now ready to describe the final Kl(T )-automaton. The final object in Auto(LSet) is
the automaton Afinal(LSet) as described using Lemma 3.1. The functor Afinal(LSet) : I → Set
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specified by

Afinal(LSet)(states) = (B∗ + 1)A
∗ Afinal(LSet)(/) : (B∗ + 1)A∗ → B∗ + 1

K 7→ K(ε)
Afinal(LSet)(.) : 1 → (B∗ + 1)A∗

0 7→ L

Afinal(LSet)(a) : (B∗ + 1)A∗ → (B∗ + 1)A∗

K 7→ λw.K(aw)

To describe the set of states of the final automaton in Auto(LKl(T )) we need to introduce a
few notations. Essentially we are looking for a set of states Q so that B∗×Q+1 is isomorphic
to (B∗ + 1)A∗ . The intuitive idea is to decompose each function in K ∈ (B∗ + 1)A∗ (except
for the one which is nowhere defined, that is the function κ⊥ = λw.⊥) into a word in B∗,
the common prefix of all the B∗-words in the image of K, and an irreducible function.

For v ∈ B∗ and a function K 6= κ⊥ in (B∗ + 1)A∗ , denote by v ? K the function defined
for all u ∈ A∗ by (v ? K)(u) = v K(u) if K(u) ∈ B∗ and (v ? K)(u) = ⊥ otherwise.

Define also the longest common prefix of K, lcp(K) ∈ B∗, as the longest word that is
prefix of all K(u) 6= ⊥ for u in A∗ (this is well defined since K 6= κ⊥). The reduction of K,
red(K), is defined as:

red(K)(u) =
{
v if K(u) = lcp(K) v,
⊥ otherwise.

Finally, K is called irreducible if lcp(K) = ε (or equivalently if K = red(K)). We denote by
Irr(A∗, B∗) the irreducible functions in (B∗ + 1)A∗ .

What we have constructed is a bijection between

T (Irr(A∗, B∗)) = B∗ × Irr(A∗, B∗) + 1 and (B∗ + 1)A
∗
,

that is defined as

ϕ : B∗ × Irr(A∗, B∗) + 1 → (B∗ + 1)A∗

(u,K) 7→ u ? K

⊥ 7→ κ⊥ ,

(4)

and the converse of which maps every K 6= κ⊥ to (lcp(K), red(K)), and κ⊥ to ⊥.
Given a ∈ A and K ∈ (B∗ + 1)A∗ we denote by a−1K the function (B∗ + 1)A∗ that maps

w ∈ A∗ to K(aw).
We can now define a functor Afinal(LKl(T )) : I → Kl(T ) by setting

Afinal(LKl(T ))(in) = 1 Afinal(LKl(T ))(states) = Irr(A∗, B∗) Afinal(LKl(T ))(out) = 1

and defining Afinal(LKl(T )) on arrows as follows

Afinal(LKl(T ))(.) : 1 9 Irr(A∗, B∗) 0 7→ (lcp(L), red(L))
Afinal(LKl(T ))(/) : Irr(A∗, B∗) 9 1 K 7→ K(ε)
Afinal(LKl(T ))(a) : Irr(A∗, B∗) 9 Irr(A∗, B∗) K 7→ (lcp(a−1K), red(a−1K)) if a−1K 6= κ⊥

K 7→ κ⊥ if a−1K = κ⊥

I Lemma 4.6. The Kl(T )-automaton Afinal(LKl(T )) is a final object in Auto(LKl(T )).

Proof. We show that UT (Afinal(LKl(T ))) is isomorphic to the final automaton Afinal(LSet). In-
deed, at the level of objects the bijection between UT (Afinal(LKl(T )))(states) andAfinal(LSet)(states)
is given by the function ϕ defined in (4). It is easy to check that also on arrows UT (Afinal(LKl(T )))
is the same as Afinal(LSet) up to the correspondence given by ϕ. J
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4.5 A factorization system on Auto(LKl(T ))
The factorization system on Auto(LKl(T )) is obtained using Lemma 2.4 from a factorization
system on Kl(T ). This factorization system is obtained in turn from the regular-epi factor-
ization system on Set, or equivalently, from the regular epi-mono factorization system on
the category of Eilenberg-Moore algebras for T . Notice that this is a specific result for the
monad T since in general, there is no reason that the Eilenberg-Moore algebra obtained by
factorizing a morphism between free algebras be free itself.

Nevertheless, for Kl(T ) we define EKl(T ) as the class of morphisms e in Kl(T ) so that
UT e is surjective in Set, andMKl(T ) as the class of morphisms m in Kl(T ) so that UTm is
injective in Set, and we prove that (EKl(T ),MKl(T )) is a factorization system on Auto(LKl(T )).

Let us give a concrete characterisation of these classes of morphisms. For a word u in B∗
we will denote by suff(u) the set of suffixes of u, that is,

suff(u) = {w ∈ B∗ | ∃v ∈ B∗.u = vw} .

We have that f : X 9 Y (that is, f : X → B∗ × Y + 1) is inMKl(T ) if and only if{
∀x ∈ X. f(x) 6= ⊥
∀y ∈ Y. ∀x, x′ ∈ X. f(x) = (u, y), f(x′) = (u′, y) and u ∈ suff(u′) imply x = x′

We have that f : X 9 Y (that is, f : X → B∗ × Y + 1) is in EKl(T ) if and only if

∀y ∈ Y.∃x ∈ X.f(x) = (ε, y)

I Lemma 4.7. (EKl(T ),MKl(T )) is a factorization system on Kl(T ).

Proof. The interesting part of the proof is showing that any morphism f : X 9 Y in Kl(T )
can be factorised as a composite m ◦ e with e ∈ EKl(T ) and m ∈MKl(T ).

Given f : X 9 Y in Kl(T ), recall that UT f : T X → T Y is defined by UT f(⊥) = ⊥ and
for (w, x) ∈ B∗ ×X we have

UT f(w, x) =
{

(wu, y) if f(x) = (u, y),
⊥ if f(x) = ⊥,

We write Im(UT f) for the image of UT f in Set, and we prove that Im(UT f) is isomorphic in
Set to B∗ × Z + 1, where the set Z is defined as the subset of Im(UT f) such that the word
on the first component of the pair is suffix-minimal. In a formula:

Z = {(w, y) ∈ Im(UT f) | ∀u ∈ B∗. u ∈ suff(w)⇒ (u, y) 6∈ Im(UT f)}

The next simple observation crucially uses the fact that we work with a free monoid B∗.
Fact. If (u, y) ∈ Im(UT f) then there exist unique words pu, su in B∗ so that (su, y) ∈ Z

and u = pusu.
We can now factorise f : X 9 Y as the composite in Kl(T )

X Z Y ,/
e

/
m

where e : X → T Y is defined by

e(x) =
{

(pu, (su, y)) if f(x) = (u, y)
⊥ if f(x) = ⊥
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while m : Z → T Y is defined by m((w, y)) = (w, y) ∈ B∗ × Y for all (w, y) ∈ Z. One can
easily check that m ◦ e = f in Kl(T ) and that e ∈ EKl(T ) and m ∈MKl(T ).

The fact that the two classes of morphisms EKl(T ) and MKl(T ) are orthogonal follows
from the fact that UT factors through the full and faithful embedding K of Kl(T ) into the
category of Eilenberg-Moore algebras for T . J

This completes the proof of Theorem 4.4.

5 Brzozowski’s determinization algorithm

5.1 Presentation
Brzozowski’s algorithm is a minimization algorithm for automata. It takes as input a
non-deterministic automaton A, and computes the deterministic automaton:

determinize(transpose(determinize(transpose(A)))),

in which
determinize is the operation from classical automata theory that takes as input a
deterministic automaton, applies a powerset construction and at the same time restricts
to the reachable states, yielding a deterministic automaton, and
transpose is the operation that takes as input an non-deterministic automaton reverses
all its edges, and swaps the role of initial and final states (it accepts the mirrored
language).

In this section, we will establish the correctness of Brzozowski’s algorithm: this sequence of
operations yields the minimal automaton for the language. For easing the presentation we
shall present the algorithm in the form:

determinize(codeterminize(A)),

in which codeterminize is the operation that takes a non-deterministic automaton, and
constructs a backward deterministic one (it is equivalent to the sequence transpose ◦
determinize ◦ transpose).

In the next section, we show how determinize and codeterminize can be seen as
adjunctions, and we use it immediately after in a correctness proof of Brzozowski’s algorithm.

5.2 Non-deterministic automata and determinization

A non-deterministic automaton is completely determined by the
relations described in the following diagram, where we see the
initial states as a relation from 1 to the set of states Q, the final
states as a relation from Q to 1 and the transition relation by any
input letter a, as a relation on Q

1 Q 1/
i

/

δa

/
f

We can model nondeterministic automata as functors by taking as output category Rel
– the category whose objects are sets and maps are relations between them. We consider
Rel-automata A : I → Rel such that A(in) = 1 and A(out) = 1. In this section we show how
to determinize a Rel-automaton, that is, how to turn it into a Set-automaton and how to
codetermize it, that is, how to obtain a Setop-automaton, all recognising the same language.

Given a language L ⊆ A∗ we can model it in several equivalent ways: as a (Set, 1, 2)-
language LSet, or as a (Setop, 2, 1)-language LSetop , or, lastly as a (Rel, 1, 1)-language LRel.
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This is because we can model the fact w ∈ L using a morphisms in either of the three
isomorphic hom-sets

Set(1, 2) ∼= Setop(2, 1) ∼= Rel(1, 1) .

Determinization and codeterminization (without restriction to reachable states as in determinize
and codeterminize) of a Rel-automaton can be seen as applications of Lemma 3.2 and are
obtained by lifting the adjunctions between Set, Rel and Setop.

Auto(LSet) ⊥ Auto(LRel) ⊥ Auto(LSetop)

Set ⊥ Rel ⊥ Setop

FP

UP

Uop
P

F op
P

FP

UP

Uop
P

F op
P

(5)

The adjunction between Set and Rel is the Kleisli adjunction for the powerset monad: FP is
identity on objects as maps a function f : X → Y to itself f : X 9 Y , but seen as a relation.
The functor UP maps X to its powerset P(X), and a relation R : X → Y to the function
UP(R) : P(X)→ P(Y ) mapping A ⊆ X to {y ∈ Y | ∃x ∈ X.(x, y) ∈ R}.

The adjunction between Setop and Rel is the dual of the previous one, composed with
the self-duality of Rel. The left adjoint FP transforms a deterministic automaton into a
non-deterministic one, while the right adjoint UP is the determinization functor. On the
other hand, the left adjoint functor Uop

P is the codeterminization functor.

5.3 Brzozowski’s minimization algorithm
The correctness of Brzozowski’s algorithm can be seen in the following chain of adjunctions
from Lemma 2.3 and (5) (that all correspond to equivalences at the level of languages):

Reach(LSet) ⊥ Auto(LSet) ⊥ Auto(LRel) ⊥ Auto(LSetop) ⊥ Obs(LSetop)

E FP

Reach UP

Uop
P

F op
P

Obs

E

A path in this diagram corresponds to a sequence of transformations of automata. It
happens that when Obs is taken, the resulting automaton is observable, i.e., there is an
injection from it to the final object. This property is preserved under the sequence of right
adjoints Reach ◦ UP ◦ F op

P ◦ E. Furthermore, after application of Reach, the automaton is
also reachable. This means that applying the sequence Reach ◦ UP ◦ F op

P ◦ E ◦ Obs ◦ Uop
P

to a non-deterministic automaton produces a deterministic and minimal one for the same
language. We check for concluding that the sequence Obs ◦ Uop

P is what is implemented by
codeterminize, that the composite F op

P ◦E essentially transforms a backward deterministic
observable automaton into a non-deterministic one, and that finally Reach ◦ UP is what is
implemented by determinize. Hence, this indeed is Brzozowski’s algorithm.
I Remark. The composite of the two adjunctions in (5) is almost the adjunction of [6,
Corollary 9.2] upon noticing that the category Auto(LSetop) Setop-automata accepting a
language LSetop is isomorphic to the opposite of the category Auto(Lrev

Set) of Set-automata that
accept the reversed language seen as functor LSetop . This observation in turn can be proved
using the symmetry of the input category I.
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6 Conclusion

In this paper we propose a view of automata as functors and we showed how to recast
well understood classical constructions in this setting, and in particular minimization of
subsequential transducers. The applications provided here are just a small sample of many
possible further extensions. We argue that this perspective gives a unified view of language
recognition and syntactic objects. We can change the input category I, so that we obtain
monoids instead of automata, or more generally, other algebras as recognisers for languages.
Minimization works out following the same recipe and yields the syntactic monoid (algebra)
of a language. We can go beyond regular languages and obtain in this fashion the “syntactic
space with an internal monoid” of a possibly non-regular language [12]. We hope we can
extend the framework to work with tree automata in monoidal categories. We discussed
mostly NFA determinization, but we can obtain a variation of the generalized powerset
construction [17] in this framework.
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