
Automata and minimization1

Thomas Colcombet, IRIF, CNRS

Daniela Petrişan, IRIF, CNRS

Already in the seventies, strong results illustrating the intimate relationship between category theory and
automata theory have been described and are still investigated. In this column, we provide a uniform pre-
sentation of the basic concepts that underlie minimization results in automata theory. We then use this
knowledge for introducing a new model of automata that is an hybrid of deterministic finite automata and
automata weighted over a field. These automata are very natural, and enjoy minimization result by design.

The presentation of this paper is indeed categorical in essence, but it assumes no prior knowledge from
the reader. It is also non-conventional in that it is neither algebraic, nor co-algebraic oriented.

1. INTRODUCTION
In this column, we attempt to give a simple, user-friendly, description of how category
theory sheds an interesting light on some aspects of automata theory and in particular
concerning the existence of minimal recognizers.

Seen from distance, an automaton is a machine that

processes an input, respecting
its structure (word, tree, infinite

word or tree, trace, . . . )
and

outputs a quantity in some
universe of output values
(Boolean values, probabilities,
vector space, words, . . . )

These two aspects, structure of the input and universe of outputs play an essen-
tially orthogonal role, and provide a good organization scheme in the description of
the landscape of automata. Though sometimes interacting, these two axes deserve to
be understood in an independent way. An important unification step for understand-
ing the structure of the input axis has been described by Bojańczyk [Bojańczyk 2015]
thanks to the use of ‘monads’ from category theory. Our focus is on the universe of
output values axis.

In this paper, we focus our attention to the universe of outputs, and the related
notion of state space. Here, once more, category theory offers a neat understanding of
phenomena. We assume no knowledge of category theory from the reader.

THEOREM 1.1. Given an automaton A in a class C, there exists another automa-
tonM in C which is algebraically minimal2 while having the same semantics.

1This work was supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No.670624), and by the DeLTA ANR project
(ANR-16-CE40-0007). The authors also thank the Simon’s Institute for the Theory of Computing where this
work has been partly developed.
2It is a common approximation to say that an automaton is minimal if its number of states is minimal. We
emphasize that this is not the notion we consider by using the terminology algebraically minimal.
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This theorem is very well known for deterministic (and complete) automata as pre-
sented in the seminal work of Rabin and Scott [Rabin and Scott 1959]. It also known
from Schützenberger’s work on automata weighted over a field [Schützenberger 1961]
(that we will present in more detail). Other similar results involve automata over trees
[Brainerd 1968], deterministic transducers [Choffrut 1979; Choffrut 2003], syntac-
tic monoids [Schützenberger 1965], syntactic ω/�/◦-semigroups [Perrin and Pin 1995;
Bedon 1996; Bedon et al. 2010; Carton et al. 2011; Colcombet and A. V. 2015], stabil-
isation monoids [Colcombet 2009; Kuperberg 2011; Colcombet 2013], syntactic semir-
ings for languages [Polák 2001], syntactic forest algebras [Bojańczyk and Walukiewicz
2008], syntactic nominal monoids [Bojańczyk 2011], and so on. However, it also fails
for many other classes, starting with non-deterministic automata or deterministic au-
tomata over infinite inputs.

A goal of this paper is to give a neat description of what this approach means at
an abstract level, and why it sometimes works, and sometimes not. This will be also
the occasion to describe new forms of automata, namely hybrid-set-vector automata
that were not known in the literature, that extend both deterministic finite automata
and automata weighted over a field, while preserving the property of admitting al-
gebraically minimal automata (the computation of which being still open). This is an
example of the process of using a category-theoretic approach for defining new devices
(here automata) that enjoy strong properties by design.

Structure of the column
In Section 2, we present the very natural notion of an automaton in a category, the
examples of deterministic automata and vector space automata, as well as the mini-
malistic concepts of category theory that are required for this definition to make sense.
In Section 3 we explain the concepts that are behind results of minimization, and in
particular the one of factorization. In Section 4 we present the hybrid-set-vector au-
tomata. In Section 5 we discuss the connection between automata and category theory
and some of the literature on this topic.

2. AUTOMATA IN A CATEGORY AND THEIR SEMANTICS
In this section, after studying classical examples, we introduce the notion of an au-
tomaton in a category. This presentation does not contain any new material, but de-
parts from the literature in that it doesn’t adopt the algebraic or the coalgebraic pre-
sentation of these objects. We hope that the resulting presentation is simpler, requires
less background, and more faithfully follows the spirit of standard automata theory.

Before pursuing this description, we need to understand what is the semantics of an
automaton. Let us start with these two examples:

DETERMINISTIC AUTOMATA
A deterministic automaton (finite or infi-
nite), or simply a Set-automaton is a tuple

A = 〈Q,A, i, f, δ〉
in which Q is a set of states, A is the
input alphabet, i : 1 → Q is the initial
map (where 1 is some one element set, let
us say {0}), f : Q → 2 is the final map
(where 2 is some two element set, let us
say {0, 1}), and δa : Q → Q is the transi-
tion map for the letter a for all a ∈ A.

VECTOR SPACE AUTOMATA
Let us consider vector spaces over a base
field K. A vector space automaton, or sim-
ply a Vec-automaton, is a tuple

A = 〈Q,A, i, f, δ〉

in which Q is a vector space of configura-
tions , A is the input alphabet, i : K → Q
is the initial map, f : Q → K is the final
map, and δa : Q → Q is the linear transi-
tion map for letter a ∈ A.
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Given a word u = a1 . . . an ∈ A∗, the
Set-automaton A accepts the map

[[A]](u) = f ◦ δan ◦ · · · ◦ δa1 ◦ i .
Since a map from 1 to 2 can take only
two possible values: the constant 0 and
the constant 1, [[A]] can be understood as
associating to each input word u either 1
(and we say that the word is accepted),
or 0 (and we say that the word is rejected).
Hence, it computes a language. We recog-
nize here, in a barely disguised wording,
the standard definition of a DFA.

Example 2.1. Consider the lan-
guage Lset over the finite alphabet
A = {a, b, c} defined by:

Lset = {u ∈ A∗ | |u|b is even and |u|c = 0} .
An automaton Aset for this L is as fol-

lows:

— the set of states is Q = {p, q, r},
— the initial map selects p ∈ Q,
— the final map maps p to 1, and q, r to 0.
— the transition maps are described be-

low in the standard way

p q

r

b
a

c

b

a

c

a, b, c

Given a word u = a1 . . . an ∈ A∗, the
Vec-automaton A accepts the linear map

[[A]](u) = f ◦ δan ◦ · · · ◦ δa1 ◦ i .
Since a linear map from K to K is of the
form x 7→ ax for some a ∈ K, [[A]] can be
understood as associating to each input
word u a scalar a ∈ K. This is a variation
around the idea of an automaton weighted
over a field of Schützenberger [Schützen-
berger 1961]3.

Example 2.1. Consider the following
map Lvec which to a word u associates the
linear map Lvec(u) : R→ R defined by:

Lvec(u)(x) =


2|u|ax if |u|b is even

and |u|c = 0,
0 otherwise

An automatonAvec for this L is as follows:

— the vector space of configurations is
R2,

— the initial map maps x to (x, 0),
— the final map maps (x, y) to x,
— the transition map for a maps (x, y) to

(2x, 2y),
— the transition map for b maps (x, y) to

(y, x),
— the transition map for c maps (x, y) to

(0, 0).

It is easy to check that this vector space
automaton x accept Lvec.

3The two differences being that in our case, (a) the
vector spaces can be of infinite dimension, and (b)
there is no need for choosing a basis for Q, as it is
done in the original definition.

Inspecting the two above definitions of automata, it is obvious that these can be uni-
fied. Category theory is certainly the proper language for such a unification. Let us
give as a starter some very elementary definitions concerning categories.

WHAT IS A CATEGORY?
A category has essentially two parts:

(objects, arrows) ,
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where the objects are denoted X,Y, . . . , and each arrow, denoted f : X → Y , goes from
a source object X to a target object Y .

Typical categories are:
Set = (sets, functions between sets), Vec = (vector spaces, linear maps),
Pos = (ordered sets, order preserving maps), Aff = (affine spaces, affine maps),
Rel = (sets, relations between sets), Grp = (groups, group morphisms),
Top = (topological spaces, continuous maps), . . .

Furthermore, properly defined categories have to contain the following extra pieces
of information:

(a) for all objects X, there is an arrow IdX : X → X called the identity of X, and
(b) given arrows f : X → Y , g : Y → Z, there exists a composite arrow g ◦ f : X → Z.

The complete the definition, the composition of arrows has to be associative, and the
identity has to act as a neutral element for it (on the left and on the right).

Finally, define an arrow f : X → Y to be an isomorphism if there exists an ar-
row g : Y → X such that g ◦ f = IdX and f ◦ g = IdY . If such an isomorphism exists,
then X and Y are isomorphic.

All these properties are obvious in the above examples, with the natural notion of
identity arrow and composition of arrows. In what follows the categories that we used
are essentially Set and Vec, in which all the categorical notions that we are interested
in have a natural meaning.

We are now ready to describe what is a (word) language in a category and an au-
tomaton in a category.

Definition 2.2. Let us fix an alphabet A, a category C, and two of its objects I and F .
A (C, I, F )-language L is a map that associates to each word u ∈ A∗ an arrow L(u) : I →
F in C.

A (C, I, F )-automaton is a tuple:

A = 〈Q,A, i, f, δ〉
in which Q is an object from C called the state object, A is the input alphabet, i : I → Q
is an arrow of C called the initial arrow f : Q→ F is an arrow of C called the final arrow
and δ(a) : Q→ Q is an arrow of C for all letters a ∈ A, called the transition arrows.

Given a word u = a1 . . . an ∈ A∗, a (C, I, F )-automaton A recognizes the (C, I, F )-
language [[A]] defined for all u ∈ A∗ by:

[[A]](u) = f ◦ δ(an) ◦ · · · ◦ δ(a1)︸ ︷︷ ︸
δ∗(u)

◦ i .

Given a (C, I, F )-language L, an automaton for L is a (C, I, F )-automaton that recog-
nizes L.

DETERMINISTIC AUTOMATA
A deterministic automaton is nothing but
a (Set, 1, 2)-automaton.

VECTOR SPACE AUTOMATA
A vector space automaton is nothing but
a (Vec,K,K)-automaton.

As usual when adopting a category theoretic approach, it is not sufficient to know
what are the objects we are interested in, but we need also to know how these are
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related through arrows. In our case, the arrows are the morphisms of automata that
we introduce now.

Definition 2.3 (category of automata for a language). A morphism of (C, I, F )-
automata from A = 〈QA, A, iA, fA, δA〉 to B = 〈QB, A, iB, fB, δB〉, is an arrow of C
h : QA → QB such that for all letters a ∈ A,

h ◦ iA = iB, h ◦ δA(a) = δB(a) ◦ h, and fA = fB ◦ h,
or said differently, such that the following three diagrams commute:

QA QA QA QA

I F

QB QB QB QB

h

δA(a)

h h

fA

h

iA

iB

δB(a)

fB

(1)

Given a (C, I, F )-language L, define the category of automata for L to be the category
which has as objects the (C, I, F )-automata that recognize L, and as arrows the mor-
phisms of automata. We denote it by:

AutoL .

Note that whenever there is a morphisms of automata between two automata, then
both have to recognize the same language.

3. ALGEBRAIC MINIMIZATION OF AUTOMATA, AND FACTORIZATIONS IN A CATEGORY
In this section, we explain some features of the category of automata for a language
that make minimization of automata possible. There are essentially three required
properties: (1) the existence of an initial automaton for the language, and (2) sym-
metrically, the existence of a final automaton for the language, and (3) the fact that
the category of automata for the language has a factorization system. We begin our
description with this last point.

3.1. Divisibility and factorization
The standard definition is that a deterministic automatonM is said algebraically min-
imal if for all other deterministic automataA for the same language,M dividesAwith
the definition:

“B divides A if B is the quotient of a subautomaton of A .”

Hence we need to understand what is a quotient and what is a subautomaton. Both no-
tions are related to the one of morphisms of automata: indeed, a quotient is the image
of the automaton under a ‘surjective morphism’, and a subautomaton is an automaton
which is sent into the other one under an ‘injective morphism’.

The notion of ‘surjectivity’ and ‘injectivity’ is the subject of the notion of factoriza-
tions in a category that we recall here.3 An accessible and comprehensive reference for
all matters concerning factorization systems is [Adámek et al. 1990].

3Usually, an emphasis is put on the fact that quotients correspond to ‘regular epis’, and subobjects to
‘monomorphism’. We try to avoid these case specific considerations, and concentrate here on the proper-
ties that arrows should have to be considered as ‘surjective like’ and ‘injective like’: namely that the two
classes form a factorization system.
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Definition 3.1. For two classes of arrows E andM, we say that (E ,M) forms a fac-
torization system if the following conditions hold, where we denote the arrows in E by
two-headed arrows � and the arrows inM by �.

— The arrows that are both in E andM are exactly the isomorphisms.
— The E-arrows are closed under composition.
— TheM-arrows are closed under composition.
— For every arrow f : X → Y , there exists an E-arrow e : X � Z and a M-arrow
m : Z � Y such that

f = m ◦ e .
This composition is called the factorization of f . We also refer to the object Z as the
factorization of f .

— For every arrow e : X � T in E , g : T → Y , f : X → S and m : S � Y in M such
that g◦e = m◦f , there exists one and exactly one arrow d : T → S such that d◦e = f
and m ◦ d = g. In other words, if the following square commutes, then there exists a
unique diagonal arrow such that the resulting diagram commutes:

X T

S Y

e

f g
d

m

(2)

This property is usually called the diagonal property and the unique morphism d is
called a diagonal fill.

Note that the combination of the above properties make the factorization of an arrow
unique up to isomorphisms: indeed, if m ◦ e = m′ ◦ e′ = f are two factorizations of an
arrow f through Z, respectively Z ′, then by the diagonal property there exist unique
arrows d : Z → Z ′ and d′ : Z ′ → Z, so that d◦e = e′, d′◦e′ = e, m′◦d = m and m◦d′ = m′.
It readily follows that d and d′ are isomorphisms inverse to each other. For example,
both d′ ◦ d and IdZ are diagonal fills for the square

X Z

Z Y ,

e

e m

d′◦d

IdZ

m

(3)

and hence, by uniqueness of the diagonal fill, we have d′ ◦ d = IdZ . This is a very
standard argument in category theory.

Given a factorization system (E ,M), an E-quotient (or simply a quotient if E is clear
from the context) of an object X is an arrow e : X � Y that belongs to E . For ease
of language, it also happens that Y itself is called a quotient of X. Similarly, an M-
subobject of an object X (or simply a subobject if M is clear from the context) is an
arrow m : Y � X with m inM.

There may be several pairs of classes of arrows (E ,M) that yield a factorization
system in the same category. For instance, in all categories, we can take E to be the
isomorphisms and M to be all arrows (or the other way round), though this does not
give us a very interesting notion. . . This is the reason why quotients and subobjects
are notions relative to the choice of a factorization system. It is nevertheless true that
in a lot of situations, a satisfying choice is to chose E to be the class of ‘regular epis’,
and M to be the class of ‘monomorphisms’; in particular, this works for categories of
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algebraic structures such as Set, Grp, Vec or Aff. It also works well as for topological
spaces Top.

It is good to see some examples.

IN THE CATEGORY OF SETS
In the category of sets, a natural (E ,M)-
factorization is obtained by taking E to be
the class of surjections and M the class
the injections. The important thing is that
every map f : X → Y can be decomposed
as a composite of an injective map m and
a surjection e:

X Z Y
e m

The codomain of e is the image of f , as
can be seen in the next picture.

7→f e mX Y ZX Y

Moreover, the diagonal property holds.
Indeed, interpreting diagram (4) in the
category of sets, we define d as follows.
For t ∈ T we put d(t) = f(x) for some
x ∈ e−1(t). Such an x exists since e is
surjective, and, moreover, the definition
of d(t) does not depend on its choice,
since m is injective. Indeed, for any other
x′ ∈ e−1(t) we have f(x) = f(x′) since m
is injective andm(f(x)) = m(f(x′)) = g(t).

IN THE CATEGORY OF VECTOR SPACES
In the category of vector spaces, we define
E as the class of surjective linear maps
and M as the class of injective linear
maps. Analogously to the Set case, one ob-
tains an (E ,M)-factorization.

Furthermore, the notion of factorization
naturally yields the one of rank. Indeed if
we decompose a linear map f : X → Y as
the composite:

X Z Y
e m

then the dimension of Z is exactly the
rank of the linear map f .

A reason why the definition of a factorization system is so important is that it is
extremely robust: in particular it naturally ‘extends component-wise to functor cat-
egories’, (we will briefly discuss functor categories and their relevance for automata
in this context in Section 5.2). In our case, this robustness appears in the following
lemma, which follows a standard categorical line of proof:

LEMMA 3.2. Let (E ,M) be a factorization system for the category C. Then
(EAuto,MAuto) forms a factorization system for the category AutoL for all (C, I, F )-
languages L, where

— EAuto consists of these morphisms of automata that happen to belong to E , and
— MAuto consists of these morphisms of automata that happen to belong toM.

3.2. Initial and final automata
Apart from factorizations, the other ingredient that is required for having minimal
automata is the existence of an initial automaton and of a final automaton in the
category of automata for a language.
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Definition 3.3. An object I in a category is initial if for all objects X there exists a
unique arrow I → X. Similarly, an object F is final if for all objects X there exists a
unique arrow X → F .

Initial and final objects, when they exist, are unique up to isomorphism. We shall
see now that in our two running examples of categories of automata, the initial and
final objects do exist.

DETERMINISTIC AUTOMATA
Let L be a (Set, 1, 2)-language, i.e. L(u) is
a map from 1 to 2.

The initial automaton for L is the
(Set, 1, 2)-automaton such that:

— The set of states is A∗.
— The initial map 1→ A∗ selects ε.
— The final map sends a state u ∈ A∗

to L(u) ∈ 2.
— The transition map for a letter a is
δ(a)(u) = ua.

It is easy to check that this automaton
recognizes the language L, hence it be-
longs to AutoL. A closer inspection reveals
that automaton is in fact initial in the cat-
egory AutoL.

The final automaton for L is the
(Set, 1, 2)-automaton such that:

— The states are the (Set, 1, 2)-
languages, i.e. the maps from A∗

to maps from 1 to 2.
— The initial map sends 1 to L.
— The final map sends state R to R(ε).
— The transition map for letter a sends

the state R to a−1(R) which maps each
word u to R(au).

Once more, this automaton recognizes
the language L, hence it belongs to AutoL.
Again, a closer inspection reveals that
automaton is in fact final in the cate-
gory AutoL.

VECTOR SPACE AUTOMATA
Let L(u) be a linear map from K to K for
all words u. The initial automaton for L
is such that: is the (Vec,K,K)-automaton
such that:

— The state space is the vector space
with basis (eu)u∈A∗ .

— The initial map sends x ∈ K to xeε.
— The final map sends eu to L(u)(1K).
— The transition map for the letter a

sends eu to eua.

This vector space automaton recognises
the (Vec,K,K)-language L. A closer in-
spection shows that it is in fact initial
with this property.

The final automaton for L is such that

— The state space is the vector space KA
∗

of all functions from A∗ to K.
— The initial map sends 1K ∈ K to the

function mapping u ∈ A∗ to L(u)(1K).
— The final map sends h ∈ KA

∗
to h(ε).

— The transition map for the letter a

sends h ∈ KA
∗

to λu.h(au) ∈ KA
∗
.

This automaton recognizes the lan-
guage L, hence it belongs to AutoL. Yet
this time, a closer inspection reveals
that automaton is in fact final in the
category AutoL.

In fact, there are some cases—like in the above examples—in which the existence of
such initial and final automata for a language exist for easy category theoretic argu-
ments. This is witnessed by the following lemma (which we include here for complete-
ness, although we do no provide the very classical definitions of power and copower in
this column, see [?]):

LEMMA 3.4. If the countable copower of I exists in C, then for all (C, I, F )-
languages L the category AutoL has an initial object, called the initial automaton for L.
If the countable power of F exists in C, then for all (C, I, F )-languages L the category
AutoL has a final object, called the final automaton for L.
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In particular, in the running examples, we have:

DETERMINISTIC AUTOMATA
Let L be a (Set, 1, 2)-language, i.e. L(u) is
a map from 1 to 2.

The set of states A∗ of the initial au-
tomaton for L is the copower (or coprod-
uct) of A∗-many copies of 1.

The set of states 2A
∗

of the final au-
tomaton for L is the power (or product) of
A∗-many copies of 2.

VECTOR SPACE AUTOMATA
Let L(u) be a linear map from K to K for
all words u.

The vector space of configurations of the
initial automaton for L is the copower (or
coproduct) of A∗-many copies of K, that is,
the direct sum

⊕
u∈A∗

K of A∗-many copies

of K.
The vector space of configurations of

the final automaton for L is the power
(or product) of A∗-many copies of K, that
is, the direct product

∏
u∈A∗

K of A∗-many

copies of K.

3.3. Minimal automaton and minimization
At last, we are able to provide a general description of why there exists a minimal
automaton for a language, and what is the general procedure for minimizing a given
automaton.

In fact, the notion of a minimal automaton is now generic, it is a notion that works
whenever there is an initial object, a final object, and some factorization system (E ,M).

Consider a factorization system (E ,M) for a category A and two of its objects X,Y .
Let us say that:

X (E ,M)-divides Y if X is an E-quotient of anM-subobject of Y .

Let us note immediately that in general this notion of (E ,M)-divisibility may not be
transitive4. It is now natural to define an objectM to be (E ,M)-minimal in the category,
if it (E ,M)-divides all objects of the category. Note that there is no reason a priori
that an (E ,M)-minimal object in a category, if it exists, be unique up to isomorphism.
Nevertheless, is our case, when the category has both initial and a final object, we can
state the following minimization lemma:

LEMMA 3.5. Let A be a category with initial object I and final object F and let
(E ,M) be a factorization system for A. Define for every object X:

— Min to be the factorization of the only arrow from I to F ,
— Reach(X) to be the factorization of the only arrow from I to X, and
— Obs(X) to be the factorization of the only arrow from X to F .

Then

— Min is (E ,M)-minimal, and
— Min is isomorphic to both Obs(Reach(X)) and Reach(Obs(X)) for all objects X.

PROOF. The proof essentially consists of a diagram:

4There are nevertheless many situations for which it is the case; In particular when the category is regular,
and E happens to be the class of regular epis. This covers in particular the case of all algebraic categories
with E-quotients being the standard quotients of algebras, and M-subobjects being the standard subalge-
bras.
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X

I Reach(X) Obs(Reach(X)) F

Min

Using the definition of Reach and Obs, and the fact that E is closed under com-
position, we obtain that Obs(Reach(X)) is an (E ,M)-factorization of the only arrow
from I to F . Thus, thanks to the diagonal property of an factorization system, Min
and Obs(Reach(X)) are isomorphic. Hence, furthermore, since Obs(Reach(X)) (E ,M)-
divides X by construction, the same holds for Min. In a symmetric way, Reach(Obs(X))
is also isomorphic to Min.

COROLLARY 3.6. Let L be a (C, I, F )-language for which C has a factorization sys-
tem (E ,M) such that AutoL contains both an initial automaton I and a final automaton
F . Then:

— The (C, I, F )-automaton S for L that is at the middle point of an (EAuto,MAuto)-
factorization of the only automata morphism from I to F is called the syntactic
automaton for L.

— The syntactic automaton for L S (EAuto,MAuto)-divides every automaton for L.
— For all automata A for L, S is isomorphic to both Reach(Obs(A)) and Obs(Reach(A)).
The process of starting from an automaton, and applying to it Reach then Obs (in any
order) is called ’minimization. Note that implementing Reach and Obs in an effective
way is a problem that may prove difficult on its own, and we do not elaborate on this
aspect.

DETERMINISTIC AUTOMATA
It is well known that for all lan-
guages L ⊆ A∗, there exists a minimal
deterministic automaton for it, that
furthermore is finite if and only L is
regular. Indeed, if L is accepted by a
finite automaton A, then, by Corollary 3.6
the syntactic automaton for L divides A,
hence its state space must be finite since
it is the quotient of a subset of a finite set.

VECTOR SPACE AUTOMATA
Similarly, it is well known that for all
languages L : A∗ → K, there exists a
minimal vector space automaton for it,
that furthermore is finite dimensional
if and only L is regular. Indeed, if L is
accepted by a finite dimensional vector
space automaton A, then the syntactic
automaton is a quotient of A, hence its
state space must be finite dimensional
since it is the quotient of a subspace of a
finite dimensional space.

4. A NOVEL FORM OF AUTOMATA: HYBRID-SET-VECTOR AUTOMATA
In this section, we describe a new form of automata, which we can call hybrid-set-
vector automata, and which extend both deterministic finite automata and vector
space automata, while still possessing syntactic automata. We will see how this mini-
mization is obtained along the same lines described in this column so far.
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4.1. An intuition
Let us consider the vector space automaton Avec from Example 2.1 accepting the map
Lvec, which corresponds to the weighted language A∗ → R mapping u to 2|u|a when u
does not contain any c and has even number of b’s, and to 0 otherwise.

Let us think for a moment on how one would “implement” the function Lvec as an on-
line device that would get letters as input, and would modify its internal state accord-
ingly. Would we implement concretely the automaton of Example 2.1 directly? Probably
not, since there is a more economic5 way to obtain the same result: we can maintain
2m where m is the number of a’s seen so far, together with one bit for remembering
whether the number of b’s is even or odd. Such an automaton would start with 1 in its
unique real valued register. Each time an a is met, the register is doubled, each time b
is met, the bit is reversed, and when c is met, the register is set to 0. At the end of the
input word, the automaton would output 0 or the value of the register depending on
the current value of the bit.

If we consider the configuration space that we use in this encoding, we use R ] R
instead of R×R. Essentially, the set of vectors spanned by applying in arbitrary order
the linear transformations δa, δb and δc from Example 2.1 to the vector (1, 0) ∈ R2 is
the infinite set of vectors described in the above diagram. Of course, in the category
of vector spaces this set spans the whole R2. Yet, in this example this set lies on the
“union” of two one dimensional spaces. Can we define an automaton model that would
be able to faithfully implement this example?

4.2. A first generalization: disjoint unions of vector spaces.
A way to achieve this is to interpret the generic notion of automata in the category of
finite disjoint unions of vector spaces (duvs). One way to define such a finite disjoint
unions of vector spaces is to use a finite set N of ‘indices’ p, q, r . . . , and to each index p
associate a vector space Vp, possibly with different dimensions. The corresponding set
is:

{(p,~v) | p ∈ N, ~v ∈ Vp} .

A ‘map’ between duvs represented by (N,V ) and (N ′, V ′) is then a pair h : N → N ′

together with a linear map fp from Vp to V ′h(p) for all p ∈ N . It can be seen as mapping
each (p,~v) ∈ N×Vp to (h(p), fp(~v)). Call this a duvs map. Such duvs maps are composed
in a natural way. This defines a category, and hence we can consider duvs automata
which are automata with a duvs for its state space, and transitions implemented by
duvs maps.

For instance, we can pursue with the computation of Lvec and provide a duvs au-
tomaton

Aduvs = (Qduvs, iduvs, fduvs, δduvs)

where

Qduvs = {(s, x) | s ∈ {even, odd}, x ∈ K}
(considered as a disjoint union of vector spaces with set of indices {even, odd} and all
associated vector spaces Veven = Vodd = K). The maps can be conveniently defined as

5Under the assumption that maintaining a real is more costly than maintaining a bit.
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follows:

iduvs(x) = (even, x) (even, x) = (even, 2x) δduvsa (odd, x) = (odd, 2x)

fduvs(even, x) = x δduvsb (even, x) = (odd, x) δduvsb (odd, x) = (even, x)

fduvs(odd, x) = 0 δduvsc (even, x) = (even, 0) δduvsc (odd, x) = (odd, 0)

This automaton computes the language Lvec. Automata over finite disjoint unions
of vector spaces generalize both deterministic finite state automata (using only 0-
dimensional vector spaces), and vector space automata (using only one index). In this
particular example, it can also be seen as a semi-direct product of a two state machine
with a purely vector space automaton, (but this remark fails when the spaces Vp have
different dimensions.) However, is it the joint generalization that we hoped for? The
answer is no...

4.3. Failure to minimize.
We could think that the above automaton Aduvs is minimal. However, it involved some
arbitrary decisions when defining it. This can be seen in the fact that when δduvsc is
applied, we chose to not change the index (and set to null the real value): this is arbi-
trary, and we could have exchanged even and odd, or fixed it arbitrarily to even, or to
odd. All these variants would be equally valid as far as computing Lvec is concerned.

Let us provide some high level intuitions, invoking some standard automata-
theoretic concepts. The first remark is that every configuration in Qduvs is ‘reachable’
in this automaton: indeed (even, x) = iduvs(x) and (odd, x) = δduvsb ◦ iduvs(x) for all x ∈ K.
Hence there is no hope to improve the automaton Aduvs or one of its variants by some
form of ‘restriction to its reachable configurations’. Only ‘quotienting of configurations’
remains. However, (using the only reasonable definition of quotient in duvs), one can
show that none among Aduvs and its variants is the quotient of another. More precisely,
if we keep in mind the Myhill-Nerode equivalence, what we would like to do is to merge
the configurations (even, 0) and (odd, 0) since these are observationally equivalent:

fduvs ◦ δduvsu (even, 0) = 0 = fduvs ◦ δduvsu (odd, 0) for all words u ∈ A∗.
However, if we try to merge using a duvs map the configurations (even, 0) and (odd, 0),
we eventually obtain an automaton with one index associated to a one-dimensional
vector space. This would in fact be a vector space automaton, and we already men-
tioned that such an automaton cannot compute Lvec. Overall, there is no minimal duvs
automaton for Lvec.

4.4. The category of gluings of vector spaces
The subject of this section is to introduce hybrid-set-vector automata, and for this we
need to describe the category that they use: the category of gluings of vector spaces

Indeed, after the failure to minimize of the last section, the only reasonable thing
to do is to try to merge (even, 0) and (odd, 0), but nothing else (because no other pairs
of distinct states are observationally equivalent). This is made possible thanks to a
change of category, in which ‘gluings’ can be performed.

A direct definition
The first solution is to do it naturally: a gluing of vector spaces would be a disjoint
union of vector spaces enriched with some ‘equivalence’ representing how the different
components of the duvs have to be glued. Formally, a gluing of vector spaces (N,V )
consists of
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— a set of indices N and vector spaces (Vp)p∈N , thus forming a disjoint union of vector
spaces, together with

— a gluing equivalence ∼glue which is an equivalence relation on the corresponding
set

|(N,V )| = {(p,~v) | p ∈ N, ~v ∈ Vp}
such that for all distinct indices p, q ∈ N ,
— the equivalence classes of ∼glue restricted to each {p} × Vp are singletons, and
— the equivalence classes of ∼glue restricted to {p}×Vp ∪{q}×Vq that are of size 2

form a linear bijection between a subspace of Vp and a subspace of Vq.

p

q

r

An example consists of three copies of R2, say p, q, r such
that furthermore

(p, x, 0) ∼glue (q, 0, x) ,

(q, x, 0) ∼glue (r, 0, x) ,

and (r, x, 0) ∼glue (p, 0, x) .

This could be roughly described as the picture to the right.
The definition of maps of gluings of vector spaces is then

the one of maps of disjoint union of vector spaces, but that
would furthermore be required to preserve ∼glue.6 For in-
stance, the map g which for all x, y ∈ R is defined by:

g(p, x, y) = (q, y, x)

g(q, x, y) = (r, y, x)

g(r, x, y) = (p, y, x) ,

does preserve the structure of the above gluing equivalence, and hence is a valid map
of gluings of vector spaces.

Note that a map of gluings of vector spaces f : S → T induces a map |f | : |S| → |T |.
(In fact, this translation is a functor from the category of gluings of vector spaces to
the category of sets)

Definition 4.1. The gluings of vector spaces together with the maps between them
form a category called the category of gluings of vector spaces. We denote it Glue(Vec)
(we shall give some more explanations about this notation).

An hybrid-set-vector automaton is then simply an automaton in the category of glu-
ings of vector spaces.

Example 4.2. The hybrid-set-vector automaton for Lvec that we are interested in
can now be described formally:

— the state object is a gluing of vector spaces that consists of two copies of the vector
space R, indexed as even and odd that are glued at 0, i.e.,

(even, 0) ∼glue (odd, 0) .

This could be depicted as in the right figure, in
which the gluing equivalence is emphasized using
a black dot.

even

odd

6In fact, we are making an approximation here, since several such maps should be considered as equivalent.
For instance, in our example, the map of gluing of spaces (corresponding to the transition of letter c inAduvs)
that sends (even, x) 7→ (even, 0) and (odd, x) 7→ (odd, 0) is equivalent to the one that sends (even, x) 7→
(even, 0) and (odd, x) 7→ (even, 0), simply because (odd, 0) ∼glue (even, 0).
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— The initial map sends x to (even, x).
— The final map sends (even, x) to x and (odd, x) to 0.
— The transition map for letter a sends (even, x) to (even, 2x) and (odd, x) to (odd, 2x).
— The transition map for letter b sends (even, x) to (odd, x) and (odd, x) to (even, x).
— The transition map for letter c sends (even, x) to (even, 0) and (odd, x) to (even, 0).

The category of gluings of vector spaces can be seen as a joint extension of the cate-
gory of sets and the category of vector spaces. This is the reason for the name “hybrid-
set-vector automaton”. This remark is made formal now:

LEMMA 4.3. The category of gluings of vector spaces restricted to gluings of 0-
dimension vector spaces is equivalent7 to the category of sets.

The category of gluings of vector spaces restricted to gluings of vector spaces with one
index only is equivalent to the category of vector spaces.

Thanks to the above lemma, we obtain that:

— deterministic automata, which are (Set, 1, 2)-automata, are also hybrid-set-vector
automata; namely the ones in which the definition of the state object does only
involve 0-dimension vector spaces),

— vector space automata, which are (Vec,K,K)-automata, are also hybrid-set-vector
automata; namely the one that have only one index in the definition of their state
object.

A categorical approach to gluing: the category Glue(Vec)

The few lines that follow require some background in category theory. However, these
are not necessary for understanding the rest of the paper.

Another approach for defining gluings of vector spaces is to consider Vec as a generic
category C, and define in categorical terms the ‘gluings of objects in C’. We name it
Glue(C).

In fact, the reader used to categorical construction knows the standard approach for
gluing objects in a category, based on the concept of a free colimit. In this view, the
category of gluings of vector spaces can be seen as a subcategory of the free cocomple-
tion of Vec. Informally, an element of the free cocompletion of Vec is an (equivalence
class of) ‘diagrams’ that describe a set of objects of C and give constraints on how these
should be ‘glued together’. However, this generic description is much less constrained
that the one we have described in the previous definition of the gluing of vector spaces.
For instance, it is possible using free colimits to take a copy of R2 and ‘glue’ together
the axis R(0, 1) and R(1, 0) (say using (0, x) ∼ (x, 0)). Such a construction would yield a
formal object that is different than the gluings of vector spaces we are interested in.

Thus, our definition of Glue(C) does only use the diagrams that we consider ‘mean-
ingful’. It can be (informally) stated as follows:

Definition 4.4. Glue(C) is the free cocompletion of C restricted to the diagrams that
have a cocone in C, all the arrows of which are monos (or more generally in M for a
suitable classM).

The advantage of this approach is that it can be used with other categories; for
instance for constructing the category of gluings of affine spaces (i.e. Glue(Aff)) or even
gluing of sets (i.e. Glue(Set)). These categories have interest on their own, that we do
not develop in this column.

7Equivalent is the proper notion of ‘isomorphism’ for categories. Technically, it is an isomorphism ‘up to
isomorphisms of the objects’.

ACM SIGLOG News 14 Vol. 0, No. 0, 0000



4.5. The minimization of hybrid-set-vector automata
In the previous section, we introduced the concept of hybrid-set-vector automata; these
automata live in the category of gluings of vector spaces. Our motivation was to explain
how these can be minimized. In fact, we shall see that maybe these are not exactly the
automata we are interested in.

Let us recall that we had identified three ingredients for the existence of minimal
automata for a language: the existence of an initial automaton, the existence of a final
automaton, and the existence of a factorization system. Let us review what is the
status of the category of hybrid-set-vector automata for a language with respect to
these three points.

The following lemma can be proved using a more generic argument for handling
initial and final automata:

LEMMA 4.5. The category of hybrid-set-vector automata for a language has an ini-
tial and a final object.8

The more interesting part concerns the third ingredient required for having minimal
automata: the existence of a factorization system for Glue(Vec). Indeed, it has one, but
the issue is that. . . this is not what we really are looking for, as shown by the following
example:

Example 4.6. Consider the language which to a word u ∈ a∗ associates the value
cos(α|u|) for some α which is not a rational multiple of π. This can be recognized by a
vector space automaton as follows:

— the vector space of configurations is R2,
— the initial map maps x to (x, 0),
— the final map maps (x, y) to x, and
— the transition map for the letter a performs a rotation of α radian of the plane R2:

it maps (x, y) to (cos(α)x− sin(α)y, sin(α)x+ cos(α)y):

α
α

α

(This automaton can also be seen as a hybrid-set-vector automaton.) Now, the
Glue(Vec)-automaton obtained by minimizing (in fact, simply by restriction to the
reachable states), consists of countably many copies of the line R, all glued at 0. More
precisely,

— the state object is the gluing of vector spaces that has indices N, each vector space
Vn is R, and the gluing equivalence merges all the 0 points: (m,x) ∼glue (n, y) if
m = n and x = y, or if x = y = 0,

— the initial map maps R to the vector space of index 0, i.e. it maps every xR to (0, x),
— the final map maps (m,x) to cos(αm)x,
— and the transition maps sends (m,x) to (m+ 1, x).

8In fact, Glue(C) has all coproducts (and as a consequence all copowers), and furthermore all colimits that
C has. If C has all colimits and products, then Glue(C) also has all products (and hence all powers). If C has
all limits and colimits then Glue(C) also has them.
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It happens that this automaton is the minimal one (This automaton would still be
correct if α would be a rational multiple of π, but in this case, it could not be minimal).
What we see here is that this automaton is merely storing the “current rotation” in the
index part of the gluing of vector spaces of configurations.

The above example shows that minimizing without further caution leads to a prob-
lem. Indeed, we started from a perfectly valid dimension 2 vector space used for recog-
nizing a language, and after minimizing it it became an automaton that uses a count-
able union of vector spaces as configurations: something that is more difficult to handle
effectively. The answer to this problem lies in a assumption that was left unspoken so
far. We are interested only in automata involving ‘finite gluings of finite dimension
vector spaces’ only, because these are the automata that can be used algorithmically.
We get the following definition:

Definition 4.7. A gluing of vector spaces is effective if it has a finite index, and all
the vector spaces involved in its definition are of finite dimension. In the same way, the
hybrid-set-vector automata that have an effective state object are also named effective.

At the categorical level, this means to define Gluefin(C), and construct this way the
category Gluefin(Vecfin) where Vecfin is the category:

Vecfin = (finite dimension vector spaces, linear maps),

with the natural notion of composition of linear maps and identity map.

To complete the picture, it is necessary to explain how to minimize in the world of the
effective hybrid-set-vector automata. However, following the line of descriptions seen
so far, there is a problem:

— We need to use hybrid-set-vector automata in their general form, since the initial
and the final automaton, which are essential parts in the minimization arguments,
are never effective (unless the input alphabet is empty...).

— However, we want the ‘minimal automaton’ that we construct as a result of a fac-
torization to be effective.

The way to resolve this conflict is to modify in a simple and natural, yet unconven-
tional to our knowledge, way the notion of factorization system. We substitute to it
the notion of “factorization system through”. The heart of this definition is to consider
a subcategory S (that we think of as the category of small/manageable objects) of a
larger category C:

Definition 4.8. Consider a category C, a full subcategory S of C. Call S-small an
arrow f : X → Y of C that factors through S, i.e. such that f = h ◦ g with g : X → Z and
h : Z → Y for some Z object of S.

Example 4.9. Consider the category C of (Set, 1, 2)-automata, which are the deter-
ministic automata, and its subcategory S of (Setfin, 1, 2)-automata (where Setfin is the
subcategory of finite sets), which is the category of finite deterministic automata. Then
for a language L the only morphism from the initial automaton for L to the final au-
tomaton for L is S-small if and only if L is a regular language. Indeed, being S-small
in this example means exactly being accepted by a finite deterministic automaton.

If one takes the category C = Vec and its subcategory S = Vecfin, then a linear map
in C is S-small if and only if it is of finite rank.

We now introduce the refined notion of factorization through. It essentially formalizes
what it is to be a factorization system that factorizes only S-small arrows, and fur-
ther do it in S. Formally, the definition is only a slight variation around the one for a
factorization system.
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Definition 4.10. Let S be a subcategory of a category C, and ES ,MS be two classes
of arrows such that:

— all arrows in ES end in S, and
— all arrows inMS start in S,

then (ES ,MS) forms a factorization system through S if the following conditions hold,
where we denote the arrows in ES by two-headed arrows � and the arrows inMS by
�.

— The arrows that are both in ES andMS are exactly the isomorphisms in S.
— The ES -arrows are closed under composition.
— TheMS -arrows are closed under composition.
— For all S-small arrows f : X → Y , there exists some object Z of S, an ES -arrow
e : X � Z and aMS -arrow m : Z � Y such that

f = m ◦ e .
This composition is called the factorization of f through S. We also refer to the
object Z as the factorization of f through S.

— For all arrows e : X � T in ES , g : T → Y , f : X → S and m : S � Y in MS such
that g ◦ e = m ◦ f , there exists one and exactly one arrow d : T → S (of S) such
that d ◦ e = f and m ◦ d = g. In other words, if the following square commutes, then
there exists a unique diagonal arrow such that the resulting diagram commutes:

X T

S Y

e

f g
d

m

(4)

As can be expected, this property is also called the diagonal property, and the
unique morphism d is called a diagonal fill.

In fact, what happens is that all the proofs that we have done so far, and in particular
the existence of a minimal object, Lemma 3.5, can be adapted to this variation of the
notion of factorization system.

For instance, Lemma 3.5, becomes:

LEMMA 4.11. Let A be a category with initial object I and final object F and let
(ES ,MS) be a factorization system though a subcategory S for A. Assume furthermore
that the only arrow from I to F is S-small, and define for all objects X of S:

— MinS to be the factorization through S of the only arrow from I to F ,
— ReachS(X) to be the factorization through S of the only arrow from I to X (note that

this arrow is S-small since X is an object of S), and
— ObsS(X) to be the factorization through S of the only arrow from X to F (note that

it is S-small since X is an object of S).

Then

— MinS is (ES ,MS )-minimal (for the natural definition of it), and
— MinS , ObsS(ReachS(X)) and ReachS(ObsS(X)) are isomorphic for all objects X of S.

Now, almost all the landscape is ready. We have a class of automata, the hybrid-
set-vector automata. It has an initial and a final object according to Lemma 4.5. We
have also identified the subcategory of effective hybrid-set-vector automata for the
language. It remains to tell what are the classes ES andMS that we use for ‘factorizing
through’ (Lemma 4.11).
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Definition 4.12. The effective monos are the arrows m : X → Y in the category of
hybrid-set-vector automata where X is effective, and |m| is injective, i.e., the map is
injective when all structure has been forgotten.

The effective extremal epis are the arrows e : X → Y with Y effective, and such that
whenever e = m ◦ f for some effective mono m, then m is an isomorphism.

Under this definition, we obtain the expected factorization system through.

LEMMA 4.13. (Effective extremal epis, effective monos) forms a factorization sys-
tem of the category of hybrid-set-vector automata through the subcategory of effective
hybrid-set-vector automata.

If we briefly summarize what we have, we get the following statement.

THEOREM 4.14. For all languages accepted by an effective hybrid-set-vector au-
tomaton, there exists a (effective extremal epis, effective monos)-minimal equivalent one.

In particular, the effective hybrid-set-vector automaton of Example 4.2 is minimal as
in the above theorem.

Though we do not provide more detail here on why this result holds (not to mention
the effectivity of the constructions), let us emphasize that it relies crucially on the
following statement:

In a finite dimension vector space E, for every set X ⊆ E, there exists a
finite union of vector spaces F ⊆ E such that X ⊆ F and which is minimal
for inclusion.

This statement is not difficult to establish. At any rate,
it gives a good intuition of what is happening.
At the very beginning, we have introduced the vector
space automaton Avec that accepts the language Lvec.
Its state space is R2. However, starting, say, from (1, 0),
we can draw all the configurations that are reachable
by applications of the transition maps associated to the
letters. We obtain the picture to the right.

Now, we can apply the above statement: there is a least finite union of subspaces
that covers the red points. Indeed, it consists of the union R(0, 1) ∪ R(1, 0). If now, we
forget the fact that these two dimension 1 vector spaces are subspaces of R2, then what
remains is a union of two copies of R that are glued at 0. This is how one obtains the
automaton of Example 4.2.

5. DISCUSSION: AUTOMATA AND CATEGORY THEORY
The idea of using category theory to provide a unifying framework for automata theory
and linear systems of control theory goes back all the way to the late sixties, and ever
since there has been a substantial body of research on this topic. Perhaps it is not a
coincidence, that Samuel Eilenberg, one of founders of the field of category theory is
also the author of the influential automata theory books [Eilenberg 1974; Eilenberg
1976], which axiomatise (without using category theory!) the algebraic approach to
automata theory and provide among others his celebrated variety theorem.

On the other hand, cutting-edge research in automata theory relies at times on com-
binatorial aspects, which seem difficult, if not impossible, to explain in a generic set-
ting. The purpose of this column is to convince people coming from the combinatorial
background, and who have not been previously exposed to category theory, that the
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conceptual view point is not just an idle exercise in abstract nonsense, and that some-
times it can lead to new interesting combinatorial problems.

As a disclaimer, it was not our intention to provide an exhaustive survey of the
interplay between automata and category theory, nor of the huge literature on this
very topic. But we feel necessary to highlight some contributions and perspectives.

Early days: Machines in a category. Already in the late 60s, Eilenberg and
Wright [Eilenberg and Wright 1967] gave a generalised notion of language recogniz-
ability in categories of algebras and formulated their results in terms of Lawvere’s
algebraic theories, the back then fresh approach to categorical algebra. A couple of
years later, Arbib and Manes further advanced the category-theoretic unification of
sequential machines and linear systems of control theory in a series of seminal pa-
pers [Arbib and Manes 1975; Arbib and Manes 1974a; Arbib and Manes 1974b]. One
of their contributions was the connection between minimization and factorization sys-
tems, as well as an account of the duality between reachability and observability in
this setting, building on the work of Kalman on linear systems [Kalman 1963]. In
parallel, Goguen [Goguen 1972] also developed a theory of minimal realization in the
setting of monoidal closed categories. A nice survey of these early developments can be
found in [Arbib and Manes 1980].

Automata as algebras for a functor. Arbib and Manes advanced the view of sequen-
tial machines and linear systems as algebras for a functor, although they adopted a
different terminology in those early papers (algebras for a functor were called dy-
namorphisms). In this setting, the transition map is captured as an algebra for a
functor F , that is a map of the form δ : FQ → Q. For example, for deterministic fi-
nite automata on a finite alphabet A, we would use the functor F : Set → Set given
by FX = A × X. This approach was further developed in the work of the Prague
seminar on General Mathematical Structures by Věra Trnková, Jiři Adámek, Jan Re-
iterman, Václav Koubek, see for example the book [Adámek and Věra 1989] and the
references therein. These works explore free algebras for finitary functors, existence
and universality of minimal realisations, as well descriptions of languages via rational
operations. In particular [Adámek and Věra 1989, Theorem III.2.14], similar in spirit
to the developments we presented in Section 3.3, establishes sufficient conditions for
the existence of minimal realization via factorization systems for automata modeled
as algebras for coadjoint functors preserving epimorphisms.

Yet, automata are not entirely modelled as algebras. The initial state can be in-
corporated in the type of the functor, but specifying the final states is outside the
realm of algebra. For example, for deterministic finite automata, one can consider
the functor given by FX = 1 + A × X. Formally a deterministic finite automaton is
a map [i, δ] : 1 + A × Q → Q, plus the characteristic function of the subset of final
states f : Q→ 2.

Automata as coalgebras for a functor. Alternatively, one could model deterministic
finite automata as maps of the form 〈f, γ〉 : Q → 2 × QA obtained by pairing the char-
acteristic function of the subset of accepting states and the map γ : Q → QA, obtained
from the transition map δ via currying. The map 〈f, γ〉 is an example of a coalgebra for
the functor G : Set → Set, defined by GX = 2 ×XA, however, in this framework, it is
the initial state which is left out.

The view of automata (and more generally of systems) as coalgebras was put for-
ward in the work of Rutten and Jacobs, see [Jacobs and Rutten 1997] and [Rutten
2000]. However, the roots of coalgebras in computer science go back to the work of
Aczel and his insights into the coinductive nature of Milner-Park notion of bisimula-
tion from concurrency theory. The coalgebraic view of automata, and the connections
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to other fields of computer science proved surprisingly useful. An example of a success
story is the work of Bonchi and Pous [Bonchi and Pous 2013], which gives an efficient
algorithm for deciding language equivalence for non-deterministic finite automata, us-
ing enhancements of the coinductive proof techniques (the so-called up-to techniques)
and drawing on previous developments from concurrency theory.

The coalgebraic method (along with the numerous contributions in this research
area) was described in the Semantics Column of a previous SIGLOG news issue [Silva
2015] and was illustrated by giving a category-theoretic account of Brzozowski’s mini-
mization algorithm. Which brings us to...

Minimization. A dual narrative: algebra vs. coalgebra. Automata minimization was
understood both algebraically at different levels of generality, (as in the work of Ar-
bib and Manes, Adámek and Trnková, etc.), as well as coalgebraically, see for exam-
ple [Adámek et al. 2012; Bonchi et al. 2012]. Notably, [?] carries out an elegant study of
minimization algorithms for linear weighted automata from a coalgebraic viewpoint.

The interplay between these two views of automata, both as algebras and as coalge-
bras, was fully exploited in [Bonchi et al. 2014] to give a category-theoretic account
of Brzozowski’s minimization algorithm. The paper [Rot 2016] showcases the con-
nection between two approaches to minimization (either by partition refinement or
reverse-determinisation)—one involving an initial algebra construction, the other a
final coalgebra construction. The deep connection between minimization and duality
theory were also investigated in [Bezhanishvili et al. 2012].

We should mention in passing that duality theory plays a fundamental role in lan-
guage theory on aspects related to recognition (see [?; ?]), and, coincidentally, this is
also featured in this issue, in the Complexity column. These works were the starting
point of the ERC project DuaLL which made this collaboration possible. In the same
spirit, the recent paper [?] explores other ideas from category and duality theory for
tackling problems in language theory.

5.1. Beyond that point
In this column, we have attempted to show how category theory gives an insight into
the nature of automata and the questions of minimization. These facts are well known
for decades, though we adopted a presentation which we believe to be simpler and
more direct. There are many continuations of this description that could be followed
from that point, and space does not permit it.

5.2. Automata as functors
For the category-theoretic minded readers, we would like to emphasise some aspects of
the approach described here. In this subsection we will assume more category-theoretic
background on the part of the reader.

Although we haven’t mentioned this explicitly thus far, our view of automata is nei-
ther algebraic, nor coalgebraic, but a “combination” of the two. Formally, we view au-
tomata as functors

A : I → C
where I is a category of inputs and C is the category which specifies the universe
of output values. For example, for word automata, the category I has three objects
in, states and out, and for each w ∈ A∗, arrows .w : in → states, w/ : states → out and
w : states → states, generated from the arrows pictured below, so that w′ ◦ w is defined
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as the concatenation ww′.

in states out.

a

/

DETERMINISTIC AUTOMATA
A deterministic automaton is obtained
by instantiating C to Set and considering
functors that map in to 1 and out to 2.

VECTOR SPACE AUTOMATA
A vector space automaton is obtained
by instantiating C to Set and consider-
ing functors that map both in and out to K.

In this approach, a language on words can be seen as a functor L : O → C from the
full subcategory O of I on objects in and out

in out ,.w/

the arrows of which are .w/ : in → out for all w ∈ A∗. We denote by ι : O → I the
inclusion of the category O in I. An automaton A accepts the language L if

A ◦ ι = L

DETERMINISTIC AUTOMATA
A language accepted by a deterministic
automaton is a functor

L : O → Set

mapping in to 1 and out to 2.

VECTOR SPACE AUTOMATA
A language accepted by a vector space au-
tomaton is a functor

L : O → Vec

mapping both in and out to K.

It is easy to see that in these cases, we retrieve the running examples discussed in
Section 2. If the category C has countable products and coproducts, then the existence
of the initial and final automaton accepting a given language can also be explained in
terms of more generic category-theoretic constructions (left and right Kan extensions).
In the process of writing this paper, we discovered that a similar approach based on
Kan extensions, was considered in an old (and seemingly forgotten) paper of Bain-
bridge [Bainbridge 1974].

In this framework, we can obtain new automata models by varying the input and
the output categories, I, respectively O. For example, the hybrid-set-vector automata
of Section 4 are obtained by instantiating C with Glue(Vec) and Gluefin(Vecfin).

Syntactic algebras. In a recent paper [Bojańczyk 2015], Bojańczyk considered lan-
guages recognised by monads and described syntactic algebras in this setting. By tun-
ing the input category I so that the algebraic structure at issue is hard-wired in the
morphisms of I, we obtain a unifying view of syntactic algebras and minimization.

Tree automata. For handling tree automata, it is necessary to possess a way to de-
scribe ‘maps’ of several arguments. Of course in the category Set of sets we can just
use the cartesian product. But in Vec one has to use the tensor product instead. More
generally, the right setting for this is to use monoidal categories. These are categories
equipped with a ‘bifunctor’ ⊗ called the tensor product that satisfies sufficiently many
properties for allowing to aggregate several objects into one in a ‘category-meaningful
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way’. The results of minimization as described in this column can be mimicked in this
generalised context. In particular, hybrid-set-vector automata extend to this tree au-
tomata.

Enriched forms of automata. Another extension that is important to consider is
when the alphabet also possesses some structure. For instance, one could imagine that
the alphabet is infinite and computations are meant to be permutation-invariant, as in
nominal automata [Bojańczyk et al. 2014]. Again, we can choose the category I so that
the additional structure (e.g. permutation-invariance) is captured by its structure. In
this way one can retrieve minimization results for the resulting automata model.
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