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 - quantify over elements x,y,É 
 - quantify over sets of elements X,Y,É ( monadic variables ) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, Ç!is dense!È: for all x<y there is some z such that x<z<y

In MSO, Ç!is Þnite!È: the Þrst and last positions exist and are 
reachable one from the other by successor steps

In MSO, Ç!is complete!È: all subsets have a supremum

In MSO, Ç!is scattered!È: no (induced) sub-ordering is dense
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Restricting the set quantiÞer

singleton sets

cuts

Þnite sets

Þnite sets and cuts

well ordered sets

scattered sets

Þrst-order logic (FO)

Þrst-order logic with cuts (FO[cut])

weak monadic second-order logic (WMSO)

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

Range of 
set quantiÞers

Name of the logic

Ç!is dense!È, Ç!has length k!È

Ç!is well ordered!È, Ç!is complete!È, Ç!is Þnite!È

Ç!is Þnite!È, Ç has even length!È

Ç!there is an even number of gaps!È

Ç!is scattered!È

É

all sets
MSO

Ç!there are two sets Ôdense in each otherÕ!È
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MSO[ordinal]

MSO[scattered]

MSO

Can we separate 
these logics ?

Can we characterize 
effectively these 

logics ?
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# to words

ui

A linear ordering #
i

Said differently, this is a ßattening operation :
!

: (A! )! ! A!
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Example:
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A! ,
" #

is the free " -monoid generated by A .

Given a Þnite monoid M, a " -morphism h from A¡ to M, and F ! M,  
M,h,F recognizes {u ! A� : h(u) ! F }

Example: 
with F={1,f} h(u) =

!
"#

"$

1 if u has noaÕs
f if u has Þnitely many aÕs
0 ortherwise

M,h,F recognize 
Ç!Þnitely many aÕs!È

! (a) = a
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Recognizability = deÞnability

Theorem [Shelah75 & CCP11]: A language of countable words is 
deÞnable if and only if it is recognizable by a Þnite " -monoid. 

Furthermore there is a syntactic " -monoid. 

Furthermore, Þnite " -monoids can be effectively handled.

SchŸtzenberger-Elgot-BŸchi: A language of Þnite words is deÞnable 
in monadic second-order logic if and only if it is recognizable by a 
Þnite monoid.  

Furthermore, there is a minimal such monoid: the syntactic monoid .
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Effectiveness: induced operations

Unit: M

1 = ! (" )

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

shufße %: P(M)! M

{ a, b} ⌘ = ! (perfectshu✏e(a, b))

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that: 

every operations induced by a product satisfy 
equalities (A), 

and 
given 1,&,","*,% over some Þnite M satisfying these 
equalities, there is a product ' inducting them.

a · (b · c) = (a · b) · c
(an)! = a!

(a · b)! = a · (b · a)!

{a}! = {a}! · a · {a}!

...
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f

0

1 f 0

1 f 0

f

0
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Examples
Ç!Þnitely many aÕs!È

Ç!aÕs are left-closed!È

1

f

0

1 f 0

1 f 0

f

0

f

0

0

0

1 f 0

1 00

1 f 0

1 00" "*

{1} {f,*},{0,*}

1 0%
h(a)=f 
f(b)=1

F={1,f}

1 a b m 0

1
a
b
m
0

1 a b m 0
aa

b
m
0

b
m

0
0 m

m 0
0
0
00

0
0
00

1 a b m 0
" 1 a b 0 0

1 a b m 0
"* 1 a b 0 0

a = Ç!ÉaaaÉ!È 
b = Ç!ÉbbbÉ!È 
m = Ç!ÉaaaÉbbbÉ!È 
0 = Ç!*b*a*!È
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Ç!looks as!È when sufÞciently long.

Remark: Ç!All idempotents are gap insensitive!È implies aperiodicity.

Theorem[SchŸtzenberger65,McNauthon&Papert71]:  A language of 
Þnite words is deÞnable in FO if and only if it is aperiodic.
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MSO[scattered]
Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic " -
monoid such that every shufße idempotent is shufße simple.

For all K such that e = K ! ,
and a such that eáa áe = e,

(K ! { a} )! = e.
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The picture
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shufße idempotent

every shufße 
idempotent is  
shufße simple

These equations 
can be used to 
perform separation.

Example: the syntactic 
" -monoid of  
     Ç!is scattered!È 
contains a scattered 
idempotent which is not 
a shufße idempotent.



Results

Every idempotent is 
gap insensitive

Aperiodicity

Every ordinal or ordinal* 
idempotent is gap insensitive

Every scattered idempotent 
is a shufße idempotent

Every shufße idempotent 
is shufße simple
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[C.&Sreejith A.V.]: The 
following properties 
characterize the logics: 
(and these logics can 
be separated)



To be continuedÉ


