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Monadic second-order logic (MSO)

- quantify over elements x,y,E

- quantify over sets of elements X,Y,E ( monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, Cl!t is reachable from s!E
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, Clis dense!E for all x<y there is some z such that x<z<y
In MSO, Clis scattered!E no (induced) sub-ordering is dense

In MSO, Clis bnite!Ethe brst and last positions exist and are
reachable one from the other by successor steps

In MSO, Clis complete!E all subsets have a supremum
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Linear orderings and inbnite words

Linear ordering : #=(L,<) with < total (
(Countable) word : mapu : #! A (A al

Pnite
tg b

C a
O O

N
A4

a a
O0—0

domain " (N,<)

domain "* (-N,<)

well ordered domain (ordinal)

"times

scattered

(no dense sub-ordering)

nere L Is always countable)

phabet)

perfect shufl3e {a,b}
b b

Q- @ -

a

domain (Q,<)

a

ab
@ - - @@

every letter appears densely
(unique up to isomorphism)

complete

= natural Dedekind cut



Restricting the set quantiber

Range of
set quantibers

Name of the logic

singleton sets

cuts

Pnite sets

Pnite sets and cuts
well ordered sets
scattered sets

all sets

prst-order logic (FO) \
Clis denselE, C'has length kIE

brst-order logic with cuts (FO[cut])
Clis well ordered!E, Clis complete!E, Clis bnite!l

weak monadic second-order logic (WMSO)
Clis bnitelE, C has even length!t

MSOI[Pnite,cut] ‘
Clthere is an even number of gaps!E

MSO[ordinal
E
MSQl[scattered]
Clis scattered!E

MSO N
C!there are two sets Odense In each otherO
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FO[cut] WMSO these logics ?

N~

MSO|[Pnite,cut]

i

MSOJordinal]

MSO|scattered]

MSO



Structure

/ FO\ Can we separate

FO[cut] WMSO these logics ?
MSO[T&CUH Can we characterize
MSO[ordinal effectively these

\ logics ?
MSO|scattered]

MSO
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Generalized concatenation

~ Alinear ordering # a map from
I
‘/o/o/o o000 - P eoo-o O\O\O\‘# to words
U v
generalized
concatenation
Ui
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A" -monoid (M,! ) Is a set M equipped oo T
with a product ! : Mj ! M that | up =1 I (uj)
satisPesgeneralized associativity : il il

Example: A , ~ is the free " -monoid generated by A.
Example: # 1 if U consists only of 1’s
M={1,f,0} with: ! (u) :é f if u has one but finitely many f’s, and no 0

0 otherwise
A morphism of " -monoid h Is such that & <H u> = (H h(u@-)>

Given a bPnite monoid M, a" -morphism h from Aj to M, and F! M,
M,h,F recognizes {u! A° : h(u)! F}

Example: % 1 if u has noaOs

. | | . M,h,F recognize
with F={1,f}  h(u) = éf if u has Pnitely many aC Clbnitely many aOs!E
O ortherwise
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Recognizabllity = debPnability

SchYtzenberger-Elgot-BYchi: A language of Pnite words is debnable

INn monadic second-order logic if and only if it Is recognizable by a
bnite monoid.

—urthermore, there i1s a minimal such monoid: the syntactic monoid .

Theorem [Shelah75 & CCP11]: A language of countable words Is
debnable if and only If it Is recognizable by a Pnite " -monoid.

Furthermore there Is a syntactic " -monoid.

Furthermore, Pnite" -monoids can be effectively handled.
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Effectiveness: induced operations

shufl3e %P(M)! M

Unit: M Binary product: MSM ! M
] {a,B}"7 =1 (perfectshuffle(a, b))
1=1(") aab= 1! (ab)
ababapb
"-iteration: M | M "*-Iteration domain (Q,<)
a' = ! (pag. ¢ a =1!(,.-aa9 every letter appears densely

(uniqgue up to Isomorphism)

Theorem[CCP11]: There are equalities (A) suchthat:| a-(b-¢) = ( ) c

every operations induced by a product satisfy (a”)*

equalities (A), (a-b)' =a-(b-a)
and

ey =1af -a-qay

given 1,&,","*,% over some Pnite M satisfying these
equalities, there Is a product ' inducting them.
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Examples

C!pnitely many aOs!E

1 f O 1 f O 1 f O
111 f O 1 0 O =11 0 O
f| f f O
{1} {t"}40,"}  h(a)=f F=(1.0
010 0 0 91 o f(b)=1 L
ClaOs are left-closed!E
1 ab m2~©O 1 abma~o a:g!EaaaE!E
1|1 ab maO 1 abo0o b = CIEbbbE!E
alaamm O m = C!EaaaEbbbE!E
blb 0Ob 0 O 1 abmO  o=cCrbarE
mmOm O O *1 ab 00
0/l0o00 OO
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First order cannot detect gapsE

Theorem[SchYtzenberger65,McNauthon&Papert71]: A language of
Pnite words Is debnable in FO if and only If it Is aperiodic.

Theorem [Bes&Cartonl13]: A language of countable scattered words is
debPnable in FO if and only if every idempotent is gap insensitive.

N N
ede = e e’ ae” = e
Cllooks as!E when sufpciently long.

Remark: C!All idempotents are gap insensitive!E implies aperiodicity.

Proof: Take n such that a" is idempotent.

an — (an)! é(a”)” — aé(a”)! é(an)!! — an—|—1

Remark: The equation remains true but is not sufpcient in general.
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MSOJordinal]
cannot see scattered set

Lemma|C.&Sreejith A.V.]. Every formula of MSO[ordinal] has a syntactic "
monoid such that every scattered idempotent Is a shuff3e idempotent.

e @ = @° e:{e}!

MSO|scattered]

Lemma[C.&Sreegjith A.V.]: Every formula of MSO[ordinal] has a syntactic "
monoid such that every shufl3e idempotent is shufl3e simple.

For all K such thate= K ',

and a such that eda ae = e,
(K1{ a})' = e
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The picture

every idempotent is

gap insensitive

FO[cut] WMSO ordinal* idempotent
\ / is gap insensitive
These equations MSO[Pnite,cut] every scattered
can be used to idempotent is a

perform separation. ~_“ shufRe idempotent

MSOJordinal]

Example: the syntactic ‘ huff3
; m . —  ——everv shuffie
mon . MSQO[scattered idempotent is
C!lis scattered!E | ‘ ] | huff t ' t I|
snutise simple

contains a scattered
idempotent which is not
a shuff3e idempotent.

MSO



Results

[C.&Sreejith A.V.]: The
following properties
characterize the logics:
(and these logics can
be separated)

Every idempotent is
gap insensitive

Aperiodicity
Every ordinal or ordinal*
idempotent Is gap insensitive

Every scattered idempotent
IS a shuff3e idempotent

Every shuff3e idempotent
IS shufl3e simple

#
#




To be continuedE



