
Characterization of
Logics on InÞnite Linear

Orderings
Thomas Colcombet

3.3.2015
SŽminaire gŽnŽral du

Laboratoire d'informatique Gaspard-Monge

Linear orderings
Words
Logics

Monadic Second-Order Logic

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, Ç!is dense!È: for all x<y there is some z such that x<z<y

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, Ç!is dense!È: for all x<y there is some z such that x<z<y

In MSO, Ç!is scattered!È: no (induced) sub-ordering is dense

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, Ç!is dense!È: for all x<y there is some z such that x<z<y

In MSO, Ç!is Þnite!È: the Þrst and last positions exist and are
reachable one from the other by successor steps

In MSO, Ç!is scattered!È: no (induced) sub-ordering is dense

Monadic Second-Order Logic
Monadic second-order logic (MSO)
 - quantify over elements x,y,É
 - quantify over sets of elements X,Y,É (monadic variables)
 - use there relation predicates of the ambient signature
 - Boolean connectives

For instance over the di-graph signature, Ç!t is reachable from s!È:
 every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, Ç!is dense!È: for all x<y there is some z such that x<z<y

In MSO, Ç!is Þnite!È: the Þrst and last positions exist and are
reachable one from the other by successor steps

In MSO, Ç!is complete!È: all subsets have a supremum

In MSO, Ç!is scattered!È: no (induced) sub-ordering is dense

History

History
Elgot - BŸchi60

MSO=reg (Þnite words)
decidable

History
Elgot - BŸchi60

MSO=reg (Þnite words)
decidable

[BŸchi62]: "-words
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
over countable linear orderings

History
Elgot - BŸchi60

MSO=reg (Þnite words)
decidable

[BŸchi62]: "-words
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
over countable linear orderings

[SchŸtzenberger65]
[McNaughton&Papert71]
FO-deÞnable = aperiodic

Many logicsÉ

History
Elgot - BŸchi60

MSO=reg (Þnite words)
decidable

[BŸchi62]: "-words
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
over countable linear orderings

[SchŸtzenberger65]
[McNaughton&Papert71]
FO-deÞnable = aperiodic

Many logicsÉ

?

Linear orderings and inÞnite words

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

Þnite
a bc b a a

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

Þnite
a bc b a a

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

Þnite
a bc b a a

domain "* (-N,<)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a

domain "* (-N,<)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a

domain "* (-N,<)

scattered

(no dense sub-ordering)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a perfect shufße {a,b}

b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)domain "* (-N,<)

scattered

(no dense sub-ordering)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a

complete

perfect shufße {a,b}
b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)domain "* (-N,<)

scattered

(no dense sub-ordering)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a

incomplete

complete

perfect shufße {a,b}
b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)domain "* (-N,<)

scattered

(no dense sub-ordering)

Linear orderings and inÞnite words
Linear ordering : #=(L,<) with < total (here L is always countable)

(Countable) word : map u : #! A (A alphabet)

domain " (N,<)

well ordered domain (ordinal)

" "
" times

Þnite
a bc b a a

incomplete

complete

perfect shufße {a,b}
b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)domain "* (-N,<)

scattered

(no dense sub-ordering)

gap
= natural Dedekind cut

Restricting the set quantiÞer

singleton sets

cuts

Þnite sets

Þnite sets and cuts

well ordered sets

scattered sets

Þrst-order logic (FO)

Þrst-order logic with cuts (FO[cut])

weak monadic second-order logic (WMSO)

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

Range of
set quantiÞers

Name of the logic

Ç!is dense!È, Ç!has length k!È

Ç!is well ordered!È, Ç!is complete!È, Ç!is Þnite!È

Ç!is Þnite!È, Ç has even length!È

Ç!there is an even number of gaps!È

Ç!is scattered!È

É

all sets
MSO

Ç!there are two sets Ôdense in each otherÕ!È

Structure
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Structure
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate
these logics ?

=

Structure
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate
these logics ?

=

Structure
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate
these logics ?

Can we characterize
effectively these

logics ?

An algebraic approach:
" -monoid

Generalized concatenation

Generalized concatenation
A linear ordering #

i

Generalized concatenation
a map from
to words

ui

A linear ordering #
i

Generalized concatenation

generalized
concatenation

!

i ! !

ui

a map from
to words

ui

A linear ordering #
i

Generalized concatenation

generalized
concatenation

!

i ! !

ui

a map from
to words

ui

A linear ordering #
i

Said differently, this is a ßattening operation :
!

: (A!)! ! A!

" -monoids

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#
! (a) = a

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

Example:
!

A! ,
" #

is the free " -monoid generated by A .

! (a) = a

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

Example:
M={1,f,0} with: ! (u) =

!
"#

"$

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

Example:
!

A! ,
" #

is the free " -monoid generated by A .

! (a) = a

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

Example:
M={1,f,0} with: ! (u) =

!
"#

"$

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of " -monoid h is such that h

Y

i! ↵

ui

!
= ⇡

Y

i! ↵

h(ui)

!

Example:
!

A! ,
" #

is the free " -monoid generated by A .

! (a) = a

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

Example:
M={1,f,0} with: ! (u) =

!
"#

"$

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of " -monoid h is such that h

Y

i! ↵

ui

!
= ⇡

Y

i! ↵

h(ui)

!

Example:
!

A! ,
" #

is the free " -monoid generated by A .

Given a Þnite monoid M, a " -morphism h from A¡ to M, and F ! M,
M,h,F recognizes {u ! A� : h(u) ! F }

! (a) = a

" -monoids
A " -monoid (M,!) is a set M equipped

with a product ! : M¡ ! M that
satisÞes generalized associativity :

!

!
"

i ! !

ui

#

= !

!
"

i ! !

! (ui)

#

Example:
M={1,f,0} with: ! (u) =

!
"#

"$

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of " -monoid h is such that h

Y

i! ↵

ui

!
= ⇡

Y

i! ↵

h(ui)

!

Example:
!

A! ,
" #

is the free " -monoid generated by A .

Given a Þnite monoid M, a " -morphism h from A¡ to M, and F ! M,
M,h,F recognizes {u ! A� : h(u) ! F }

Example:
with F={1,f} h(u) =

!
"#

"$

1 if u has noaÕs
f if u has Þnitely many aÕs
0 ortherwise

M,h,F recognize
Ç!Þnitely many aÕs!È

! (a) = a

Recognizability = deÞnability

Recognizability = deÞnability

SchŸtzenberger-Elgot-BŸchi: A language of Þnite words is deÞnable
in monadic second-order logic if and only if it is recognizable by a
Þnite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid .

Recognizability = deÞnability

Theorem [Shelah75 & CCP11]: A language of countable words is
deÞnable if and only if it is recognizable by a Þnite " -monoid.

Furthermore there is a syntactic " -monoid.

Furthermore, Þnite " -monoids can be effectively handled.

SchŸtzenberger-Elgot-BŸchi: A language of Þnite words is deÞnable
in monadic second-order logic if and only if it is recognizable by a
Þnite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid .

Effectiveness: induced operations

Effectiveness: induced operations

Unit: M

1 = ! (")

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

shufße %: P(M)! M

{ a, b} ⌘ = ! (perfectshu✏e(a, b))

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

shufße %: P(M)! M

{ a, b} ⌘ = ! (perfectshu✏e(a, b))

b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

shufße %: P(M)! M

{ a, b} ⌘ = ! (perfectshu✏e(a, b))

b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that:

every operations induced by a product satisfy
equalities (A),

and
given 1,&,","*,% over some Þnite M satisfying these
equalities, there is a product ' inducting them.

Effectiveness: induced operations

Unit: M

1 = ! (")

Binary product: M$M ! M

a áb = ! (ab)

"-iteration: M ! M
a! = ! (aaa . . .! "# $

!

)

"*-iteration
a! = ! (. . . aaa! "# $

! !

)

shufße %: P(M)! M

{ a, b} ⌘ = ! (perfectshu✏e(a, b))

b aa b a b

domain (Q,<)
every letter appears densely
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that:

every operations induced by a product satisfy
equalities (A),

and
given 1,&,","*,% over some Þnite M satisfying these
equalities, there is a product ' inducting them.

a · (b · c) = (a · b) · c
(an)! = a!

(a · b)! = a · (b · a)!

{a}! = {a}! · a · {a}!

...

Examples

Examples
Ç!Þnitely many aÕs!È

1

f

0

1 f 0

1 f 0

f

0

f

0

0

0

1 f 0

1 00

1 f 0

1 00" "*

{1} {f,*},{0,*}

1 0%
h(a)=f
f(b)=1

F={1,f}

Examples
Ç!Þnitely many aÕs!È

Ç!aÕs are left-closed!È

1

f

0

1 f 0

1 f 0

f

0

f

0

0

0

1 f 0

1 00

1 f 0

1 00" "*

{1} {f,*},{0,*}

1 0%
h(a)=f
f(b)=1

F={1,f}

1 a b m 0

1
a
b
m
0

1 a b m 0
aa

b
m
0

b
m

0
0 m

m 0
0
0
00

0
0
00

1 a b m 0
" 1 a b 0 0

1 a b m 0
"* 1 a b 0 0

a = Ç!ÉaaaÉ!È
b = Ç!ÉbbbÉ!È
m = Ç!ÉaaaÉbbbÉ!È
0 = Ç!*b*a*!È

Characterizing logics

First order cannot detect gapsÉ

First order cannot detect gapsÉ
Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

First order cannot detect gapsÉ
Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

Theorem [B•s&Carton13]: A language of countable scattered words is
deÞnable in FO if and only if every idempotent is gap insensitive.

e! áe!! = ee áe = e

First order cannot detect gapsÉ

Ç!looks as!È when sufÞciently long.

Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

Theorem [B•s&Carton13]: A language of countable scattered words is
deÞnable in FO if and only if every idempotent is gap insensitive.

e! áe!! = ee áe = e

First order cannot detect gapsÉ

Ç!looks as!È when sufÞciently long.

Remark: Ç!All idempotents are gap insensitive!È implies aperiodicity.

Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

Theorem [B•s&Carton13]: A language of countable scattered words is
deÞnable in FO if and only if every idempotent is gap insensitive.

e! áe!! = ee áe = e

First order cannot detect gapsÉ

Ç!looks as!È when sufÞciently long.

Remark: Ç!All idempotents are gap insensitive!È implies aperiodicity.

Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

an = (an)! á(an)! ! = a á(an)! á(an)! ! = an+1

anProof: Take n such that is idempotent.

Theorem [B•s&Carton13]: A language of countable scattered words is
deÞnable in FO if and only if every idempotent is gap insensitive.

e! áe!! = ee áe = e

First order cannot detect gapsÉ

Ç!looks as!È when sufÞciently long.

Remark: Ç!All idempotents are gap insensitive!È implies aperiodicity.

Theorem[SchŸtzenberger65,McNauthon&Papert71]: A language of
Þnite words is deÞnable in FO if and only if it is aperiodic.

Remark: The equation remains true but is not sufÞcient in general.

an = (an)! á(an)! ! = a á(an)! á(an)! ! = an+1

anProof: Take n such that is idempotent.

Theorem [B•s&Carton13]: A language of countable scattered words is
deÞnable in FO if and only if every idempotent is gap insensitive.

e! áe!! = ee áe = e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

a f (IH) b

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

a f (IH) b

= a áf áb

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

a f (IH) b

= a áf áb

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

IH

a f (IH) b

= a áf áb

e! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

IH

a f (IH) b

= a áf áb

= a áf ! áf ! ! áb

= a áf ábe! áe! !

e

Weak monadic logic cannot detect
gapsÉ when in an inÞnite situation

[B•s&Carton] : A language of scattered words is deÞnable in WMSO
if and only if all ordinal idempotents and every ordinal* idempotents
are gap insensitive.

e! = e e! ! = e

IH: Assume Ç!((X)!È recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X
we choose

IH

a f (IH) b

= a áf áb

= a áf ! áf ! ! áb

= a áf ábe! áe! !

e

MSO[ordinal]
cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic " -
monoid such that every scattered idempotent is a shufße idempotent.

e = { e} !e = e! = e! !

MSO[ordinal]
cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic " -
monoid such that every scattered idempotent is a shufße idempotent.

e = { e} !e = e! = e! !

MSO[scattered]
Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic " -
monoid such that every shufße idempotent is shufße simple.

For all K such that e = K ! ,
and a such that eáa áe = e,

(K ! { a})! = e.

The picture
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is
gap insensitive

aperiodic every ordinal and
ordinal* idempotent
is gap insensitive

every scattered
idempotent is a
shufße idempotent

every shufße
idempotent is
shufße simple

=

The picture
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is
gap insensitive

aperiodic every ordinal and
ordinal* idempotent
is gap insensitive

every scattered
idempotent is a
shufße idempotent

every shufße
idempotent is
shufße simple

=

The picture
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is
gap insensitive

aperiodic every ordinal and
ordinal* idempotent
is gap insensitive

every scattered
idempotent is a
shufße idempotent

every shufße
idempotent is
shufße simple

These equations
can be used to
perform separation.

=

The picture
FO

FO[cut] WMSO

MSO[Þnite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is
gap insensitive

aperiodic every ordinal and
ordinal* idempotent
is gap insensitive

every scattered
idempotent is a
shufße idempotent

every shufße
idempotent is
shufße simple

These equations
can be used to
perform separation.

Example: the syntactic
" -monoid of
 Ç!is scattered!È
contains a scattered
idempotent which is not
a shufße idempotent.

Results

Every idempotent is
gap insensitive

Aperiodicity

Every ordinal or ordinal*
idempotent is gap insensitive

Every scattered idempotent
is a shufße idempotent

Every shufße idempotent
is shufße simple

FO FO
[c

ut
]

W
M

SO
M

SO
[Þ

ni
te

,c
ut

]

=M
SO

[o
rd

in
al

]
M

SO
[s

ca
tte

re
d]

!!!!!

! ! ! !

!

!

"! #

"! #

!

[C.&Sreejith A.V.]: The
following properties
characterize the logics:
(and these logics can
be separated)

To be continuedÉ

