On the expansion of Monadic Second-Order Logic with - Cantor Bendixson Rank, and - Order type

CSL 2025 Amsterdam Februrary 14, 2025

<u>Thomas Colcombet</u> Alexander Rabinovich

One slide overview

« Can we extend the expressiveness of MSO while retaining its wonderful decidability properties ? »

RESULTS: We consider:

- MSO + otp_a(X) over countable ordinals chains
- MSO + CBrank_β(X) over binary trees

In all cases,

SAT of \mathcal{L} is decidable if and only if $\mathcal{L} = MSO$.

Monadic Second-Order Logic (MSO)

MSO = FO + set quantifiers + membership predicate

Example: There exists a path from x to y in a directed graph: For all sets X, if X contains x and is closed under edge successors, then y belongs to X.

MSO has a wonderful theory:

Over finite chains/words

Over finite trees

Over infinite trees

Over countable linear orders

Everything is effective.

SAT is decidable all these cases.

MSO = automata = monoids = ...

 $MSO = automata = \dots$

MSO = automata = mu-calculus = ...

MSO definable = o-monoids = ...

MSO over countable ordinals

Properties expressible in MSO:

- (L, \leq) is a total order (FO)
- (L, \leq) is well-ordered = isomorphic to an ordinal
- (L, \leq) is a countable ordinal
- (L, \leq) is a finite ordinal
- (L, \leq) is isomorphic to ω
- (L,≤) is isomorphic ω^2 ; to ω^k ; to α for any $\alpha < \omega^{\omega}$

Property NOT expressible in MSO:

- (L,<) is isomorphic to $\omega^{\omega},$ and more generally to some countable $\alpha\geq\omega^{\omega}$

Some extensions of MSO over $\boldsymbol{\omega}$

MSO + U [Bojanczyck 03]

set variable

UX. $\phi(X)$ « there exist arbitrarily large sets X satisfying $\phi(X)$ »

Decidability:

- SAT of ω-chains Bool(MSO + U+)
 [BC17]
 (U appears positively only)
- SAT of WMSO + U over infinite trees

BMSO [Blumensath, Carton, C. 14]

Models are sequences of numbers: $f: \omega \rightarrow N$.

B(X) « f is bounded over X »

Decidability:

- Some fragments.
- Many open questions.

Undecidability:

MSO+U undecidable over ω
 [BPT16]

BMSO = MSO + B(-)

Undecidability:

SAT of BMSO undecidable over ω
 (by (bi-)reduction to MSO+U) [BCC14]

MSO + order type

We work over ordinals, ie the signature of order.

Fix a countable ordinal α .

```
otp<sub>α</sub>(X) means « the order type of X is a »
= « the linear order restricted
to X is isomorphic to a »
```

Theorem: For all ordinals a, the following properties are equivalent:

- $\alpha < \omega^{\omega}$,
- α is MSO-axiomatizable,
- $MSO + otp_{\alpha} = MSO$,
- MSO + otp_{α} is decidable over countable ordinals,
- MSO + otp_{α} is decidable over α .

Main lemma: For all countable ordinals $\alpha \ge \omega^{\omega}$, MSO + otp_{α} is undecidable over α .

MSO + otpa

Main lemma: For all countable ordinals $\alpha \ge \omega^{\omega}$, MSO + otp_{α} is undecidable over α .

Main lemma: the case $a = \omega^{\omega}$

For $\beta < \omega^{\omega}$, let level(β) be n such that $\omega^{n} \leq \beta < \omega^{n+1}$

Remark: Given a sequence $(\beta_m)_{m \in \omega}$ of ordinals $< \omega^{\omega}$ then

 $\beta_0 + \beta_1 + \beta_1 + ... = \omega^{\omega}$ if and only if level(β_n) is not bounded

Let ϕ be a BMSO sentence, we construct an MSO + otp_{$\omega\omega$}(X) sentence ϕ^* .

Step 1. Guess ω disjoint non-empty intervals covering ω^{ω} (doable in MSO).

Step 2. Then check ϕ after transforming it as follows:

- first-order variables are constrained to be minimal elements of an interval
- monadic variables are constrained to be union of intervals
- B(X) become $\neg otp_{\omega\omega}(X)$

Lemma: $\omega^{\omega} \models \varphi^*$ if and only if $f \models \varphi$ for some $f : \omega \rightarrow N$.

Corollary: MSO + $otp_{\omega\omega}(X)$ is undecidable.

Remark: It works for all $\alpha = \omega^{\lambda}$ for λ a countable limit ordinal.

MSO + otpa

Main lemma: For all countable ordinals $\alpha \ge \omega^{\omega}$, MSO + otp_{α} is undecidable over α .

We have seen the undecidability of $\alpha = \omega^{\lambda}$ for all countable limit ordinal λ .

Main lemma: the case $\alpha = \omega^{\lambda+1}(1)$

Assume MSO + otp_{ω}^{λ} is known to be undecidable over ω^{λ} .

We want to show that MSO + $otp_{\omega}^{\lambda+1}$ is undecidable over $\omega^{\lambda+1}$.

Note that $\omega^{\lambda+1} = (\omega^{\lambda}).\omega$, ie is a concatenation of ω block of otp ω^{λ} .

Step 1: decompose $\omega^{\lambda+1}$ into ω intervals (almost all) of order type ω^{λ} . Consider a decomposition of $\omega^{\lambda+1}$ into ω intervals $(J_i)_{i \in \omega}$ such that

(A) Such that every infinite union of suffixes of intervals has order type $\omega^{\lambda+1}$. => almost all intervals has order type of the form $\beta + \omega^{\lambda}$.

(B) There is no way to split infinitely many intervals in while keeping (A) true. => almost all intervals have order type ω^{λ} .

Call it a good decomposition.

Lemma: The exists an MSO + $otp_{\omega}^{\lambda+1}$ formula which checks that a decomposition of the input $\omega^{\lambda+1}$ into ω intervals is **good**.

Main lemma: the case $\alpha = \omega^{\lambda+1}(2)$

Lemma: The exists an MSO + $otp_{\omega}^{\lambda+1}$ formula which checks that a decomposition of the input into ω intervals is good.

Remark: For J a good decomposition, and $X \subseteq \omega^{\lambda+1}$, then the order type of X is $\omega^{\lambda+1}$ if and only if $J_n \cap X$ is of order type ω^{λ} for almost all $n \in \omega$.

Given an MSO + otp_{ω}^{λ} formula ϕ we build an MSO + $otp_{\omega}^{\lambda+1}$ formula ϕ^* such that: $\omega^{\lambda+1} \models \phi^*(F, X_1, \dots, X_k)$ (F_n)_{n \in \omega} range over infinite subsequences of a fixed good decomposition.

 $\text{if and only if} \qquad \omega^{\lambda} \models \varphi(X_1 \cap F_n, \ldots, X_k \cap F_n) \text{ for almost all } n \in \omega.$

(Un)boundedness case: $(\neg B(X))^*(F,X) := otp_{\omega}^{\lambda+1}(X)$ Negation case: $(\neg \varphi)^*(F,X) := \forall F' \subseteq F . \neg(\varphi^*(F',X))$

Consequence: If MSO + otp_{ω}^{λ} is undecidable, then MSO + $otp_{\omega}^{\lambda+1}$ is undecidable.

MSO + otpa

Main lemma: For all countable ordinals $\alpha \ge \omega^{\omega}$, MSO + otp_{α} is undecidable over α .

We have seen the undecidability of $\alpha = \omega^{\lambda}$ for all countable limit ordinals λ . We have seen the undecidability of $\alpha = \omega^{\lambda+1}$ assuming undecidability for ω^{λ} . Hence we have undecidability for $\alpha = \omega^{\lambda}$ for all countable ordinals λ . With a bit of work we have undecidability for all countable $\alpha \ge \omega^{\omega}$.

Theorem: For a countable ordinal α , the following properties are equivalent:

- α < ω^ω,
- α is MSO-axiomatizable,
- $MSO + otp_{\alpha} = MSO$,
- MSO + otp_a is decidable over α ,
- MSO + otp_a is decidable over countable ordinals.

MSO + Cantor-Bendixson rank

We work over binary trees.

Fix a countable ordinal α .

 $CBrank_{\alpha}(X)$ means « the cantor-Bendixson rank of X is a »

Intuition: T has CBrank $\leq \alpha$ if when we remove all nodes that are root of subtrees of CBrank $< \alpha$, only finitely many infinite branches remain.

Theorem: For all ordinals α, the following properties are equivalent:

- α < ω,
- CBrank_a(-) is MSO-expressible,
- $MSO + CBrank_{\alpha} = MSO$ (over binary trees)
- $MSO + CBrank_{\alpha}$ is decidable over binary trees,
- MSO + CBrank_{α} is decidable over the complete binary tree.

Remark: A tree T has a CBrank if and only if the nodes can be reoriented (swapping left and right), such that the lexicographic ordering is a well-order. **Remark:** And T has CBrank α if the lex order type belongs to $[\omega^{\alpha}, \omega^{\alpha+1})$.

Conclusion

RESULTS: We consider:

- MSO + $otp_{\alpha}(X)$ over countable ordinals chains
- MSO + CBrank_β(X) over binary trees

In all cases,

SAT of \mathcal{L} is decidable if and only if $\mathcal{L} = MSO$.

Is there still some hope to extend the expressiveness of MSO while retaining its wonderful decidability properties ?