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Reach(x, y)
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Example: over directed graphs,
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extend regular languages.

like distance automata with 
several counters and resetsCost functions are effectively 

equivalently described by 
- machines: B-automata, S-automata 
- expressions: B-rational/S-rational 

expressions, 
- algebra: recognizability by 

stabilisation monoids, 
- logically: definability in cost 

monadic second-order logic 
(cost MSO).

sup instead of inf

L>nnew exponent 

new exponent L6n

like ordered monoids with a 
stabilisation ‘#’ meaning 
‘iterating a lot of times’.
new predicate               
that appears positively 

|X| 6 n

Boundedness, divergence, 
domination, equivalence are 
decidable.



Languages as cost functions
f 4 g         (f is dominated by g) if for all sets X⊆A* 

       is bounded implies         is bounded 
f≈g  if  f≼g  and  g≼f 

cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

Consider an MSO formula defining L, then 

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

Consider an MSO formula defining L, then 

[[']](u) = inf{n | u |= '(n)}

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

Consider an MSO formula defining L, then 

[[']](u) = inf{n | u |= '(n)}
=

(
0 if u |= '

1 otherwise

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

Consider an MSO formula defining L, then 

[[']](u) = inf{n | u |= '(n)}
=

(
0 if u |= '

1 otherwise

= �L

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X



Languages as cost functions

Given a language L, its characteristic map is: 
�L : A⇤ ! N [ {1}

u 7!
(
0 if u 2 L

1 otherwise

Remark:              iff                 .K ✓ L �L 4 �K

Consider an MSO formula defining L, then 

[[']](u) = inf{n | u |= '(n)}
=

(
0 if u |= '

1 otherwise

= �L

Similar relation with all classical objects exist.

f 4 g         (f is dominated by g) if for all sets X⊆A* 
       is bounded implies         is bounded 

f≈g  if  f≼g  and  g≼f 
cost function = ≈-classf |Xg|X
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Some known results 
about regular cost functions

Boundedness/domination of cost MSO is decidable 
- over finite words [C.09,13]
- over infinite words (of countable length ? !)  
   [C.09], [vanden Boom&Kuperberg12]
- over finite trees [C.&Löding10]
- over graphs of tree-width at most k
- partially over infinite trees (tamed trees, weak costMSO, …) 
  [vanden Boom11], [vanden Boom&Kuperberg12] …

Regular cost functions  = Toolbox of results for deciding 
boundedness questions.
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Finite power property
u \in L^{\leqslant n}

AI F

" "
""

:1
:1

:0
:0

:0

Finite power property: for some           ?nL⇤ = L6n

[[A]]Lemma:          is bounded over        if and only if                  .L⇤ L⇤ = L6n

[[A]](u) = inf{n | u 2 L6n}Hence

Accepts      with weight 
         if and only if  

u

u 2 L6n

6 n

[Simon78] The finite power property is decidable.
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Bounding fixpoints
u \in L^{\leqslant n}

It is the least fixpoint of                                              . FA : Z 7! {x | A |= '(x, Z)}

tThe map                                            for     a node of an infinite tree    is  
computed by an alternating two-way distance parity automaton running 
over     starting from    .
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Boundedness of such automata is decidable.
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Bounding fixpoints
u \in L^{\leqslant n}

It is the least fixpoint of                                              . FA : Z 7! {x | A |= '(x, Z)}

tThe map                                            for     a node of an infinite tree    is  
computed by an alternating two-way distance parity automaton running 
over     starting from    .

x

t x

(t, x) 7! inf{n | x 2 F

n
t (;)}

[Blumensath&Otto&Weyer12] The boundedness of monadic second-
order  logic fixpoints is decidable over infinite trees.

Boundedness of such automata is decidable.
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(non-deterministic) classes

A very inspiring family of questions over regular languages is the 
ability to decide the membership of regular languages to subclasses.

[Schützenberger65] A regular language is definable by a star-free 
expressions if and only if its syntactic monoid is aperiodic. 
This is decidable.

Many other classes known, over finite words,
⌃1 ⌃2 ⌃3 ⌃4 B(⌃1) B(⌃2)FO2 etc…
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The star-height problem
Def: A regular language is of star height      if it can be described by a 
rational expression using at most      nesting of Kleene stars, but not less.

k
k

[Eggan 63] The star-height forms a strict hierarchy over regular languages.

(*) This is the restricted star height, in which intersection and negations are 
not allowed. Nobody knows if the hierarchy is strict in the unrestricted case.

But, is the star-height of a language computable ?

[Hashiguchi 81–88] Yes!

[Kirsten 05] Yes, with a self contained and simpler proof.

[C.&Löding 08] The star-height is decidable over trees.

(but very complicated)

Decidability of the 
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automata
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Lemma:          is bounded over L if and only if L has star-height at most k.fL,k

Fix a regular language L, and an integer k. Define:

[Kirsten05] There exists a hB-automaton computing         .fL,k

[Kirsten05] The star-height problem is decidable.

This approach is generic. It works for trees, and for the Mostowski index 
of languages of infinite trees (open).

It works also for separation.
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Motivation
Working with regular cost functions usually involves the terms 
large and small used (with care) as Boolean predicates:

'f ≼ g  if, whenever f(u) is large, g(u) is large’.

Example: Given a tree, then
max(maxdegree,height) ≈ size

Proof:
If maxdegree is large, then there is a large number of nodes. 
If height is large, then there is a large number of nodes.
Conversely, assume both maxdegree and height would be small, 
then there would be a small number of nodes. 

[Toruńczyk 11] One can identify regular cost functions with a 
language of profinite words, in a natural way.
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[Nelson 77] Internal set theory (IST) a 
conservative extension of ZFC.

All the language of ZFC is available.

All the proof arguments usable in ZFC are available.

Three new axioms (schema) are available:

- idealization: (simplified) there exists a non-standard integer.

[Robinson 66] … This is an extension of set 
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- transfer: 8Stx'8x' iff

'    has be an internal formula,  
i.e., no symbol           .St(x)

9x' 9Stx'iff( ) All objects definable in standard 
mathematics are standard.

Things definable by internal formulae with standard parameters are 
standard. 
→ Successor, predecessor, square of standard integers are integers.

0 1 2

| {z }
Standard numbers

| {z }
Non-standard numbers

Lemma: If m<n for n standard, then m is standard.

The set of 
standard integers 
does not exist!

?
The comprehension schema

{x 2 A | '}
is only valid for 
internal formulae!!!!!

This is the case for 0, 1,⇡,N,R, A⇤ . . .
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Given a standard function                                , define: f : A⇤ ! N [ {1}

| {z }
is smallf(u)

Lf = {u 2 A⇤ | St(f(u)) ^ f(u) 6= 1}external

Then               if and only if                 . f 4 g Lg ✓ Lf

Under this view, the theory of regular cost functions can be recast 
into a theory of regular external languages.
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Emptiness of Boolean combinations is decidable.



Conclusion
Regular cost functions are functions computed by variants of 
tropical automata modulo a ‘boundedness equivalence relation’.

It can be used to decide several problems involving the 
existence of bounds, be it explicitly or implicitly.

Thanks to non-standard analysis, the results can be seen as a 
language theory over less usual words, in the same spirit as 
infinite words/words of countable length.

The most important results that hold for regular languages are 
still valid.


