Omega Regularity with Bounds

Thomas Colcombet (Cnrs, Irisa)
Joint work with Mikołaj Bojańczyk (Warsaw)

Séminaire automate au LIAFA le 2 mars 2007
An \(\omega \)-\textit{word} is an infinite word indexed by \(\omega \): \(a_1 a_2 a_3 \ldots \)
An \(\omega \)-word is an infinite word indexed by \(\omega: a_1a_2a_3 \ldots \)

Monadic (second-order) logic:

\[
\phi ::= \phi \lor \phi \mid \neg \phi \mid \exists X.\phi \mid \exists x.\phi \mid x \in X \mid x = S(y) \mid a(x)
\]
Omega Regular Languages

An ω-word is an infinite word indexed by ω: $a_1a_2a_3\ldots$

Monadic (second-order) logic:

$$\phi ::= \phi \lor \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x)$$

E.g:

$$x \leq y \ ::= \ \forall X. (x \in X \land (\forall z. z \in X \rightarrow S(z) \in X)) \rightarrow y \in X$$
An ω-word is an infinite word indexed by ω: $a_1a_2a_3 \ldots$

Monadic (second-order) logic:

$$\phi ::= \phi \lor \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x)$$
An \(\omega \)-word is an infinite word indexed by \(\omega: a_1 a_2 a_3 \ldots \)

Monadic (second-order) logic:

\[
\phi ::= \phi \lor \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x)
\]

THM (Buchi): Satisfaction of monadic logic is decidable over \(\omega \)-words (originally, monadic logic is decidable over \((\mathbb{N}, +1)\))
An \(\omega \)-word is an infinite word indexed by \(\omega: a_1 a_2 a_3 \ldots \)

Monadic (second-order) logic:

\[
\phi ::= \phi \lor \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x)
\]

THM (Buchi) Satisfaction of monadic logic is decidable over \(\omega \)-words (originally, monadic logic is decidable over \((\mathbb{N}, +1)\))

Idea: Transform each monadic formula into an ‘equivalent’ automaton.
Step 1: Introduce a suitable family of automata.
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3 (generic): Prove: for all $u; u; \neg X = \neg A \cup = \iff h u; \neg A i \in L(A)$

Proof idea: By induction on the structure of the formula.

In general, to each connective/quantifier and atomic predicate corresponds a language theoretic operation.

Decidability:

- **Buchi’s case**
 - Use the class of Buchi automata.
 - Only complementation is non-trivial (Based on Ramsey theorem).
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \quad u, \vec{X} = \vec{A} \models \phi \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi)$$
Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \quad u, X = \vec{A} \models \phi \quad \iff \quad \langle u, \vec{A} \rangle \in L(A_\phi)$$
Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

\[
\text{for all } u, \quad u, \vec{X} = \vec{A} \models \phi \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi)
\]

Proof idea: By induction on the structure of the formula.

\[
u, \vec{X} = \vec{A} \models \phi \land \psi \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi) \cap L(A_\psi)
\]
Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \; u, \bar{X} = \bar{A} \models \phi \iff \langle u, \bar{A} \rangle \in L(A_\phi)$$

Proof idea: By induction on the structure of the formula.

$$u, \bar{X} = \bar{A} \models \phi \land \psi \iff \langle u, \bar{A} \rangle \in L(A_\phi) \cap L(A_\psi)$$

$$u, \bar{X} = \bar{A} \models \neg \phi \iff \langle u, \bar{A} \rangle \in \overline{L(A_\phi)}$$
Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \langle u, A \rangle \models \phi \iff \langle u, A \rangle \in L(A_\phi)$$

Proof idea: By induction on the structure of the formula.

$$\langle u, A \rangle \models \phi \land \psi \iff \langle u, A \rangle \in L(A_\phi) \cap L(A_\psi)$$

$$\langle u, A \rangle \models \neg \phi \iff \langle u, A \rangle \in \overline{C}(L(A_\phi))$$

$$\langle u, A \rangle \models \exists Y. \phi \iff \langle u, A \rangle \in \pi(L(A_\phi)) \quad (\pi \text{ projection cancelling } Y)$$
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all \(\phi \), there exists an automaton \(A_\phi \) such that:

\[
\text{for all } u, \quad u, \vec{X} = \vec{A} \models \phi \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi)
\]

Proof idea: By induction on the structure of the formula.

\[
\begin{align*}
 u, \vec{X} = \vec{A} \models \phi \land \psi & \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi) \cap L(A_\psi) \\
 u, \vec{X} = \vec{A} \models \neg \phi & \quad \text{iff} \quad \langle u, \vec{A} \rangle \in C(L(A_\phi)) \\
 u, \vec{X} = \vec{A} \models \exists Y.\phi & \quad \text{iff} \quad \langle u, \vec{A} \rangle \in \pi(L(A_\phi)) \quad (\pi \text{ projection cancelling } Y)
\end{align*}
\]

In general, to each connective/quantifier and atomic predicate corresponds a language theoretic operation.
From monadic logic to automata

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all \(\phi \), there exists an automaton \(A_\phi \) such that:

\[
\text{for all } u, \quad u, \vec{X} = \vec{A} \models \phi \quad \text{iff} \quad \langle u, \vec{A} \rangle \in L(A_\phi)
\]

Decidability:
Prove decidability of the emptyness for the automata.

Buchi’s case
Use the class of Buchi automata.
Only complementation is non-trivial (Based on Ramsey theorem).
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \quad u, \bar{X} = \bar{A} \models \phi \quad \text{iff} \quad \langle u, \bar{A} \rangle \in L(A_\phi)$$

Decidability: Prove decidability of the emptyness for the automata.
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.

Step 2: Prove closure under union, projection, complementation.

Step 3(generic): Prove: for all \(\phi \), there exists an automaton \(A_\phi \) such that:

\[
\text{for all } u, \quad u, \overline{X} = \overline{A} \models \phi \quad \text{iff} \quad \langle u, \overline{A} \rangle \in L(A_\phi)
\]

Decidability: Prove decidability of the emptyness for the automata.

Buchi’s case

Use the class of **Buchi automata**.
FROM MONADIC LOGIC TO AUTOMATA

Step 1: Introduce a suitable family of automata.
Step 2: Prove closure under union, projection, complementation.
Step 3(generic): Prove: for all ϕ, there exists an automaton A_ϕ such that:

$$\text{for all } u, \quad u, \vec{X} = \vec{A} \models \phi \iff \langle u, \vec{A} \rangle \in L(A_\phi)$$

Decidability: Prove decidability of the emptyness for the automata.

Buchi's case

Use the class of Buchi automata.

Only complementation is non-trivial
(Based on Ramsey theorem).
The following properties are equivalent:

- L is the set of ω-words models of a \textit{monadic formula}

 $$\forall x. \exists y. x < y \land b(y)$$
The following properties are equivalent:

- L is the set of ω-words models of a monadic formula
 \[\forall x. \exists y. x < y \wedge b(y) \]

- L is accepted by a nondeterministic Buchi automaton

- L is the evaluation of a ω-regular expression

- L is recognized by a ω-semigroup morphism

- L is accepted by a Rabin/Street/Muller/Parity automaton (deterministic, nondeterministic or alternating).

- L is modelling a ω-calculus formula.
The following properties are equivalent:

- L is the set of ω-words models of a monadic formula

 $$\forall x. \exists y. x < y \land b(y)$$

- L is accepted by a nondeterministic Buchi automaton

- L is the evaluation of an ω-regular expression

 $$(a^*b)^\omega$$
The following properties are equivalent:

- \(L \) is the set of \(\omega \)-words models of a monadic formula
 \[
 \forall x. \exists y. x < y \land b(y)
 \]

- \(L \) is accepted by a nondeterministic Buchi automaton

- \(L \) is the evaluation of an \(\omega \)-regular expression
 \[(a^*b)^\omega \]

- \(L \) is recognized by an \(\omega \)-semigroup morphism
The following properties are equivalent:

- L is the set of ω-words models of a monadic formula
 \[\forall x. \exists y. x < y \land b(y) \]

- L is accepted by a nondeterministic Buchi automaton

- L is the evaluation of an ω-regular expression
 \[(a^*b)^\omega \]

- L is recognized by an ω-semigroup morphism

- L is accepted by a Rabin/Street/Muller/Parity automaton (deterministic, nondeterministic or alternating).
The following properties are equivalent:

- L is the set of ω-words models of a monadic formula

$$\forall x. \exists y. x < y \land b(y)$$

- L is accepted by a nondeterministic Buchi automaton

- L is the evaluation of an ω-regular expression

$$(a^*b)^\omega$$

- L is recognized by an ω-semigroup morphism

- L is accepted by a Rabin/Street/Muller/Parity automaton (deterministic, nondeterministic or alternating).

- L is modelling a μ-calculus formula.
EXTENSIONS

Extension of the equivalence logic/automata

- to countable ordinals (Buchi)
- to trees (Rabin)
- to iteration structures (Muchnik, Walukiewicz)
- to countable scattered linear orderings (Carton & Rispal)
EXTENSIONS

Extension of the equivalence logic/automata

- to countable ordinals (Buchi)
- to trees (Rabin)
- to iteration structures (Muchnik, Walukiewicz)
- to countable scattered linear orderings (Carton & Rispal)

Extension of models of decidable monadic theory

- pushdown graphs (Muller & Shupp)
- HR-equational graphs/structures (Courcelle)
- prefix-recognizable graphs/structures (Caucal)
- terms solution of safe HOP schemes (Knapik, Niwinski, Urzyczyn)
- graph of higher-order pushdown systems (Caucal)
- terms solution of HOP schemes (Ong)
EXTENSIONS

Extension of the equivalence logic/automata

- to countable ordinals (Buchi)
- to trees (Rabin)
- to iteration structures (Muchnik, Walukiewicz)
- to countable scattered linear orderings (Carton & Rispal)

Extension of models of decidable monadic theory

- pushdown graphs (Muller & Shupp)
- HR-equational graphs/structures (Courcelle)
- prefix-recognizable graphs/structures (Caucal)
- terms solution of safe HOP schemes (Knapik, Niwinski, Urzyczyn)
- graph of higher-order pushdown systems (Caucal)
- terms solution of HOP schemes (Ong)

Extension of the expressivity of the logic: None going beyond ω-regularity
Extending ω-regularity with bounds
EXTENDING ω-REGULAR EXPRESSIONS

Syntax of ω-regular expressions:

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \quad O = R^\omega \mid R.O \mid O + O$$
Syntax of ωBS-regular expressions:

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$
Extending ω-regular expressions:

Syntax of ω_{BS}-regular expressions:

$$R = \emptyset | \varepsilon | a | R + R | R.R | R^* | R^B | R^S \quad O = R^\omega | R.O | O + O$$

Intuitive meaning:

- without B, S, ω_{BS}-regular coincides with ω-regular
EXTENDING ω-REGULAR EXPRESSIONS

Syntax of ωBS-regular expressions:

$$R = \emptyset \ | \ \varepsilon \ | \ a \ | \ R + R \ | \ R.R \ | \ R^* \ | \ R^B \ | \ R^S \quad O = R^\omega \ | \ R.O \ | \ O + O$$

Intuitive meaning:

- without $B, S, \omega BS$-regular coincides with ω-regular
- B and S are variants of the Kleene-star $*$
EXTENDING ω-REGULAR EXPRESSIONS

Syntax of ωBS-regular expressions:

$$R = \emptyset \ | \ \varepsilon \ | \ a \ | \ R + R \ | \ R.R \ | \ R^* \ | \ R^B \ | \ R^S \quad O = R^\omega \ | \ R.O \ | \ O + O$$

Intuitive meaning:

- without B, S, ωBS-regular coincides with ω-regular
- B and S are variants of the Kleene-star $*$
- B constrains the number of iteration to be bounded
 (B stands for ‘bounded’)
 $$(a^B b)^\omega$$ there is an infinite number of b’s and,
 the number of a’s between consecutive b’s is bounded

$$ababab \cdots \in (a^B b)^\omega$$

$$aba^2baba^3baba^4b \cdots \notin (a^B b)^\omega$$

$$aba^2ba^3ba^4b \cdots \notin (a^B b)^\omega$$
EXTENDING ω-REGULAR EXPRESSIONS

Syntax of $\omega B S$-regular expressions:

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Intuitive meaning:

- without B, S, $\omega B S$-regular coincides with ω-regular
- B and S are variants of the Kleene-star $*$
- B constrains the number of iteration to be bounded (B stands for ‘bounded’)
- S constrains the number of iterations to tend toward the infinite (S stands for ‘strictly unbounded’)

$(a^S b)^\omega$ there is an infinite number of b’s and,

number of a’s between consecutive b’s tends toward the infinite

$$ababab\cdots \notin (a^S b)^\omega \quad aba^2baba^3baba^4b\cdots \notin (a^S b)^\omega$$

$$aba^2ba^3ba^4b\cdots \in (a^S b)^\omega$$
SEMANTIC OF ωBS-REGULAR LANGUAGES

$R = \emptyset \mid \epsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$
SEMANTIC OF ωBS-REGULAR LANGUAGES

$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.
SEMANTIC OF ωBS-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$
Semantic of \(\omega BS \)-Regular Languages

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

Def: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega\)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
Semantic of \(\omega BS \)-Regular Languages

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

Def: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega\)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
- \(U.V \mapsto \{(u_1 v_1, u_2 v_2, \ldots) : \bar{u} \in U, \bar{v} \in V\} \)
Semantic of \(\omega BS \)-Regular Languages

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

DEF: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega \)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
- \(U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \bar{u} \in U, \; \bar{v} \in V\} \)
- \(U + V \mapsto \{\bar{w} : \bar{u}, \bar{v} \in U \cup V, \; \forall i. \; w_i \in \{u_i, v_i\}\} \)
SEMANTIC OF ωBS-REGULAR LANGUAGES

\[R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O \]

Rq: Standard evaluation of R as a language of finite words.
This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words.
I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \; \bar{u} \in U, \; \bar{v} \in V\}$
- $U + V \mapsto \{\bar{w} : \; \bar{u}, \bar{v} \in U \cup V, \; \forall i. \; w_i \in \{u_i, v_i\}\}$
- $U^* \mapsto \{(u_0u_1 \ldots u_{\pi(1)-1}, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \; \bar{u} \in U, \; \pi \text{ nondecreasing}\}$
Semantic of \(\omega B S \)-Regular Languages

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

DEF: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega\)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\}\)
- \(U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \vec{u} \in U, \vec{v} \in V\}\)
- \(U + V \mapsto \{\vec{w} : \vec{u}, \vec{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\}\)
- \(U^* \mapsto \{(u_0u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \vec{u} \in U, \pi \text{ nondecreasing}\}\)
- \(U^B \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \text{ is bounded} \)
Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{(u_1 v_1, u_2 v_2, \ldots) : \vec{u} \in U, \vec{v} \in V\}$
- $U + V \mapsto \{\vec{w} : \vec{u}, \vec{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\}$
- $U^* \mapsto \{(u_0 u_1 \ldots u_{\pi(1) - 1}, u_{\pi(1)} \ldots u_{\pi(2) - 1}, \ldots) : \vec{u} \in U, \pi \text{ nondecreasing}\}$
- $U^B \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \text{ is bounded}$
- $U^S \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \to +\infty$
Semantic of \(\omega B S \)-Regular Languages

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

Def: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega \)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
- \(U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \, \vec{u} \in U, \, \vec{v} \in V\} \)
- \(U + V \mapsto \{\vec{w} : \, \vec{u}, \vec{v} \in U \cup V, \, \forall i. \, w_i \in \{u_i, v_i\}\} \)
- \(U^* \mapsto \{(u_0 u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \, \vec{u} \in U, \, \pi \text{ nondecreasing}\} \)
- \(U^B \mapsto \text{idem} + (\pi(i+1) - \pi(i)) \text{ is bounded} \)
- \(U^S \mapsto \text{idem} + (\pi(i+1) - \pi(i)) \to +\infty \)
- \(U^\omega \mapsto \{u_1 u_2 \ldots : \, \vec{u} \in U\} \)
OTHER EXAMPLES

$((a^*b)^*a^Sb)^\omega$
Other Examples

\[((a^* b)^* a^S b)^\omega\]

The languages with an infinite number of b's such that the size of segments of a is not bounded.
E.g. $aba^2 baba^3 baba^4 b \ldots \in ((a^* b)a^S b)^\omega$
The languages with an infinite number of b's such that the size of segments of a is not bounded.
E.g. $aba^2bababa^3bababa^4b \cdots \in ((a^*b)a^Sb)\omega$

\[((a^*b)^*a^Sb)^\omega \]

\[((a^Sb)^S \alpha^S \beta)^\omega \]
((a*b)^* a^S b)^\omega

The languages with an infinite number of b’s such that the size of segments of a is not bounded.
E.g. \(aba^2 baba^3 baba^4 b \cdots \in ((a*b)a^S b)^\omega\)

\(((a^S b)^S a^S c)^\omega\)

There is an infinite number of c’s. The number of b’s between two c’s tends toward the infinite. The number of a’s between two b or c’s tends toward the infinite.
THE DIAMOND

\[\omega B S \text{-regular expressions} \]

- e.g. \((a^B b^S c)^\omega \)

\[\omega S \text{-regular expressions} \]

- e.g. \((a^S b)^\omega \)

\[\omega B \text{-regular expressions} \]

- e.g. \((a^B b)^\omega \)

\[\omega \text{-regular expressions} \]

- e.g. \((a^* b)^\omega \)

\text{PROP: Emptyness of } \omega B S \text{-regular languages is decidable}

\text{PROP: The inclusions in the diamond are strict.}
THE DIAMOND

\[\omega BS\text{-regular expressions} \]
\[\text{e.g. } (a^B b^S c) \omega \]
\[\subset \]

\[\omega S\text{-regular expressions} \]
\[\text{e.g. } (a^S b) \omega \]
\[\subset \]

\[\omega B\text{-regular expressions} \]
\[\text{e.g. } (a^B b) \omega \]
\[\subset \]

\[\omega\text{-regular expressions} \]
\[\text{e.g. } (a^* b) \omega \]

PROP: Emptyness of \(\omega BS \)-regular languages is decidable
THE DIAMOND

\[\omega BS\text{-regular expressions} \]
\[\text{e.g. } (a^B b^S c)^\omega \]

\[\omega S\text{-regular expressions} \]
\[\text{e.g. } (a^S b)^\omega \]

\[\omega B\text{-regular expressions} \]
\[\text{e.g. } (a^B b)^\omega \]

\[\omega \text{-regular expressions} \]
\[\text{e.g. } (a^* b)^\omega \]

PROP: Emptyness of \(\omega BS \text{-regular languages} \) is decidable

PROP: The inclusions in the diamond are strict.
DEF: One can define ωB, ωS, ωBS-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.
DEF: One can define ωB, ωS, ωBS-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.

ωBS-automaton =
- finite automaton
- finite set of counters, of kind B or S
- each counter can be left unchanged or reset or incremented

THM: The following are equivalent:
- L is evaluation of an ωBS-regular expression
- L is accepted by an ωBS-automaton
- L is accepted by a hierarchical ωBS-automaton

And the same holds for ωB and ωS regular languages.
DEF: One can define ωB, ωS, ωBS-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.

ωBS-automaton =
- finite automaton
- finite set of counters, of kind B or S
- each counter can be left unchanged or reset or incremented

A run is accepting if
- every counter is reset infinitely many times
- every B-counter is incremented a bounded number of times between resets
- the number of increments of an S-counter between reset tends toward the infinite
DEF: One can define \(\omega B, \omega S, \omega BS \)-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.

THM: The following are equivalent:
- \(L \) is evaluation of an \(\omega BS \)-regular expression
- \(L \) is accepted by an \(\omega BS \)-automaton
- \(L \) is accepted by a hierarchical \(\omega BS \)-automaton

And the same holds for \(\omega B \) and \(\omega S \) regular languages.
THE DIAMOND (2: AUTOMATA)

ωBS-regular expressions
hierarchical ωBS-automata
ωBS-automata

ωS-regular expressions
hierarchical ωS-automata
ωS-automata

ωB-regular expressions
hierarchical ωB-automata
ωB-automata

ω-regular expressions
Büchi automata
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

MP: The complement of $L = ((a B a)^* B a)^*$ is not ωBS-regular.

E.g. The language $\{L | L$ contains $a f(1) b a f(2) b a f(3) b a \}$ iff there exists infinitely many values appearing infinitely often in f.
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.
THM: The \(\omega BS \)-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on \(\omega BS \)-regular expressions. Intersection is obtained by product of \(\omega BS \)-automata.

Example of intersections:

\[
((b^*ab^*)B \#)^\omega \cap ((a^*ba^*)B \#)^\omega = ((a + b)^B \#)^\omega
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

\[
\begin{align*}
((b^* a b^*)^B \#)^\omega \cap ((a^* b a^*)^B \#)^\omega &= ((a + b)^B \#)^\omega \\
((b^* a b^*)^S \#)^\omega \cap ((a^* b a^*)^B \#)^\omega &= ((a^* b a^*)^B a^S (a^* b a^*)^B \#)^\omega
\end{align*}
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

\[
((b^* ab^*)^B \#)^\omega \cap ((a^* ba^*)^B \#)^\omega = ((a + b)^B \#)^\omega
\]

\[
((b^* ab^*)^S \#)^\omega \cap ((a^* ba^*)^B \#)^\omega = ((a^* ba^*)^B a^S (a^* ba^*)^B \#)^\omega
\]

\[
((b^* ab^*)^S \#)^\omega \cap ((a^* ba^*)^S \#)^\omega = \left(\begin{array}{c} (a + b)^* a^S (a + b)^* b^S (a + b)^* \\ + \ (a + b)^* b^S (a + b)^* a^S (a + b)^* \\ + \ b^* (a^+ b^+)^S a^* \end{array} \right)^\#
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

Mp: The complement of $L = ((a^B + a^S)^\#)^\omega$ is not ωBS-regular.

The language CL contains $a^{f(1)}ba^{f(2)}b \cdots$ iff there exists infinitely many values appearing infinitely often in f.

E.g: a^1b, a^1ba^2b, $a^1ba^2ba^3b$, $\cdots \in CL$
CLOSURE

THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

THM: The complement of an ωB-regular language is ωS-regular
The complement of an ωS-regular language is ωB-regular
THEM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

THEM: The complement of an ωB-regular language is ωS-regular

The complement of an ωS-regular language is ωB-regular

Example:

$$\mathcal{C}((a^B b)^\omega) = (a + b)^* a^\omega + ((a^* b)^* a^S b)^\omega$$
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

THM: The complement of an ωB-regular language is ωS-regular

The complement of an ωS-regular language is ωB-regular

Example:

\[
\mathcal{C}((a^S b)\omega) = (a + b)^* a^\omega + ((a^* b)^* a^S b)^\omega
\]

\[
\mathcal{C}((a^B b)\omega) = (a + b)^* a^\omega + ((a^* b)^* a^B b)^\omega
\]
THE DIAMOND (3: CLOSURE)

union, intersection, projection

$\omega B S$-regular

union, intersection, projection

ωS-regular

complementation

ωB-regular

union, intersection, projection

ω-regular

union, intersection, complementation, projection
The logic MSOL:

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X . \phi \mid \exists x . \phi \mid x \in X \mid x = S(y) \mid a(x) \]
The logic **MSOLB** (Bojanczyk05):

\[
\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \exists X. \phi
\]

With \(\exists X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

"there exists a set as big as I want"
The logic **MSOLB** (Bojanczyk05):

\[
\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi
\]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\Delta X. \phi \equiv \neg \bigcup X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”
The logic MSOLB (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \forall X. \phi \]

With \[\forall X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \]

“there exists a set as big as I want”

And also \[\forall X. \phi \equiv \neg \forall X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \]

“for all sets above a certain size”

And also \[\exists X. \phi \equiv \neg \exists X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \]

“there is a bound on the size of sets satisfying”
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi \]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\bigtriangleup X. \phi \equiv \neg \bigcup X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”

And also \(\bigtriangledown X. \phi \equiv \neg \bigcup X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

“there is a bound on the size of sets satisfying”

THM(Buchi): SAT of MSOL is decidable over infinite words.
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \mathcal{U}X. \phi \]

With \(\mathcal{U}X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

"there exists a set as big as I want"

And also \(\mathcal{A}X. \phi \equiv \neg \mathcal{U}X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

"for all sets above a certain size"

And also \(\mathcal{B}X. \phi \equiv \neg \mathcal{U}X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

"there is a bound on the size of sets satisfying"

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X . \phi \mid \exists x . \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \mathsf{U} X . \phi \]

With \(\mathsf{U} X . \phi \equiv \forall n . \exists X . (|X| > n) \land \phi \)

"there exists a set as big as I want"

And also \(\mathsf{A} X . \phi \equiv \neg \mathsf{U} X . \neg \phi \equiv \exists n . \forall X . (|X| > n) \rightarrow \phi \)

"for all sets above a certain size"

And also \(\mathsf{B} X . \phi \equiv \neg \mathsf{U} X . \phi \equiv \exists n . \forall X . \phi \rightarrow (|X| < n) \)

"there is a bound on the size of sets satisfying"

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).

QUESTION: Is SAT of MSOLB decidable over \(\omega \)-words?
The logic **MSOLB** (Bojanczyk05):

\[
\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \forall X. \phi
\]

With \(\forall X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

"there exists a set as big as I want"

And also \(\exists X. \phi \equiv \neg \forall X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

"for all sets above a certain size"

And also \(\exists X. \phi \equiv \neg \forall X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

"there is a bound on the size of sets satisfying"

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).

QUESTION: Is SAT of MSOLB decidable over \(\omega \)-words? The question is open.

But \(\omega BS \)-regularity provides a partial answer.
and ωBS-regular languages are closed under \cup.
Proposition: \(\omegaBS\text{-regular}\) languages are closed under intersection and union.
The Diamond (3:Logic)

\[\forall, \land, \exists \]

- \(\omega BS \)-regular

- \(\land, \exists, \forall \)

- \(\omega S \)-regular

- \(\neg \)

- \(\omega B \)-regular

- \(\forall, \land, \exists \)

- \(\omega \)-regular

- \(\forall, \land, \neg, \exists, \forall \)

Prop: \(BS \)-regular languages are closed under \(U \).

Omega Regularity with Bounds – p.16
\(\forall, \land, \exists \)

\(\omega BS \)-regular

\(\forall, \land, \exists, \forall \)

\(\omega S \)-regular

\(\neg \)

\(\omega B \)-regular

\(\forall, \land, \neg, \exists, \forall \)

\(\forall, \land, \exists, \forall \)

\(\omega \)-regular

\(\forall, \land, \exists, \forall \)
PROP: ωS and ωBS-regular languages are closed under \bigcup.

The Diamond (3:logic)
PROP: ωS and ωBS-regular languages are closed under \cup.
SAT OF MSOLB

DEF:

MSOLB+ = MSOLB where \(\uparrow \) appears only \textbf{positively}

MSOLB- = MSOLB where \(\uparrow \) appears only \textbf{negatively}
SAT OF MSOLB

DEF:
- MSOLB^+ = MSOLB where \exists appears only **positively**
- MSOLB^- = MSOLB where \exists appears only **negatively**

COR:
- MSOL is equivalent to ω-regular languages
- MSOLB^+ is equivalent to ωS-regular languages
- MSOLB^- is equivalent to ωB-regular languages
- Boolean comb. of MSOLB^+ are contained in ωBS-regular languages

\Rightarrow **SAT is decidable for those fragments of MSOLB**
We have:

- Introduced an extension of ω-regular expressions.
We have:

-Introduced an extension of ω-regular expressions.
-Introduced corresponding class of automata.

Open questions:
- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
- What about the logic GMSOLB?
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.

Open questions.

- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
- What about the logic GMSOLB?
CONCLUSION

We have:
- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Open questions.
- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
- What about the logic GMSOLB?
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Open questions.

- Solve the full logic MSOLB over ω-words.
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Open questions.

- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Open questions.

- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
- What about the logic **GMSOLB**?:

\[
\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X.\phi \mid \exists x.\phi \mid x \in X \mid x = S(y) \mid a(x) \\
\mid \exists M.\phi \\
\mid |X| < M \text{ (positively below } \exists M)\]

Omega Regularity with Bounds – p.18
Q?: Given a regular language of finite words, how many nesting of kleene star are required in a regular expression for describing it? This number is called the (restricted) star height of the language. Among the most important decision problems in language theory.

Rq: There are infinitely many languages of star height k.
EPILOGUE: RESTRICTED STAR-HEIGHT PROBLEM

Q?: Given a regular language of finite words, how many nesting of kleene star are required in a regular expression for describing it? This number is called the (restricted) star height of the language. Among the most important decision problems in language theory.

Rq: There are infinitely many languages of star height \(k \).

Solution 1: Hashigushi gave a first algorithm, complex and difficult.
Q?: Given a regular language of finite words, how many nesting of kleene star are required in a regular expression for describing it? This number is called the (restricted) star height of the language. Among the most important decision problems in language theory.

Rq: There are infinitely many languages of star height \(k \).

Solution 1: Hashigushi gave a first algorithm, complex and difficult.

Solution 2: Kirsten gave an optimal solution by reduction to the limitedness problem for nested distance desert automata.
Q?: Given a regular language of finite words, how many nesting of kleene star are required in a regular expression for describing it? This number is called the (restricted) star height of the language. Among the most important decision problems in language theory.

Rq: There are infinitely many languages of star height \(k \).

Solution 1: Hashigushi gave a first algorithm, complex and difficult.

Solution 2: Kirsten gave an optimal solution by reduction to the limitedness problem for nested distance desert automata.

In our framework

Nested distance desert automata \(\simeq \) hierarchical \(\omega B \)-automata
EPILOGUE: RESTRICTED STAR-HEIGHT PROBLEM

Q?: Given a regular language of finite words, how many nesting of kleene star are required in a regular expression for describing it? This number is called the (restricted) star height of the language. Among the most important decision problems in language theory.

Rq: There are infinitely many languages of star height k.

Solution 1: Hashigushi gave a first algorithm, complex and difficult.

Solution 2: Kirsten gave an optimal solution by reduction to the limitedness problem for nested distance desert automata.

In our framework

Nested distance desert automata \simeq hierarchical ωB-automata

Limitedness problem: $L(A) = L(A[*/B])$?
This is decidable by our results.
Thank you.