Omega Regularity with Bounds

Mikolaj Bojańczyk
Warsaw university

Thomas Colcombet
Cnrs, Irisa
Omega Regular Languages

An ω-word is an infinite word indexed by ω: $a_1a_2a_3 \ldots$
An \(\omega \)-\textit{word} is an infinite word indexed by \(\omega: a_1 a_2 a_3 \ldots \)

\textbf{THM(Buchi,\ldots)} The following property of a language of \(\omega \)-\textit{words} \(L \) are equivalent:

- \(L \) is the evaluation of an \(\omega \)-\textit{regular expression}
 \[(a^*b)^\omega \]
An \(\omega \)-word is an infinite word indexed by \(\omega \): \(a_1 a_2 a_3 \ldots \)

THM (Buchi, ...) The following property of a language of \(\omega \)-words \(L \) are equivalent:

- \(L \) is the evaluation of an \(\omega \)-regular expression \((a^*b)^\omega \)
- \(L \) is accepted by a nondeterministic Buchi automaton

\(\omega \)-regularity seems to be the notion corresponding to regularity on words.

GOAL: Consider another notion — more expressive — of regularity
Omega Regular Languages

An **ω-word** is an infinite word indexed by \(\omega \): \(a_1a_2a_3 \ldots \)

THM (Buchi, ...) The following property of a language of \(\omega \)-words \(L \) are equivalent:

- \(L \) is the evaluation of an \(\omega \)-regular expression
 \[(a^*b)^\omega \]
- \(L \) is accepted by a nondeterministic Buechi automaton
- \(L \) is the set of \(\omega \)-words models of an MSOL-formula
 \[\forall x. \exists y. x < y \land b(y) \]
Omega Regular languages

An ω-word is an infinite word indexed by ω: $a_1a_2a_3 \ldots$

THM (Buchi, ...) The following property of a language of ω-words L are equivalent:

- L is the evaluation of an ω-regular expression $(a^*b)^{\omega}$
- L is accepted by a nondeterministic Buchi automaton
- L is the set of ω-words models of an MSOL-formula
 \[\forall x. \exists y. x < y \land b(y) \]
- L is recognized by an ω-semigroup morphism
- L is accepted by a Rabin/Street/Muller/Parity automaton (deterministic or not).
Omega Regular Languages

An \(\omega \)-word is an infinite word indexed by \(\omega \): \(a_1a_2a_3 \ldots \)

THM(Buchi,...) The following property of a language of \(\omega \)-words \(L \) are equivalent:

- \(L \) is the evaluation of an \(\omega \)-regular expression
- \(L \) is accepted by a nondeterministic Buchi automaton
- \(L \) is the set of \(\omega \)-words models of an MSOL-formula
- \(L \) is recognized by an \(\omega \)-semigroup morphism
- \(L \) is accepted by a Rabin/Street/Muller/Parity automaton (deterministic or not).

THM(Buchi) \(\omega \)-regular languages are closed under union, intersection, complementation, projection, residual.
Omega Regular Languages

An ω-word is an infinite word indexed by ω: $a_1a_2a_3 \ldots$

THM (Buchi) The following property of a language of ω-words L are equivalent:

- L is the evaluation of an ω-regular expression
- L is accepted by a nondeterministic Buchi automaton
- L is the set of ω-words models of an MSOL-formula
- L is recognized by an ω-semigroup morphism
- L is accepted by a Rabin/Street/Muller/Parity automaton (deterministic or not).

THM (Buchi) ω-regular languages are closed under union, intersection, complementation, projection, residual.

ω-regularity seems to be the notion corresponding to regularity on words.
Omega Regular Languages

THM (Buchi, . . .) The following property of a language of \(\omega \)-words \(L \) are equivalent:

- \(L \) is the evaluation of an \(\omega \)-regular expression
- \(L \) is accepted by a nondeterministic Buchi automaton
- \(L \) is the set of \(\omega \)-words models of an MSOL-formula
- \(L \) is recognized by an \(\omega \)-semigroup morphism
- \(L \) is accepted by a Rabin/Street/Muller/Parity automaton (deterministic or not).

THM (Buchi) \(\omega \)-regular languages are closed under union, intersection, complementation, projection, residual.

\(\omega \)-regularity seems to be the notion corresponding to regularity on words.

GOAL: Consider another notion — more expressive — of regularity
Syntax of ω-regular expressions:

\[R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \]

\[O = R^\omega \mid R.O \mid O + O \]
Syntax of ωBS-regular expressions:

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]
Extending ω-Regular Expressions

Syntax of ωBS-regular expressions:

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Intuitive meaning:

- without B, S, ωBS-regular coincides with ω-regular
Syntax of ωBS-regular expressions:

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Intuitive meaning:

- without B, S, ωBS-regular coincides with ω-regular
- B and S are variants of the Kleene-star $*$
Syntax of ωBS-regular expressions:

$$R = \emptyset \mid \epsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Intuitive meaning:

- without B, S, ωBS-regular coincides with ω-regular
- B and S are variants of the Kleene-star \star
- B constrains the number of iteration to be bounded (B stands for ‘bounded’)

$$(a^B b)^\omega$$

there is an infinite number of b’s and, the number of a’s between consecutive b’s is bounded

$$ababab \ldots \in (a^B b)^\omega$$

$$aba^2baba^3baba^4b \ldots \notin (a^B b)^\omega$$

$$aba^2ba^3ba^4b \ldots \notin (a^B b)^\omega$$
EXTENDING ω-REGULAR EXPRESSIONS

Syntax of ωBS-regular expressions:

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Intuitive meaning:

- without B, S, ωBS-regular coincides with ω-regular
- B and S are variants of the Kleene-star $*$
- B constrains the number of iteration to be bounded (B stands for ‘bounded’)
- S constrains the number of iterations to tend toward the infinite (S stands for ‘strictly unbounded’)

$(a^S b)^\omega$ there is an infinite number of b’s and,

number of a’s between consecutive b’s tends toward the infinite

$$ababab \ldots \notin (a^S b)^\omega \quad aba^2baba^3baba^4b \ldots \notin (a^S b)^\omega$$

$$aba^2ba^3ba^4b \ldots \in (a^S b)^\omega$$
\textbf{SEMANTIC OF ωBS-REGULAR LANGUAGES}

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]
SEMANTIC OF ωBS-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.
SEMANTIC OF ωBS-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$
SEMANTIC OF ωBS-REGULAR LANGUAGES

$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
SEMANTIC OF ωBS-REGULAR LANGUAGES

\[R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O \]

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) \mid \tilde{u} \in U, \; \tilde{v} \in V\}$
SEMANTIC OF $\omega B S$-REGULAR LANGUAGES

\[R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O \]

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
- \(U.V \mapsto \{(u_1 v_1, u_2 v_2, \ldots) : \bar{u} \in U, \bar{v} \in V\} \)
- \(U + V \mapsto \{\bar{w} : \bar{u}, \bar{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\} \)
SEMANTIC OF \(\omega B S \)-REGULAR LANGUAGES

\[
R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O
\]

Rq: Standard evaluation of \(R \) as a language of finite words. This cannot capture the semantic of \(B \) and \(S \) exponents.

DEF: \(R \) is evaluated into a language of sequence of finite words. I.e. a subset of \((\Sigma^*)^\omega \)

- \(a \mapsto \{(a, a, a, a, a, \ldots)\} \)
- \(U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \vec{u} \in U, \vec{v} \in V\} \)
- \(U + V \mapsto \{\vec{w} : \vec{u}, \vec{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\} \)
- \(U^* \mapsto \{(u_0u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \vec{u} \in U, \pi \text{ nondecreasing}\} \)
SEMANTIC OF $\omega B S$-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \bar{u} \in U, \bar{v} \in V\}$
- $U + V \mapsto \{\bar{w} : \bar{u}, \bar{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\}$
- $U^* \mapsto \{(u_0u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \bar{u} \in U, \pi \text{ nondecreasing}\}$
- $U^B \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \text{ is bounded}$
SEMsATIC OF ωBS-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{(u_1v_1, u_2v_2, \ldots) : \vec{u} \in U, \vec{v} \in V\}$
- $U + V \mapsto \{\vec{w} : \vec{u}, \vec{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\}\}$
- $U^* \mapsto \{(u_0u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \vec{u} \in U, \pi \text{ nondecreasing}\}$
- $U^B \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \text{ is bounded}$
- $U^S \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \to +\infty$
SEMANTIC OF $\omega B S$-REGULAR LANGUAGES

$$R = \emptyset \mid \varepsilon \mid a \mid R + R \mid R.R \mid R^* \mid R^B \mid R^S \quad O = R^\omega \mid R.O \mid O + O$$

Rq: Standard evaluation of R as a language of finite words. This cannot capture the semantic of B and S exponents.

DEF: R is evaluated into a language of sequence of finite words. I.e. a subset of $(\Sigma^*)^\omega$

- $a \mapsto \{(a, a, a, a, a, \ldots)\}$
- $U.V \mapsto \{ (u_1v_1, u_2v_2, \ldots) : \tilde{u} \in U, \tilde{v} \in V \}$
- $U + V \mapsto \{ \tilde{w} : \tilde{u}, \tilde{v} \in U \cup V, \forall i. w_i \in \{u_i, v_i\} \}$
- $U^* \mapsto \{ (u_0u_1 \ldots u_{\pi(1)} - 1, u_{\pi(1)} \ldots u_{\pi(2)} - 1, \ldots) : \tilde{u} \in U, \pi \text{ nondecreasing} \}$
- $U^B \mapsto \text{idem} + (\pi(i + 1) - \pi(i))$ is bounded
- $U^S \mapsto \text{idem} + (\pi(i + 1) - \pi(i)) \rightarrow +\infty$
- $U^\omega \mapsto \{ u_1u_2 \ldots : \tilde{u} \in U \}$
The languages with an infinite number of b's such that the size of segments of a is not bounded.
E.g. $aba^2baba^3baba^4b\cdots \in ((a^*b)a^Sb)\omega$
Other Examples

\[((a^*b)^*a^Sb)^\omega\]

The languages with an infinite number of \(b\)'s such that the size of segments of \(a\) is not bounded.
E.g. \(aba^2baba^3baba^4b \cdots \in ((a^*b)a^Sb)^\omega\)

\[((a^Sb)^Sa^Sc)^\omega\]

There is an infinite number of \(c\)'s. The number of \(b\)'s between two \(c\)'s tends toward the infinite. The number of \(a\)'s between two \(b\) or \(c\)'s tends toward the infinite.
The Diamond

\(\omega BS\)-regular expressions
e.g. \((a^B b^S c)^\omega\)

\(\omega S\)-regular expressions
e.g. \((a^S b)^\omega\)

\(\omega B\)-regular expressions
e.g. \((a^B b)^\omega\)

\(\omega\)-regular expressions
e.g. \((a^* b)^\omega\)

Proposition:
- Emptyness of \(\omega BS\)-regular languages is decidable.

Proposition:
The inclusions in the diamond are strict.
The Diamond

\[\omega BS \text{-regular expressions} \]
\[\text{e.g. } (a^B b^S c)^\omega \]

\[\omega S \text{-regular expressions} \]
\[\text{e.g. } (a^S b)^\omega \]

\[\omega B \text{-regular expressions} \]
\[\text{e.g. } (a^B b)^\omega \]

\[\omega \text{-regular expressions} \]
\[\text{e.g. } (a^* b)^\omega \]

PROP: Emptyness of \(\omega BS \)-regular languages is decidable
THE DIAMOND

ωBS-regular expressions

\[(a^B b^S c)^\omega \]

ωS-regular expressions

\[(a^S b)^\omega \]

ωB-regular expressions

\[(a^B b)^\omega \]

ω-regular expressions

\[(a^* b)^\omega \]

PROP: Emptyness of ωBS-regular languages is decidable

PROP: The inclusions in the diamond are strict.
DEF: One can define ωB, ωS, ωBS-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.
DEF: One can define \(\omega B, \omega S, \omega BS \)-automata. Essentially: finite state automata with modified accepting condition (more expressive than Buchi). They come in two variants hierarchical or not.

THM: The following are equivalent:

- \(L \) is evaluation of an \(\omega BS \)-regular expression
- \(L \) is accepted by an \(\omega BS \)-automaton
- \(L \) is accepted by a hierarchical \(\omega BS \)-automaton

And the same holds for \(\omega B \) and \(\omega S \) regular languages.
THE DIAMOND (2: AUTOMATA)

\[\omega_{BS}\text{-regular expressions} \]
\[\text{hierarchical } \omega_{BS}\text{-automata} \]
\[\omega_{BS}\text{-automata} \]
\[\omega_{S}\text{-regular expressions} \]
\[\text{hierarchical } \omega_{S}\text{-automata} \]
\[\omega_{S}\text{-automata} \]
\[\omega_{B}\text{-regular expressions} \]
\[\text{hierarchical } \omega_{B}\text{-automata} \]
\[\omega_{B}\text{-automata} \]
\[\omega\text{-regular expressions} \]
\[\text{Büchi automata} \]
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: BS-regular languages are not closed under complementation.

MP: The complement of $L = (\bigcup a \text{B} \cup a \text{S})(\bigcup b)$ is not BS-regular.

The language L contains $a f(1)$ $ba f(2)$ $b \cdots \iff$ there exists infinitely many values appearing infinitely often in f. E.g.: $a_1 b a_1 b a_2 b a_2 b a_3 b \cdots \in L$.

THM: The complement of an BS-regular language is S-regular.

The complement of an S-regular language is BS-regular.

Example: $(a \text{B} b) \notin (a \text{S} b \cup a \text{B} b \cup a \text{B} b)$.
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example:

\[
\begin{array}{c}
(a \cup b) \\
(a \cup b) \\
(a \cup b)
\end{array}
\]

\[
\begin{array}{c}
(a \cup b) \\
(a \cup b) \\
(a \cup b)
\end{array}
\]

\[
\begin{array}{c}
(a \cup b) \\
(a \cup b) \\
(a \cup b)
\end{array}
\]

\[
\begin{array}{c}
(a \cup b) \\
(a \cup b) \\
(a \cup b)
\end{array}
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

$$(b^{*}ab^{*})^{B \#})^{\omega} \cap ((a^{*}ba^{*})^{B \#})^{\omega} = ((a + b)^{B \#})^{\omega}$$
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

\[
((b^*ab^*)^B \#)^\omega \cap ((a^*ba^*)^B \#)^\omega = ((a + b)^B \#)^\omega
\]

\[
((b^*ab^*)^S \#)^\omega \cap ((a^*ba^*)^B \#)^\omega = ((a^*ba^*)^B a^S (a^*ba^*)^B \#)^\omega
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

Proof: Union and projection are syntactic on ωBS-regular expressions. Intersection is obtained by product of ωBS-automata.

Example of intersections:

\[
((b^* ab^*)^B \#)^\omega \cap ((a^* ba^*)^B \#)^\omega = ((a + b)^B \#)^\omega
\]

\[
((b^* ab^*)^S \#)^\omega \cap ((a^* ba^*)^B \#)^\omega = ((a^* ba^*)^B a^S (a^* ba^*)^B \#)^\omega
\]

\[
((b^* ab^*)^S \#)^\omega \cap ((a^* ba^*)^S \#)^\omega = \left(\begin{array}{c}
(a + b)^* a^S (a + b)^* b^S (a + b)^* \\
+ (a + b)^* b^S (a + b)^* a^S (a + b)^* \\
+ b^* (a + b^+) S a^*
\end{array}\right)^\omega
\]
THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.
Closure

THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

Mp: The complement of $L = ((a^B + a^S)\#)^\omega$ is not ωBS-regular. The language \overline{L} contains $a^{f(1)}b a^{f(2)}b \cdots$ iff there exists infinitely many values appearing infinitely often in f.

E.g: $a^1b \ a^1ba^2b \ a^1ba^2ba^3b \cdots \in \overline{L}$
Closure

THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

THM: The complement of an ωB-regular language is ωS-regular.
 The complement of an ωS-regular language is ωB-regular.
The \(\omega B S \)-regular languages are closed under union, intersection, projection.

\textbf{PROP:} \(\omega B S \)-regular languages are not closed under complementation.

The complement of an \(\omega B \)-regular language is \(\omega S \)-regular

The complement of an \(\omega S \)-regular language is \(\omega B \)-regular

\textbf{Example:}

\[
(a^B b)^\omega = (a + b)^* a^\omega + ((a^* b)^* a^S b)^\omega
\]
Closure

THM: The ωBS-regular languages are closed under union, intersection, projection.

PROP: ωBS-regular languages are not closed under complementation.

THM: The complement of an ωB-regular language is ωS-regular
The complement of an ωS-regular language is ωB-regular

Example:

\[
\overline{(a^B b)^\omega} = (a + b)^* a^\omega + (((a^* b)^* a^S b)^\omega
\]

\[
\overline{(a^S b)^\omega} = (a + b)^* a^\omega + (((a^* b)^* a^B b)^\omega
\]
THE DIAMOND (3: CLOSURE)

union, intersection, projection

\(\omega BS \)-regular

complementation

\(\omega S \)-regular

\(\omega B \)-regular

union, intersection, projection

complementation, projection

union, intersection, projection, complementation, projection

\(\omega \)-regular
The logic MSOLB

The logic MSOL:

$$\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X.\phi \mid \exists x.\phi \mid x \in X \mid x = S(y) \mid a(x)$$
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi \]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

THM (Buchi):

SAT of **MSOL** is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to **MSOL** leads to undecidability of SAT (already for finite words).

QESTION: Is SAT of **MSOLB** decidable over \(-\)words?

The question is open. But \(-\)regularity provides a partial answer.
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi \]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\Box X. \phi \equiv \neg \bigcup X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”
The logic **MSOLB** (Bojanczyk05):

\[
\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi
\]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi\)

"there exists a set as big as I want"

And also \(\bigtriangleup X. \phi \equiv \neg \bigcup X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \to \phi\)

"for all sets above a certain size"

And also \(\bigtriangledown X. \phi \equiv \neg \bigcup X. \phi \equiv \exists n. \forall X. \phi \to (|X| < n)\)

"there is a bound on the size of sets satisfying"
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \mathbb{U} X. \phi \]

With \(\mathbb{U} X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\mathbb{A} X. \phi \equiv \neg \mathbb{U} X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”

And also \(\mathbb{B} X. \phi \equiv \neg \mathbb{U} X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

“there is a bound on the size of sets satisfying”

THM(Buchi): SAT of MSOL is decidable over infinite words.
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \exists X. \phi \]

With \(\exists X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

"there exists a set as big as I want"

And also \(\forall X. \phi \equiv \neg \exists X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

"for all sets above a certain size"

And also \(\lnot X. \phi \equiv \neg \exists X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

"there is a bound on the size of sets satisfying"

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \forall X. \phi \]

With \(\forall X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\forall X. \phi \equiv \neg \forall X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”

And also \(\exists X. \phi \equiv \neg \exists X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

“there is a bound on the size of sets satisfying”

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).

QUESTION: Is SAT of MSOLB decidable over \(\omega \)-words?
The logic **MSOLB** (Bojanczyk05):

\[\phi = \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \exists X. \phi \mid \exists x. \phi \mid x \in X \mid x = S(y) \mid a(x) \mid \bigcup X. \phi \]

With \(\bigcup X. \phi \equiv \forall n. \exists X. (|X| > n) \land \phi \)

“there exists a set as big as I want”

And also \(\Delta X. \phi \equiv \neg \bigcup X. \neg \phi \equiv \exists n. \forall X. (|X| > n) \rightarrow \phi \)

“for all sets above a certain size”

And also \(\boxdot X. \phi \equiv \neg \bigcup X. \phi \equiv \exists n. \forall X. \phi \rightarrow (|X| < n) \)

“there is a bound on the size of sets satisfying”

THM(Buchi): SAT of MSOL is decidable over infinite words.

Rq: Adding equality/comparison of cardinality to MSOL leads to undecidability of SAT (already for finite words).

QESTION: Is SAT of MSOLB decidable over \(\omega \)-words? The question is open. But \(\omega BS \)-regularity provides a partial answer.
THE DIAMOND (3:logic)

\[\begin{align*}
\forall, \land, \exists & \quad \rightarrow \quad \omega BS\text{-regular} \\
\forall, \land, \exists & \quad \rightarrow \quad \omega S\text{-regular} \\
\forall, \land, \exists & \quad \leftarrow \quad \omega B\text{-regular} \\
\forall, \land, \exists & \quad \rightarrow \quad \omega \text{-regular} \\
\forall, \land, \neg, \exists & \quad \leftarrow \quad \omega \text{-regular}
\end{align*} \]

\(\text{PROP: } \omega S\text{-regular} \text{ and } \omega BS\text{-regular languages are closed under } \forall. \)
PROP: ωB-regular languages are closed under \cup.
THE DIAMOND (3:LOGIC)

\[
\begin{align*}
&\forall, \land, \exists \\
&\omega BS\text{-regular} \\
&\forall, \land, \exists, \forall \\
&\omega S\text{-regular} \\
&\exists, \forall \Rightarrow \omega B\text{-regular} \\
&\forall, \land, \exists, \forall, \neg \\
&\omega\text{-regular} \\
&\forall, \land, \neg, \exists, \forall \\
\end{align*}
\]
PROP: ωBS-regular languages are closed under \cup.

THE DIAMOND (3:LOGIC)
PROP: ωS and ωBS-regular languages are closed under \bigcup.
PROP: \(\omega S \) and \(\omega BS \)-regular languages are closed under \(\cup \).
SAT OF MSOLB

DEF:

MSOLB^+ = MSOLB where \cup appears only **positively**

MSOLB^- = MSOLB where \cup appears only **negatively**
SAT of MSOLB

DEF: MSOLB+ = MSOLB where \(U \) appears only positively
MSOLB- = MSOLB where \(U \) appears only negatively

COR: MSOL is equivalent to \(\omega \)-regular languages
MSOLB+ is equivalent to \(\omega S \)-regular languages
MSOLB- is equivalent to \(\omega B \)-regular languages
Boolean comb. of MSOLB+ are contained in \(\omega BS \)-regular languages

\(\Rightarrow \) SAT is decidable for those fragments of MSOLB
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.

Two main open questions.

- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Two main open questions.

- Solve the full logic MSOLB over ω-words.
- Find equivalent class of languages over trees.
CONCLUSION

We have:

- Introduced an extension of ω-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over ω-words.

Two main open questions.
- Solve the full logic MSOLB over ω-words.
CONCLUSION

We have:

- Introduced an extension of \(\omega \)-regular expressions.
- Introduced corresponding class of automata.
- Shown decidability and closure properties.
- Used it for solving a fragment of the logic MSOLB over \(\omega \)-words.

Two main open questions.

- Solve the full logic MSOLB over \(\omega \)-words.
- Find equivalent class of languages over trees.