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Principle

Developing a quantitative notion of regularity which extends in
many ways the standard notion of regularity:

presentations: automata (det/non-det), algebra, logic, regular
expressions

closure: union, intersection, projection, complementation

decidability: emptiness

Key idea. Consider mappings f, g : A∗ → ω + 1 modulo an
equivalence which preserves the existence of bounds:

f ≈ g : ∀X ⊆ A∗. f |X is bounded iff g|X is bounded
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Origin and motivations

A model with many “good” properties is worth being studied.

Our automata are extensions of distance automata [Hashiguchi81],
desert automata [Kirsten04], and nested distance desert automata
[Kirsten05].

Those models were introduced for deciding language theoretic
questions: the finite power problem, the finite substitution
problem, the star-height problem.

All problems can be solved by a reduction to a problem of
existence of bound for the above automata.

In [Bojanczyk, C.06], B-automata (similar) were introduced
together with a dual variant, S-automata.
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Cost functions

Definition

Consider mappings f, g : E → ω + 1 (E = A∗ in this work), define

f4g if ∀X ⊆ A∗. g|X is bounded implies f |X is bounded

f≈g if f 4 g and g 4 f

A cost function (over E) is an equivalence class for ≈.
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Example

0 4 | · |a 4 | · |
| · |a and | · |b are incomparable

| · |a + | · |b ≈ max(| · |a, | · |b) (more generally, max ≈ +)
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Cost functions

Definition

Consider mappings f, g : E → ω + 1 (E = A∗ in this work), define

f4g if ∀X ⊆ A∗. g|X is bounded implies f |X is bounded

f≈g if f 4 g and g 4 f

A cost function (over E) is an equivalence class for ≈.

Remark (Cost functions extend languages)

For L ⊆ E (a language), define χL : E → ω + 1 by:

χL(x) =

{
0 if x ∈ L
ω otherwise

Then for all K,L ⊆ E, χK 4 χL iff L ⊆ K.
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Computing the cost of a sequence

Let Γ be a finite set of counters.
Semantics: counters have initial value 0, and one can perform on
them:

ε, which does nothing,

i which increments the counter by one,

r which resets the counter (to 0), and;

c which checks (i.e., observes/tests) the counter value.

Given a sequence u ∈ ({ε, i, r, c}Γ)∗, C(u) is the set of values of
counters when checked.
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Cost automata

Definition

A cost automaton A = (Q,A, I, F,Γ,∆) has:

a finite set Q of states, an input alphabet A, a set I of initial
states, a set F of final states,

a finite set Γ of counters,

a transition relation ∆ ⊆ Q× A× {ε, i, r, c}Γ ×Q.

Runs are defined as usual. One defines:

[[A]]B : A∗ 7→ ω + 1
u 7→ inf{supC(ρ) : ρ accepting run of A over u}

[[A]]S : A∗ 7→ ω + 1
u 7→ sup{inf C(ρ) : ρ accepting run of A over u}

Cost automata are called B-automata or S-automata accordingly.
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Example of a deterministic B-automaton

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}

The following deterministic B-automaton counts the number of
occurrences of ‘a’.

q0

a : ic

b : ε

C(σ) = {1, 2, . . . , |u|a}
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Example of a deterministic S-automaton

[[A]]S(u) = sup{inf C(σ) : σ accepting run of A over u}

The following deterministic S-automaton computes the minimal
distance between two b’s (ω if less than two b’s).

q0 q1

a : ε

b : ε

a : i

b : cr

C(σ) = {distances between consecutive b’s}
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Example of a (non-deterministic) B-automaton

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}

The following B-automaton computes the minimal distance
between two b’s (ω if less than two b’s).

q0 q1 q2

a, b : ε

b : ε

a, b : ic

b : ε

a, b : ε

C(σ) = {1, 2, . . . , distance between the two guessed b’s}
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Link with the language case

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}
[[A]]S(u) = sup{inf C(σ) : σ accepting run of A over u}

Remark

If A has no counters and accepts L, then

{
[[A]]B = χL

[[A]]S = χ{L
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Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.
Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ≈). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Proof: go to the algebraic world...
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Key decidability result

Theorem

The relation 4 is decidable over regular cost functions.

This corresponds to the decidability of the inclusion for regular
langauges.

Corollary (boundedness, limitedness)

One can decide whether a regular cost function is bounded.

Proof. f is bounded iff f 4 0.
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Stabilization monoids (following I. Simon)

Definition

A stabilization monoid 〈M, ·,≤, ]〉 is an ordered monoid 〈M, ·,≤〉
together with a stabilization operator ] : E(M)→ E(M) (E(M)
are the idempotents of M), such that:

consistency if a · b, b · a ∈ E(M), then (a · b)] = a · (b · a)] · b,
order for e, f ∈ E(M), e ≤ f implies e] ≤ f ] ≤ f , and;

neutral 1] = 1.

Intuitively, e] represents the value of e when iterated a lot of time.
If e] = e, one does not care about the number of occurrences of e.
If e] < e, the stabilization monoid ‘counts’ the iterations of e.
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Example of a stabilization semigroup ’counting a’s’

One classifies the words over M∗ (with M = {a, b,⊥}
Formally, ρ : M∗ → ω →M (non-decreasing)

b

a

⊥

b = b · b = b] (= 1)

words in b∗

ρ(u)(n) = b if u ∈ b∗

a = a · a = b · a = a · b ( 6= a])

words in (b∗a)+b∗ with few a’s
ρ(u)(n) = b if |u|⊥ = 0 and 1 ≤ |u|a < n

⊥ = ? · ⊥ = ⊥ · ? = a] = ⊥]

words containing ⊥, or a lot of a’s
ρ(u)(n) = ⊥ if |u|⊥ ≥ 1 or n ≤ |u|a

]

]

]

ρ is an example of a mapping compatible with 〈M,≤, ·, ]〉.
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Semantics of stabilization monoids

Theorem (Existence and unicity of semantics)

Every finite stabilization monoid admits a compatible mapping.
Furthermore, it is unique up to ∼ (a variant of ≈).
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Recognizability

Let h : A→M (extended as a morphism from A∗ to M∗), and I
an ideal of 〈M,≤〉. Define:

for all u ∈ A∗, f(u) = sup{n : ρ(h(u)) ∈ I} .

Then f is said recognized by M,h, I.

Theorem

A cost function is regular iff it is recognizable by a finite
stabilization monoid.

Example: recall that ρ(u)(n) = ⊥ iff |u|⊥ ≥ 1 or n ≤ |u|a.
Set f(a) = a, h(b) = b, I = {⊥}. Then M,h, I recognizes | · |a.
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Conclusion

Content of the paper:

Cost functions extending languages

Automata (B- and S-), duality, closure properties, decidability

History-deteterminism

Stabilization monoid/recognizability/equivalence with
regularity

Related results, ongoing work, and possible extensions:

Extension to infinite words, finite trees (with C. Löding), and
infinite trees (open)

Algebraic characterization of families of regular cost functions
(with S. Lombardy and D. Kuperberg)

Equivalence with a variant of monadic second-order logic
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