The Theory of Stabilization Monoids
and
Regular Cost Functions

Thomas Colcombet

Monday, July 6th 2009
IcaLp

Principle

Developing a quantitative notion of regularity which extends in
many ways the standard notion of regularity:

@ presentations: automata (det/non-det), algebra, logic, regular
expressions

@ closure: union, intersection, projection, complementation

@ decidability: emptiness

Key idea. Consider mappings f,g: A* — w + 1 modulo an
equivalence which preserves the existence of bounds:

f~g : VX C A*. flx is bounded iff g¢|x is bounded

Origin and motivations

A model with many “good” properties is worth being studied.

Our automata are extensions of distance automata [Hashiguchi81],
desert automata [Kirsten04], and nested distance desert automata
[Kirsten05].

Those models were introduced for deciding language theoretic
questions: the finite power problem, the finite substitution
problem, the star-height problem.

All problems can be solved by a reduction to a problem of
existence of bound for the above automata.

In [Bojanczyk, C.06], B-automata (similar) were introduced
together with a dual variant, S-automata.

Outline

@ Cost functions

© Automata for cost functions

© Algebraic framework

@ Conclusion

Cost functions

@ Cost functions

Cost functions

Cost functions

Consider mappings f,g: E — w+ 1 (E = A* in this work), define

f=<gif VX CA*. g|x is bounded implies f|x is bounded
frgif f<gandg<f

A cost function (over E) is an equivalence class for .

Cost functions

Cost functions

Consider mappings f,g: E — w+ 1 (E = A* in this work), define

f=<gif VX CA*. g|x is bounded implies f|x is bounded
frgif f<gandg<f

A cost function (over E) is an equivalence class for .

lo and | - |, are incomparable

0<[-la<|-]
-
E

la + 1 |p = max(] - |a,]| - |b) (more generally, max ~ +)

Cost functions

Cost functions

Consider mappings f,g: E — w+ 1 (E = A* in this work), define

f=<gif VX CA*. g|x is bounded implies f|x is bounded
frgif f<gandg<f

A cost function (over E) is an equivalence class for .

Remark (Cost functions extend languages)

For L C E (a language), define x1, : E — w + 1 by:

0 ifzelL
xr(z) = .
w otherwise

Then for all K,L C E, yx < xL iff L C K.

N

Automata for cost functions

© Automata for cost functions

Automata for cost functions

Computing the cost of a sequence

Let I" be a finite set of counters.
Semantics: counters have initial value 0, and one can perform on
them:

@ ¢, which does nothing,

@ ¢ which increments the counter by one,

@ 7 which resets the counter (to 0), and;

@ ¢ which checks (i.e., observes/tests) the counter value.

Given a sequence u € ({e,i,7,c}")*, C(u) is the set of values of
counters when checked.

Automata for cost functions

Cost automata

A cost automaton A= (Q,A, I, F,T,A) has:

@ a finite set () of states, an input alphabet A, a set I of initial
states, a set F' of final states,

@ a finite set I' of counters,
@ a transition relation A C Q x A x {¢, 4,7, ¢} x Q.
Runs are defined as usual. One defines:
[Alp: A"—w+1
u— inf{sup C(p) : p accepting run of A over u}
[Als: A*—w+1
u +— sup{inf C(p) : p accepting run of A over u}

Cost automata are called B-automata or S-automata accordingly.

Automata for cost functions

Example of a deterministic B-automaton

[A]s(u) = inf{supC(c) : o accepting run of A over u}

The following deterministic B-automaton counts the number of
occurrences of ‘a’.

a:ic

—(®)

Clo)={1,2,...,|ula}

Automata for cost functions

Example of a deterministic S-automaton

[A]s(u) = sup{inf C(o) : o accepting run of A over u}

The following deterministic S-automaton computes the minimal
distance between two b's (w if less than two b's).

a:e a:i
b:e
—
b:cr

C(o) = {distances between consecutive b's}

Automata for cost functions

Example of a (non-deterministic) B-automaton

[A]5(u) = inf{sup C(c) : o accepting run of A over u}

The following B-automaton computes the minimal distance
between two b's (w if less than two b's).

C(o) ={1,2,..., distance between the two guessed b's}

Automata for cost functions
Link with the language case

[A]s(u) = inf{sup C(c) : o accepting run of A over u}
[A]s(u) = sup{inf C(o) : o accepting run of A over u}

[Als = xL
Als = xer

If A has no counters and accepts L, then {

Automata for cost functions

Closure results

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.

Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Automata for cost functions

Closure results

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.

Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ~). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Automata for cost functions

Closure results

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.

Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ~). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Proof: go to the algebraic world...

Automata for cost functions

Key decidability result

The relation < is decidable over regular cost functions.

This corresponds to the decidability of the inclusion for regular
langauges.

Corollary (boundedness, limitedness)

One can decide whether a regular cost function is bounded.

Proof. f is bounded iff f < 0. O

Algebraic framework

© Algebraic framework

Algebraic framework

Stabilization monoids (following I. Simon)

Definition

A stabilization monoid (M, -, <,#) is an ordered monoid (M, -, <)
together with a stabilization operator £ : E(M) — E(M) (E(M)
are the idempotents of M), such that:

consistency if a-b,b-a € E(M), then (a-b)f =a-(b-a)t-b,
order for e, f € E(M), e < f implies ef < f# < f, and;

neutral 1 =1.

v

Intuitively, e represents the value of e when iterated a lot of time.
If e! = ¢, one does not care about the number of occurrences of e.
If e¥ < e, the stabilization monoid ‘counts’ the iterations of e.

Algebraic framework

Example of a stabilization semigroup 'counting a's’

b=b-b=0 (=1)
tC b
a=a-a=b-a=a-b (#a)
a
|
1l =%-1l=1 -x=qaf =1t
tC L

Algebraic framework

Example of a stabilization semigroup 'counting a's’

One classifies the words over M* (with M = {a,b, L}

b=b-b=0bf (=1)
1C b words in b*

a=a-a=b-a=a-b (#at)
a words in (b*a)Tb* with few a's

i
l l=x-1l=1-x=qaf =1F
tCl L words containing L, or a lot of a's

Algebraic framework

Example of a stabilization semigroup 'counting a's’

One classifies the words over M* (with M = {a,b, L}
Formally, p : M* — w — M (non-decreasing)

1 b

tC(L

b=b-b=10f(=1)
words in b*
p(u)(n) =0bif u € b*

a=a-a=b-a=a-b (#at)
words in (b*a)Tb* with few a's
p(u)(n) =bif lulp =0and 1 < |ul, <n

l=%-1l=1.-x=al=1F
words containing L, or a lot of a's
p(u)(n) = Lif |ulL >1orn <|ul,

Algebraic framework

Example of a stabilization semigroup 'counting a's’

One classifies the words over M* (with M = {a,b, L}
Formally, p : M* — w — M (non-decreasing)

1 b

a

|

tC(L

b=b-b=10f(=1)
words in b*
p(u)(n) =0bif u € b*

a=a-a=b-a=a-b (#at)
words in (b*a)Tb* with few a's
p(u)(n) =bif lulp =0and 1 < |ul, <n

l=%-1l=1.-x=al=1F
words containing L, or a lot of a's
p(u)(n) = Lif |ulL >1orn <|ul,

p is an example of a mapping compatible with (M, <,).

Algebraic framework

Semantics of stabilization monoids

Theorem (Existence and unicity of semantics)

Every finite stabilization monoid admits a compatible mapping.
Furthermore, it is unique up to ~ (a variant of ~).

Algebraic framework
Recognizability

Let h: A — M (extended as a morphism from A* to M*), and I
an ideal of (M, <). Define:

for all u € A*, f(u) =sup{n : p(h(u)) € I} .

Then f is said recognized by M, h,I.

A cost function is regular iff it is recognizable by a finite
stabilization monoid.

Example: recall that p(u)(n) = L iff [u|L > 1 or n < |ul,.
Set f(a) =a, h(b) =b, I = {L}. Then M, h, I recognizes |- |,.

Conclusion

@ Conclusion

Conclusion

Conclusion

Content of the paper:

@ Cost functions extending languages

e Automata (B- and S-), duality, closure properties, decidability
@ History-deteterminism
°

Stabilization monoid/recognizability /equivalence with
regularity

Related results, ongoing work, and possible extensions:

@ Extension to infinite words, finite trees (with C. Léding), and
infinite trees (open)

@ Algebraic characterization of families of regular cost functions
(with S. Lombardy and D. Kuperberg)

@ Equivalence with a variant of monadic second-order logic

	Cost functions
	Automata for cost functions
	Algebraic framework
	Conclusion

