
Cost functions Automata for cost functions Algebraic framework Conclusion

The Theory of Stabilization Monoids
and

Regular Cost Functions

Thomas Colcombet

Monday, July 6th 2009
Icalp



Cost functions Automata for cost functions Algebraic framework Conclusion

Principle

Developing a quantitative notion of regularity which extends in
many ways the standard notion of regularity:

presentations: automata (det/non-det), algebra, logic, regular
expressions

closure: union, intersection, projection, complementation

decidability: emptiness

Key idea. Consider mappings f, g : A∗ → ω + 1 modulo an
equivalence which preserves the existence of bounds:

f ≈ g : ∀X ⊆ A∗. f |X is bounded iff g|X is bounded



Cost functions Automata for cost functions Algebraic framework Conclusion

Origin and motivations

A model with many “good” properties is worth being studied.

Our automata are extensions of distance automata [Hashiguchi81],
desert automata [Kirsten04], and nested distance desert automata
[Kirsten05].

Those models were introduced for deciding language theoretic
questions: the finite power problem, the finite substitution
problem, the star-height problem.

All problems can be solved by a reduction to a problem of
existence of bound for the above automata.

In [Bojanczyk, C.06], B-automata (similar) were introduced
together with a dual variant, S-automata.



Cost functions Automata for cost functions Algebraic framework Conclusion

Outline

1 Cost functions

2 Automata for cost functions

3 Algebraic framework

4 Conclusion



Cost functions Automata for cost functions Algebraic framework Conclusion

1 Cost functions

2 Automata for cost functions

3 Algebraic framework

4 Conclusion



Cost functions Automata for cost functions Algebraic framework Conclusion

Cost functions

Definition

Consider mappings f, g : E → ω + 1 (E = A∗ in this work), define

f4g if ∀X ⊆ A∗. g|X is bounded implies f |X is bounded

f≈g if f 4 g and g 4 f

A cost function (over E) is an equivalence class for ≈.



Cost functions Automata for cost functions Algebraic framework Conclusion

Cost functions

Definition

Consider mappings f, g : E → ω + 1 (E = A∗ in this work), define

f4g if ∀X ⊆ A∗. g|X is bounded implies f |X is bounded

f≈g if f 4 g and g 4 f

A cost function (over E) is an equivalence class for ≈.

Example

0 4 | · |a 4 | · |
| · |a and | · |b are incomparable

| · |a + | · |b ≈ max(| · |a, | · |b) (more generally, max ≈ +)



Cost functions Automata for cost functions Algebraic framework Conclusion

Cost functions

Definition

Consider mappings f, g : E → ω + 1 (E = A∗ in this work), define

f4g if ∀X ⊆ A∗. g|X is bounded implies f |X is bounded

f≈g if f 4 g and g 4 f

A cost function (over E) is an equivalence class for ≈.

Remark (Cost functions extend languages)

For L ⊆ E (a language), define χL : E → ω + 1 by:

χL(x) =

{
0 if x ∈ L
ω otherwise

Then for all K,L ⊆ E, χK 4 χL iff L ⊆ K.



Cost functions Automata for cost functions Algebraic framework Conclusion

1 Cost functions

2 Automata for cost functions

3 Algebraic framework

4 Conclusion



Cost functions Automata for cost functions Algebraic framework Conclusion

Computing the cost of a sequence

Let Γ be a finite set of counters.
Semantics: counters have initial value 0, and one can perform on
them:

ε, which does nothing,

i which increments the counter by one,

r which resets the counter (to 0), and;

c which checks (i.e., observes/tests) the counter value.

Given a sequence u ∈ ({ε, i, r, c}Γ)∗, C(u) is the set of values of
counters when checked.



Cost functions Automata for cost functions Algebraic framework Conclusion

Cost automata

Definition

A cost automaton A = (Q,A, I, F,Γ,∆) has:

a finite set Q of states, an input alphabet A, a set I of initial
states, a set F of final states,

a finite set Γ of counters,

a transition relation ∆ ⊆ Q× A× {ε, i, r, c}Γ ×Q.

Runs are defined as usual. One defines:

[[A]]B : A∗ 7→ ω + 1
u 7→ inf{supC(ρ) : ρ accepting run of A over u}

[[A]]S : A∗ 7→ ω + 1
u 7→ sup{inf C(ρ) : ρ accepting run of A over u}

Cost automata are called B-automata or S-automata accordingly.



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a deterministic B-automaton

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}

The following deterministic B-automaton counts the number of
occurrences of ‘a’.

q0

a : ic

b : ε

C(σ) = {1, 2, . . . , |u|a}



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a deterministic S-automaton

[[A]]S(u) = sup{inf C(σ) : σ accepting run of A over u}

The following deterministic S-automaton computes the minimal
distance between two b’s (ω if less than two b’s).

q0 q1

a : ε

b : ε

a : i

b : cr

C(σ) = {distances between consecutive b’s}



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a (non-deterministic) B-automaton

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}

The following B-automaton computes the minimal distance
between two b’s (ω if less than two b’s).

q0 q1 q2

a, b : ε

b : ε

a, b : ic

b : ε

a, b : ε

C(σ) = {1, 2, . . . , distance between the two guessed b’s}



Cost functions Automata for cost functions Algebraic framework Conclusion

Link with the language case

[[A]]B(u) = inf{supC(σ) : σ accepting run of A over u}
[[A]]S(u) = sup{inf C(σ) : σ accepting run of A over u}

Remark

If A has no counters and accepts L, then

{
[[A]]B = χL

[[A]]S = χ{L



Cost functions Automata for cost functions Algebraic framework Conclusion

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.
Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ≈). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Proof: go to the algebraic world...



Cost functions Automata for cost functions Algebraic framework Conclusion

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.
Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ≈). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Proof: go to the algebraic world...



Cost functions Automata for cost functions Algebraic framework Conclusion

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are
closed under min and max.
Cost functions accepted by B-automata (resp. S-automata) are
closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular
languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by
an S-automaton (modulo ≈). The equivalences are elementary.
We call such cost functions regular.

This corresponds to the complementation of regular languages.

Proof: go to the algebraic world...



Cost functions Automata for cost functions Algebraic framework Conclusion

Key decidability result

Theorem

The relation 4 is decidable over regular cost functions.

This corresponds to the decidability of the inclusion for regular
langauges.

Corollary (boundedness, limitedness)

One can decide whether a regular cost function is bounded.

Proof. f is bounded iff f 4 0.



Cost functions Automata for cost functions Algebraic framework Conclusion

1 Cost functions

2 Automata for cost functions

3 Algebraic framework

4 Conclusion



Cost functions Automata for cost functions Algebraic framework Conclusion

Stabilization monoids (following I. Simon)

Definition

A stabilization monoid 〈M, ·,≤, ]〉 is an ordered monoid 〈M, ·,≤〉
together with a stabilization operator ] : E(M)→ E(M) (E(M)
are the idempotents of M), such that:

consistency if a · b, b · a ∈ E(M), then (a · b)] = a · (b · a)] · b,
order for e, f ∈ E(M), e ≤ f implies e] ≤ f ] ≤ f , and;

neutral 1] = 1.

Intuitively, e] represents the value of e when iterated a lot of time.
If e] = e, one does not care about the number of occurrences of e.
If e] < e, the stabilization monoid ‘counts’ the iterations of e.



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a stabilization semigroup ’counting a’s’

One classifies the words over M∗ (with M = {a, b,⊥}
Formally, ρ : M∗ → ω →M (non-decreasing)

b

a

⊥

b = b · b = b] (= 1)

words in b∗

ρ(u)(n) = b if u ∈ b∗

a = a · a = b · a = a · b ( 6= a])

words in (b∗a)+b∗ with few a’s
ρ(u)(n) = b if |u|⊥ = 0 and 1 ≤ |u|a < n

⊥ = ? · ⊥ = ⊥ · ? = a] = ⊥]

words containing ⊥, or a lot of a’s
ρ(u)(n) = ⊥ if |u|⊥ ≥ 1 or n ≤ |u|a

]

]

]

ρ is an example of a mapping compatible with 〈M,≤, ·, ]〉.



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a stabilization semigroup ’counting a’s’

One classifies the words over M∗ (with M = {a, b,⊥}

Formally, ρ : M∗ → ω →M (non-decreasing)

b

a

⊥

b = b · b = b] (= 1)
words in b∗

ρ(u)(n) = b if u ∈ b∗

a = a · a = b · a = a · b ( 6= a])
words in (b∗a)+b∗ with few a’s

ρ(u)(n) = b if |u|⊥ = 0 and 1 ≤ |u|a < n

⊥ = ? · ⊥ = ⊥ · ? = a] = ⊥]

words containing ⊥, or a lot of a’s

ρ(u)(n) = ⊥ if |u|⊥ ≥ 1 or n ≤ |u|a

]

]

]

ρ is an example of a mapping compatible with 〈M,≤, ·, ]〉.



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a stabilization semigroup ’counting a’s’

One classifies the words over M∗ (with M = {a, b,⊥}
Formally, ρ : M∗ → ω →M (non-decreasing)

b

a

⊥

b = b · b = b] (= 1)
words in b∗

ρ(u)(n) = b if u ∈ b∗

a = a · a = b · a = a · b ( 6= a])
words in (b∗a)+b∗ with few a’s
ρ(u)(n) = b if |u|⊥ = 0 and 1 ≤ |u|a < n

⊥ = ? · ⊥ = ⊥ · ? = a] = ⊥]

words containing ⊥, or a lot of a’s
ρ(u)(n) = ⊥ if |u|⊥ ≥ 1 or n ≤ |u|a

]

]

]

ρ is an example of a mapping compatible with 〈M,≤, ·, ]〉.



Cost functions Automata for cost functions Algebraic framework Conclusion

Example of a stabilization semigroup ’counting a’s’

One classifies the words over M∗ (with M = {a, b,⊥}
Formally, ρ : M∗ → ω →M (non-decreasing)

b

a

⊥

b = b · b = b] (= 1)
words in b∗

ρ(u)(n) = b if u ∈ b∗

a = a · a = b · a = a · b ( 6= a])
words in (b∗a)+b∗ with few a’s
ρ(u)(n) = b if |u|⊥ = 0 and 1 ≤ |u|a < n

⊥ = ? · ⊥ = ⊥ · ? = a] = ⊥]

words containing ⊥, or a lot of a’s
ρ(u)(n) = ⊥ if |u|⊥ ≥ 1 or n ≤ |u|a

]

]

]

ρ is an example of a mapping compatible with 〈M,≤, ·, ]〉.



Cost functions Automata for cost functions Algebraic framework Conclusion

Semantics of stabilization monoids

Theorem (Existence and unicity of semantics)

Every finite stabilization monoid admits a compatible mapping.
Furthermore, it is unique up to ∼ (a variant of ≈).



Cost functions Automata for cost functions Algebraic framework Conclusion

Recognizability

Let h : A→M (extended as a morphism from A∗ to M∗), and I
an ideal of 〈M,≤〉. Define:

for all u ∈ A∗, f(u) = sup{n : ρ(h(u)) ∈ I} .

Then f is said recognized by M,h, I.

Theorem

A cost function is regular iff it is recognizable by a finite
stabilization monoid.

Example: recall that ρ(u)(n) = ⊥ iff |u|⊥ ≥ 1 or n ≤ |u|a.
Set f(a) = a, h(b) = b, I = {⊥}. Then M,h, I recognizes | · |a.



Cost functions Automata for cost functions Algebraic framework Conclusion

1 Cost functions

2 Automata for cost functions

3 Algebraic framework

4 Conclusion



Cost functions Automata for cost functions Algebraic framework Conclusion

Conclusion

Content of the paper:

Cost functions extending languages

Automata (B- and S-), duality, closure properties, decidability

History-deteterminism

Stabilization monoid/recognizability/equivalence with
regularity

Related results, ongoing work, and possible extensions:

Extension to infinite words, finite trees (with C. Löding), and
infinite trees (open)

Algebraic characterization of families of regular cost functions
(with S. Lombardy and D. Kuperberg)

Equivalence with a variant of monadic second-order logic


	Cost functions
	Automata for cost functions
	Algebraic framework
	Conclusion

