The Theory of Stabilization Monoids and Regular Cost Functions

Thomas Colcombet

Monday, July 6th 2009 $$\rm ICALP$$

Principle

Developing a quantitative notion of regularity which extends in many ways the standard notion of regularity:

- presentations: automata (det/non-det), algebra, logic, regular expressions
- closure: union, intersection, projection, complementation
- decidability: emptiness

Key idea. Consider mappings $f, g : \mathbb{A}^* \to \omega + 1$ modulo an equivalence which preserves the existence of bounds:

$$f \approx g$$
 : $\forall X \subseteq \mathbb{A}^*$. $f|_X$ is bounded iff $g|_X$ is bounded

Origin and motivations

A model with many "good" properties is worth being studied.

Our automata are extensions of distance automata [Hashiguchi81], desert automata [Kirsten04], and nested distance desert automata [Kirsten05].

Those models were introduced for deciding language theoretic questions: the finite power problem, the finite substitution problem, the star-height problem.

All problems can be solved by a reduction to a problem of existence of bound for the above automata.

In [Bojanczyk, C.06], B-automata (similar) were introduced together with a dual variant, S-automata.

Algebraic frameworl

2 Automata for cost functions

Definition

Consider mappings $f, g: E \to \omega + 1$ ($E = \mathbb{A}^*$ in this work), define

 $f \preccurlyeq g$ if $\forall X \subseteq \mathbb{A}^*$. $g|_X$ is bounded implies $f|_X$ is bounded $f \approx g$ if $f \preccurlyeq g$ and $g \preccurlyeq f$

A cost function (over E) is an equivalence class for \approx .

Definition

Consider mappings $f, g: E \to \omega + 1$ ($E = \mathbb{A}^*$ in this work), define

 $f \preccurlyeq g$ if $\forall X \subseteq \mathbb{A}^*$. $g|_X$ is bounded implies $f|_X$ is bounded $f \approx g$ if $f \preccurlyeq g$ and $g \preccurlyeq f$

A cost function (over E) is an equivalence class for \approx .

Example

•
$$0 \preccurlyeq |\cdot|_a \preccurlyeq |\cdot|_a$$

- $|\cdot|_a$ and $|\cdot|_b$ are incomparable
- $|\cdot|_a + |\cdot|_b \approx \max(|\cdot|_a, |\cdot|_b)$ (more generally, $\max \approx +$)

Definition

Consider mappings $f, g: E \to \omega + 1$ ($E = \mathbb{A}^*$ in this work), define

 $f \preccurlyeq g$ if $\forall X \subseteq \mathbb{A}^*$. $g|_X$ is bounded implies $f|_X$ is bounded $f \approx g$ if $f \preccurlyeq g$ and $g \preccurlyeq f$

A cost function (over E) is an equivalence class for \approx .

Remark (Cost functions extend languages)

For $L \subseteq E$ (a language), define $\chi_L : E \to \omega + 1$ by:

$$\chi_L(x) = egin{cases} 0 & \textit{if } x \in L \ \omega & \textit{otherwise} \end{cases}$$

Then for all $K, L \subseteq E$, $\chi_K \preccurlyeq \chi L$ iff $L \subseteq K$.

2 Automata for cost functions

Computing the cost of a sequence

Let Γ be a finite set of counters.

Semantics: counters have initial value 0, and one can perform on them:

- ϵ , which does nothing,
- *i* which increments the counter by one,
- r which resets the counter (to 0), and;
- c which checks (i.e., observes/tests) the counter value.

Given a sequence $u \in (\{\epsilon, i, r, c\}^{\Gamma})^*$, C(u) is the set of values of counters when checked.

Cost automata

Definition

- A cost automaton $\mathcal{A}=(Q,\mathbb{A},I,F,\Gamma,\Delta)$ has:
 - a finite set Q of states, an input alphabet A, a set I of initial states, a set F of final states,
 - a finite set Γ of counters,
 - a transition relation $\Delta \subseteq Q \times \mathbb{A} \times \{\epsilon, i, r, c\}^{\Gamma} \times Q$.

Runs are defined as usual. One defines:

$$\begin{split} \llbracket \mathcal{A} \rrbracket_{B} : & \mathbb{A}^{*} \mapsto \omega + 1 \\ & u \mapsto \inf \{ \sup C(\rho) \ : \ \rho \text{ accepting run of } \mathcal{A} \text{ over } u \} \\ \llbracket \mathcal{A} \rrbracket_{S} : & \mathbb{A}^{*} \mapsto \omega + 1 \\ & u \mapsto \sup \{ \inf C(\rho) \ : \ \rho \text{ accepting run of } \mathcal{A} \text{ over } u \} \end{split}$$

Cost automata are called B-automata or S-automata accordingly.

Example of a deterministic B-automaton

 $\llbracket \mathcal{A} \rrbracket_B(u) = \inf \{ \sup C(\sigma) \ : \ \sigma \text{ accepting run of } \mathcal{A} \text{ over } u \}$

The following deterministic B-automaton counts the number of occurrences of 'a'.

$$C(\sigma) = \{1, 2, \dots, |u|_a\}$$

Example of a deterministic S-automaton

$$\llbracket \mathcal{A} \rrbracket_S(u) = \sup \{ \inf C(\sigma) \ : \ \sigma \text{ accepting run of } \mathcal{A} \text{ over } u \}$$

The following deterministic S-automaton computes the minimal distance between two b's (ω if less than two b's).

 $C(\sigma) = \{ \text{distances between consecutive } b' \mathbf{s} \}$

Example of a (non-deterministic) B-automaton

 $\llbracket \mathcal{A} \rrbracket_B(u) = \inf \{ \sup C(\sigma) : \sigma \text{ accepting run of } \mathcal{A} \text{ over } u \}$

The following B-automaton computes the minimal distance between two b's (ω if less than two b's).

$$a, b: \epsilon \qquad a, b: ic \qquad a, b: \epsilon$$

$$\rightarrow \begin{array}{c} Q \\ q_0 \\ \hline \end{array} \\ b: \epsilon \\ q_1 \\ \hline \end{array} \\ b: \epsilon \\ q_2 \\ \hline \end{array}$$

 $C(\sigma) = \{1, 2, \dots, \text{distance between the two guessed } b's\}$

Link with the language case

$$\llbracket \mathcal{A} \rrbracket_B(u) = \inf \{ \sup C(\sigma) : \sigma \text{ accepting run of } \mathcal{A} \text{ over } u \} \\ \llbracket \mathcal{A} \rrbracket_S(u) = \sup \{ \inf C(\sigma) : \sigma \text{ accepting run of } \mathcal{A} \text{ over } u \}$$

Remark

If
$$\mathcal{A}$$
 has no counters and accepts L , then
$$\begin{cases} \llbracket \mathcal{A} \rrbracket_B = \chi_L \\ \llbracket \mathcal{A} \rrbracket_S = \chi_{\mathbb{C}L} \end{cases}$$

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are closed under min and max. Cost functions accepted by B-automata (resp. S-automata) are closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular languages.

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are closed under min and max. Cost functions accepted by B-automata (resp. S-automata) are closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by an S-automaton (modulo \approx). The equivalences are elementary. We call such cost functions regular.

This corresponds to the complementation of regular languages.

Closure results

Fact

Cost functions accepted by B-automata (resp. S-automata) are closed under min and max. Cost functions accepted by B-automata (resp. S-automata) are closed under inf-projection (resp. sup-projection).

This corresponds to union, intersection and projection for regular languages.

Theorem (duality, [here] and [Bojanczyk&C.06])

A cost function is accepted by a B-automaton iff it is accepted by an S-automaton (modulo \approx). The equivalences are elementary. We call such cost functions regular.

This corresponds to the complementation of regular languages. Proof: go to the algebraic world...

Key decidability result

Theorem

The relation \preccurlyeq is decidable over regular cost functions.

This corresponds to the decidability of the inclusion for regular langauges.

Corollary (boundedness, limitedness)

One can decide whether a regular cost function is bounded.

Proof. f is bounded iff $f \preccurlyeq 0$.

2 Automata for cost functions

Stabilization monoids (following I. Simon)

Definition

A stabilization monoid $\langle M, \cdot, \leq, \sharp \rangle$ is an ordered monoid $\langle M, \cdot, \leq \rangle$ together with a stabilization operator $\sharp : E(M) \to E(M)$ (E(M)) are the idempotents of M), such that:

consistency if $a \cdot b, b \cdot a \in E(M)$, then $(a \cdot b)^{\sharp} = a \cdot (b \cdot a)^{\sharp} \cdot b$, order for $e, f \in E(M)$, $e \leq f$ implies $e^{\sharp} \leq f^{\sharp} \leq f$, and; neutral $1^{\sharp} = 1$.

Intuitively, e^{\sharp} represents the value of e when iterated a lot of time. If $e^{\sharp} = e$, one does not care about the number of occurrences of e. If $e^{\sharp} < e$, the stabilization monoid 'counts' the iterations of e.

One classifies the words over M^* (with $M=\{a,b,\bot\}$

$$\begin{array}{l} a=a\cdot a=b\cdot a=a\cdot b \ (\neq a^{\sharp})\\ \text{words in } (b^{*}a)^{+}b^{*} \text{ with few } a^{*} \text{s} \end{array}$$

$$\bot = \star \cdot \bot = \bot \cdot \star = a^{\sharp} = \bot^{\sharp}$$

words containing \bot , or a lot of a 's

One classifies the words over M^* (with $M = \{a, b, \bot\}$ Formally, $\rho: M^* \to \omega \to M$ (non-decreasing)

$$\begin{vmatrix} b = b \cdot b = b^{\sharp} \ (= 1) \\ \text{words in } b^{*} \\ \rho(u)(n) = b \text{ if } u \in b^{*} \end{aligned}$$

$$\begin{array}{l} a=a \cdot a=b \cdot a=a \cdot b \ (\neq a^{\sharp}) \\ \text{words in } (b^{\ast}a)^{+}b^{\ast} \text{ with few } a^{\prime}\text{s} \\ \rho(u)(n)=b \text{ if } |u|_{\perp}=0 \text{ and } 1\leq |u|_{a} < n \end{array}$$

$$\begin{array}{l} \bot = \star \cdot \bot = \bot \cdot \star = a^{\sharp} = \bot^{\sharp} \\ \text{words containing } \bot, \text{ or a lot of } a \text{'s} \\ \rho(u)(n) = \bot \text{ if } |u|_{\bot} \geq 1 \text{ or } n \leq |u|_{a} \end{array}$$

One classifies the words over M^* (with $M = \{a, b, \bot\}$ Formally, $\rho: M^* \to \omega \to M$ (non-decreasing)

 ρ is an example of a mapping compatible with $\langle M, \leq, \cdot, \sharp \rangle$.

Algebraic framework

Conclusion

Semantics of stabilization monoids

Theorem (Existence and unicity of semantics)

Every finite stabilization monoid admits a compatible mapping. Furthermore, it is unique up to \sim (a variant of \approx).

Recognizability

Let $h : \mathbb{A} \to M$ (extended as a morphism from \mathbb{A}^* to M^*), and I an ideal of $\langle M, \leq \rangle$. Define:

 $\text{for all } u \in \mathbb{A}^*, \qquad f(u) = \sup\{n \ : \ \rho(h(u)) \in I\} \ .$

Then f is said recognized by M, h, I.

Theorem

A cost function is regular iff it is recognizable by a finite stabilization monoid.

Example: recall that $\rho(u)(n) = \bot$ iff $|u|_{\bot} \ge 1$ or $n \le |u|_a$. Set f(a) = a, h(b) = b, $I = \{\bot\}$. Then M, h, I recognizes $|\cdot|_a$.

2 Automata for cost functions

Conclusion

Content of the paper:

- Cost functions extending languages
- Automata (B- and S-), duality, closure properties, decidability
- History-deteterminism
- Stabilization monoid/recognizability/equivalence with regularity

Related results, ongoing work, and possible extensions:

- Extension to infinite words, finite trees (with C. Löding), and infinite trees (open)
- Algebraic characterization of families of regular cost functions (with S. Lombardy and D. Kuperberg)
- Equivalence with a variant of monadic second-order logic