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[Jurdzinski 98] 
ParityGames in UP∩CoUP 

[Bourke&Tewari&Vinodchandran 07] 
Planar reachability in UL (unambiguous logspace) 

[Allender&Reinhardt 97] 
UL and NL coincide in the non-uniform setting (open in the uniform one)

Important remark: As opposed to deterministic devices, unambiguous 
ones are not naturally closed under complement.

It is a semantic notion. It is not clear what is a witness of unambiguity…
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The many forms of automata
Word automata

Infinite tree automata

Infinite word automata

Tropical automata

Register automata

Transducers
Non-deterministic and 
unambiguous automata have 
the same expressive power.}
Non-deterministic and 
unambiguous automata have 
different expressive power.}

Remark: in general it is easy to decide if an automaton is unambiguous. 
Proof: Take the product of the automaton with itself + 1 bit, such that it 
accepts an input iff there exist two distinct runs of the original automaton. 
Test for emptiness.

*
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Remark 1: every word automaton can be made deterministic, and 
hence unambiguous.

Fact: Universality of non-deterministic word automata is PSPACE.

Theorem [Hunt&Stearns 81]: Universality of unambiguous automata  
is in P.

Theorem [Leiss 81, Leung 98&05]: Unambiguous automata can be 
exponentially more succinct than deterministic automata. 
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata (even polynomially ambiguous).

The n’th letter from the 
end is an ‘a’. (0 + (01⇤)n�10)⇤
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Communication complexity
[Yao79]: given a problem where the inputs are split into two parts A and 
B, what quantity of information should be communicated between an A-
process and a B-process for agreeing on the output ?

One sees the problem 
as the (input) matrix:

indexed by the 
set of A-inputs

The communication complexity 
depends on the shape of the 
matrix.

indexed by the 
set of B-inputs

0 or 1 if the 
resulting input 
belongs to the 
problem.

Example: If both A and B get n bits, determining whether the two 
sequences are equal requires n bits of communication.

Usually the story continues with randomized protocols (processes can 
flip coins)… (yields O(log(n)) bits in the above example).
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Def: The unambiguous complexity of a 
matrix is the minimal number of 1-rectangles, 
the disjoint union of which yields the matrix.

Hence the language matrix is obtained 
as the disjoint superposition of |Q|-
many (combinatorial) rectangles of 1’s. 

If the automaton is unambiguous, there can be at most one such state.

Given an non-deterministic automaton with states Q, the language matrix 
has value 1 at entry (u,v) if and only if there is a state q∈Q such that

I
u! q and

The unambiguous complexity for a language 
matrix is a lower bound on the number of 
states for an unambiguous automaton.

Remark: disjoint 
superposition is the 
same as the sum.

Since rank(rectangle)=1 
and rank is subadditive,

rank(M)≤unamb-comp(M)

q
v! F



Application: the linear length of 
witnesses for non-universality



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.

Theorem [Schmidt77]: the least size of a witness of non-universality for 
a language accepted by an unambiguous automaton of size n is n.



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.

Theorem [Schmidt77]: the least size of a witness of non-universality for 
a language accepted by an unambiguous automaton of size n is n.

Proof: consider a least size witness of non-
universality                and the following 
submatrix of the language matrix:

a1 . . . a`



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.

Theorem [Schmidt77]: the least size of a witness of non-universality for 
a language accepted by an unambiguous automaton of size n is n.

Proof: consider a least size witness of non-
universality                and the following 
submatrix of the language matrix:

a1 . . . a`

"

"a `a `
�
1
a `

?
a1

a1a2

a1 . . . a`

a 1
..
.a

`

…

…



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.

Theorem [Schmidt77]: the least size of a witness of non-universality for 
a language accepted by an unambiguous automaton of size n is n.

Its rank is       . � `

Proof: consider a least size witness of non-
universality                and the following 
submatrix of the language matrix:

a1 . . . a`

"

"a `a `
�
1
a `

?
a1

a1a2

a1 . . . a`

a 1
..
.a

`

…

…



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.

Theorem [Schmidt77]: the least size of a witness of non-universality for 
a language accepted by an unambiguous automaton of size n is n.

Its rank is       . � `

Proof: consider a least size witness of non-
universality                and the following 
submatrix of the language matrix:

a1 . . . a`

"

"a `a `
�
1
a `

?
a1

a1a2

a1 . . . a`

a 1
..
.a

`

…

…
`  rank(ML)  nThus                               .



Application: the linear length of 
witnesses for non-universality

Fact: for a non-universal non-deterministic automaton, the minimal size 
of a witness of non-universality can be of exponential length.
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Proof: consider a least size witness of non-
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Corrolary: The universality of unambiguous automata is in CoNP.
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Theorem [Hunt&Stearns81]:
The universality of unambiguous automata is in P.

Consider the Q×Q matrix
Am(p, q) = the number of words of length m accepted 

    by a run from p to q.

Using unambiguity (and trimmed assumption), we have:
Am(p, q) = the number of runs from p to q of length m.

Hence, the number of accepted words of length at most n is 
computable in time polynomial in n and Universality is in P.

Let M(p, q) = the number of letters triggering a transition from p to q.

We have                           .Am+1 = AmM

Note that an unambiguous automaton of size n is universal if and 
only if it accepts                                             words of size at most n.1 + |A|+ |A|2 + · · ·+ |A|n



Conclusion on finite words



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.
Universality of unambiguous automata is in P, and the minimal witnesses 
are of linear length.



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.
Universality of unambiguous automata is in P, and the minimal witnesses 
are of linear length.
Open question: Is it possible to complement unambiguous automata in 
polynomial space ? (into an unambiguous or a non-deterministic)



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.
Universality of unambiguous automata is in P, and the minimal witnesses 
are of linear length.
Open question: Is it possible to complement unambiguous automata in 
polynomial space ? (into an unambiguous or a non-deterministic)

Remark: This cannot be done in linear space: 
take three distinct primes p,q,r≥3.

|u|=0 [pq]

|u|=1 [pr]

|u|=2 [qr]



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.
Universality of unambiguous automata is in P, and the minimal witnesses 
are of linear length.
Open question: Is it possible to complement unambiguous automata in 
polynomial space ? (into an unambiguous or a non-deterministic)

Remark: This cannot be done in linear space: 
take three distinct primes p,q,r≥3.

|u|=0 [pq]

|u|=1 [pr]

|u|=2 [qr]

[p]

[q] [r]



Conclusion on finite words
Unambiguous automata can be exponentially more succinct than 
deterministic ones.
Non-deterministic automata can be exponentially more succinct than 
unambiguous automata.
Universality of unambiguous automata is in P, and the minimal witnesses 
are of linear length.
Open question: Is it possible to complement unambiguous automata in 
polynomial space ? (into an unambiguous or a non-deterministic)

Remark: This cannot be done in linear space: 
take three distinct primes p,q,r≥3.

|u|=0 [pq]

|u|=1 [pr]

|u|=2 [qr]
} An automaton 

for the complement 
has to contain a 
cycle of length pqr.

[p]

[q] [r]
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A tropical automaton is a non-deterministic automaton weighted by 
integers. It computes a function from words to integers (and +/-∞).

max-+: outputs the maximum over all accepting runs of the total weight
Theorem: It is decidable if a min-+ rational function f satisfies f≥0. 
    (resp. g≤0 for g max-+)
Theorem [Krob94]: It is undecidable if a max-+ rational function f satisfies 
f≥0. (resp. g≤0 for g min-+)

a:1

b:-1

a:1

b:0

a:0

b:1

Hashiguchi 
Simon

Note that min-+ and max-+ semantics coincide over unambiguous 
automata. This yields unambiguous tropical automata.
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Along the same ideas:
Proposition [Krob94] (Fatou property):
If a min-+ rational function f is such that f≥0 
Then it is recognized by a min-+ automaton with only non-
negative weights.
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The min-+ (b)-automaton computes f-g=0.
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The resulting (a) automaton is such that:

Being both min and max
Theorem [Lombardy&Mairesse06]: A function from words to integers 
that is both min-+ and max-+ rational is (effectively) recognized by an 
unambiguous tropical automaton.

Lemma A: Given a min-+ function f such that f≥0, the set of accepting 
runs of weight 0 is (effectively) regular.

a) all inputs u have an accepting run
b) all accepting runs have the weight f(u)

It can be made 
unambiguous by keeping 
the lexicographic least run.
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Being both min and max
Theorem [Lombardy&Mairesse06]: A function from words to integers 
that is both min-+ and max-+ recognized is (effectively) recognized 
by an unambiguous tropical automaton.

Conjecture (separation): Given a max-+ regular function f and a min-+ 
regular function g such that f ≤ g, then there exists an unambiguous 
regular function h such that 

f ≤ h ≤ g .
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Other forms of automata

Infinite tree automata

Infinite word automata

Register automata

Transducers
A transducer that recognizes a relation that happens to 
be a function is equivalent to an unambiguous transducer.

Non-deterministic Büchi automata are closed under Boolean 
operations and projection, but can’t be determinized! 
However, these can be made unambiguous 
[Carton&Michel00] (prophetic).

Register automata are not closed under complemented and universality is 
undecidable.
Conjecture: Unambiguous automata are closed under complement, and 
universality is decidable.

Unambiguous infinite tree automata are strictly weaker than non-
deterministic ones. Related to the non-definability of choice.
Problem: Decide if a language is accepted by an unambiguous automaton.
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To conclude
Unambiguity arises naturally in automata theory in many situations:

Things are not yet well understood, and many questions remain open.

- When non-deterministic automata are too wild (bad complexity or 
even undecidability of universality/equivalence, etc),  
but deterministic are too weak (because not closed under mirror…) 

- When regular lookahead is added to deterministic automata. 
- When this corresponds to a characterization result  

(e.g. min-plus and max-plus, transducers).

Some interesting tools are available 
    (e.g., communication complexity and rank).

The situations are very different depending of the model of automata 
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Some open problems
Is it polynomial to complement unambiguous word automata?

Is it possible to separate min-+ and max-+ automata by unambiguous 
tropical automata?

Is it possible to separate register automata by unambiguous ones?

Can we complement unambiguous register automata, and decide 
universality?

Is it possible to decide if a language of infinite trees is recognized by 
some unambiguous automaton?

Are unambiguous automata over tame trees as expressive as general 
automata?

Can we decide if a min-+ automaton is equivalent to an unambiguous 
one?

Is it possible to separate disjoint non-deterministic automata by 
unambiguous automata of polynomial size?


