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Abstract. We define a class of well-poised basic hypergeometric series J̃k,i(a; x; q) and inter-
pret these series as generating functions for overpartitions defined by multiplicity conditions.
We also show how to interpret the J̃k,i(a; 1; q) as generating functions for overpartitions whose
successive ranks are bounded, for overpartitions that are invariant under a certain class of conju-
gations, and for special restricted lattice paths. We highlight the cases (a, q) = (1/q, q), (1/q, q2),

and (0, q), where the some of the functions J̃k,i(a; 1; q) become infinite products. The latter case
corresponds to Bressoud’s family of Rogers-Ramanujan identities for even moduli.

1. Introduction

Over the years, a great number of combinatorial identities [1, 2, 3, 4, 8, 10, 17, 21, 23] have
been extracted from Andrews’ functions [7, Ch. 7] Jk,i(a; x; q), which are defined by

Jk,i(a; x; q) = Hk,i(a; xq; q) + axqHk,i−1(a; xq; q), (1.1)

where

Hk,i(a; x; q) =
∑

n≥0

(−a)nqkn2+n−inxkn(1 − xiq2ni)(−1/a)n(−axqn+1)∞
(q)n(xqn)∞

. (1.2)

Here we have employed the usual basic hypergeometric series notation [19]. Most recently [17],
the first and third authors made a thorough combinatorial study of these functions, providing
an interpretation of the general Jk,i(a; x; q) in terms of overpartitions, which unified work of An-
drews [4], Gordon [20], and the second author [21]. Moreover, it was shown that the Jk,i(a; 1; q)
can be interpreted as generating functions for overpartitions with bounded successive ranks, for
overpartitions with a specified Durfee dissection, and for certain restricted lattice paths. All of
these interpretations generalized work of Andrews, Bressoud, and Burge on ordinary partitions
[5, 6, 13, 14, 15].

In this paper we introduce and study a new class of functions, which we call J̃k,i(a; x; q) and
define by

J̃k,i(a; x; q) = H̃k,i(a; xq; q) + axqH̃k,i−1(a; xq; q), (1.3)

where

H̃k,i(a; x; q) =
∑

n≥0

(−a)nqkn2−(n

2)+n−inx(k−1)n(1 − xiq2ni)(−x,−1/a)n(−axqn+1)∞
(q2; q2)n(xqn)∞

. (1.4)
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Again the most natural combinatorial setting is that of overpartitions. Given an overpartition λ,
let fℓ(λ) (fℓ(λ)) denote the number of occurrences of ℓ non-overlined (overlined) in λ. Let Vλ(ℓ)
denote the number of overlined parts in λ less than or equal to ℓ. The following combinatorial
interpretation of the general J̃k,i(a; x; q) is the principal result of the first half of this paper:

Theorem 1.1. For 1 ≤ i ≤ k define the function ck,i(j, m, n) to be the number of overpartitions
λ of n with m parts and j overlined parts such that (i) f1(λ)+f1(λ) ≤ i−1, (ii) fℓ(λ)+fℓ+1(λ)+
fℓ+1(λ) ≤ k− 1, and (iii) if λ is saturated at ℓ, that is, if the maximum in (ii) is achieved, then
ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) + (ℓ + 1)fℓ+1(λ) ≡ i − 1 + Vλ(ℓ) (mod 2). Then

J̃k,i(a; x; q) =
∑

j,m,n≥0

ck,i(j, m, n)ajxmqn. (1.5)

It turns out that the J̃k,i(a; 1; q) are infinite products for (a, q) = (0, q) and (1/q, q2), as well
as for (a, q) = (1/q, q) when i = 1, and hence we can deduce partition theorems from Theorem
1.1. In the case (a, q) = (0, q), the product is

J̃k,i(0; 1; q) =
(qi, q2k−i, q2k; q2k)∞

(q)∞
,

and we have a new proof of Bressoud’s Rogers-Ramanujan identities for even moduli [10]:

Corollary 1.2 (Bressoud). For k ≥ 2 and 1 ≤ i ≤ k − 1, let Ãk,i(n) denote the number of

partitions of n into parts not congruent to 0,±i modulo 2k. Let B̃k,i(n) denote the number
of partitions λ of n such that (i) f1(λ) ≤ i − 1, (ii) fℓ(λ) + fℓ+1(λ) ≤ k − 1, and (iii) if

fℓ(λ) + fℓ+1(λ) = k − 1, then ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) ≡ i − 1 (mod 2). Then Ãk,i(n) = B̃k,i(n).

When (a, q) = (1/q, q2), the product is

J̃k,i(1/q; 1; q2) =
(−q; q2)∞(q2i−1, q4k−2i−1, q4k−2; q4k−2)∞

(q2; q2)∞
,

and the result is a mod 4k − 2 companion to Andrews’ generalization of the Göllnitz-Gordon
identities [4]:

Corollary 1.3. For 1 ≤ i ≤ k − 1, let Ã2
k,i(n) denote the number of partitions of n where even

parts are multiples of 4 not divisible by 8k−4 and odd parts are not congruent to ±(2i−1) modulo

4k−2, with parts congruent to 2k−1 modulo 4k−2 not repeatable. Let B̃2
k,i(n) denote the number

of partitions λ of n such that (i) f1(λ)+f2(λ) ≤ i−1, (ii) f2ℓ(λ)+f2ℓ+1(λ)+f2ℓ+2(λ) ≤ k−1, and
(iii) if the maximum in (ii) is achieved at ℓ, then ℓf2ℓ(λ) + (ℓ + 1)f2ℓ+2(λ) + (ℓ + 1)f2ℓ+1(λ) ≡
i − 1 + V o

λ (ℓ) (mod 2). (Here V o
λ (ℓ) is the number of odd parts of λ less than 2ℓ). Then

Ã2
k,i(n) = B̃2

k,i(n).

Finally, when (a, q) = (1/q, q) and i = 1, the product is

J̃k,1(1/q; 1; q) =
(−q)∞(q, q2k−2, q2k−1; q2k−1)∞

(q)∞
,

and the result is a odd modulus companion to Theorem 1.2 of [21].
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Corollary 1.4. For k ≥ 2, let Ã3
k(n) denote the number of overpartitions whose non-overlined

parts are not congruent to 0,±1 modulo 2k − 1. Let B̃3
k(n) denote the number of overpartitions

λ of n such that (i) f1(λ) = 0, (ii) fℓ(λ) + fℓ(λ) + fℓ+1(λ) ≤ k − 1, and (iii) if the maximum
in condition (ii) is achieved at ℓ, then ℓfℓ(λ) + ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) ≡ Vλ(ℓ) (mod 2). Then

Ã3
k(n) = B̃3

k(n).

In the second half of the paper, we discuss three more combinatorial interpretations of the
J̃k,i(a; 1; q): one involving the theory of successive ranks for overpartitions as developed in [17],
one involving a two-parameter generalization to overpartitions of Garvan’s k-conjugation for
partitions [18], and one involving a generalization of some lattice paths of Bressoud and Burge
[13, 14, 15]. The following is the main theorem of this part, the combinatorial concepts being
necessarily fully defined later in the paper. When a = 0 and X = C, D, or E, we recover some
of the main results of [13, 14, 15].

Theorem 1.5.

• Let B̃k,i(n, j) denote the number of overpartitions λ of n counted by ck,i(j, m, n) for some
m.

• Let C̃k,i(n, j) denote the number of overpartitions of n with j overlined parts whose suc-
cessive ranks lie in [−i + 2, 2k − i − 2].

• Let D̃k,i(n, j) denote the number of self-(k, i)-conjugate overpartitions of n with j over-
lined parts.

• Let Ẽk,i(n, j) denote the number of Bressoud-Burge lattice paths of major index n with
j South steps which start at k − i, whose height is less than k and where the peaks of
coordinates (x, k−1) are such that x−u is congruent to i−1 modulo 2 (u is the number
of South steps to the left of the peak).

Then for X = B, C, D, or E,

∑

n,j≥0

X̃k,i(n, j)ajqn =
(−aq)∞
(q)∞

∑

n∈Z

(−1/a)n(−1)nanq(2k−1)(n+1

2 )−in+n

(−aq)n

. (1.6)

Again, the right-hand side of (1.6) is in many cases an infinite product, and hence there are

results like Corollaries 1.2 - 1.4 involving the functions C̃, D̃ and Ẽ. However, we shall not
highlight these corollaries.

The paper is organized as follows. In the next section we study the basic properties of the
J̃k,i(a; x; q) and give proofs of Theorem 1.1 and Corollaries 1.2 - 1.4. In Section 3, we compute the

generating function of the paths counted by Ẽk,i(n, j) to show that they are in bijection with

the overpartitions counted by B̃k,i(n, j). In Section 4, we present a direct bijection between

the paths counted by Ẽk,i(n, j) and the overpartitions counted by C̃k,i(n, j). In Section 5, we

compute the generating function of the overpartitions counted by D̃k,i(n, j) to show that they

are in bijection with the paths counted by Ẽk,i(n, j). The techniques used in Sections 3,4, and
5 are very similar to [17]. We conclude in Section 6 with some suggestions for future research.
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2. The J̃k,i(a; x; q)

We begin by proving some facts about the functions H̃k,i(a; x; q) and J̃k,i(a; x; q) defined in
the introduction.

Lemma 2.1.

H̃k,0(a; x; q) = 0 (2.1)

H̃k,−i(a; x; q) = −x−iH̃k,i(a; x; q) (2.2)

H̃k,i(a; x; q) − H̃k,i−2(a; x; q) = xi−2(1 + x)J̃k,k−i+1(a; x; q). (2.3)

Proof. The first part is trivial and the second part follows from the fact that

−x−iq−in(1 − xiq2ni) = q−n(−i)(1 − x−iq2n(−i)).

For the third part, we have

H̃k,i(a; x; q) − H̃k,i−2(a; x; q)

=
∑

n≥0

(−a)nqkn2−(n

2)+nx(k−1)n(−x,−1/a)n(−axqn+1)∞
(q2; q2)n(xqn)∞

(q−in − xiqin − q(2−i)n + (xqn)i−2)

=
∑

n≥0

(−a)nqkn2−(n

2)+nx(k−1)n(−x,−1/a)n(−axqn+1)∞q−in(1 − q2n)

(q2; q2)n(xqn)∞

+
∑

n≥0

(−a)nqkn2−(n

2)+nx(k−1)n(−x,−1/a)n(−axqn+1)∞xi−2qn(i−2)(1 − x2q2n)

(q2; q2)n(xqn)∞

=
∑

n≥1

(−a)nqkn2−(n

2)+nx(k−1)n(−x,−1/a)n(−axqn+1)∞q−in

(q2; q2)n−1(xqn)∞

+
∑

n≥0

(−a)nqkn2−(n

2)+nx(k−1)n(−x)n+1(−1/a)n(−axqn+1)∞xi−2qn(i−2)

(q2; q2)n(xqn+1)∞

=
∑

n≥0

(−a)n+1qkn2+2kn+k−(n+1

2 )+n+1xkn+k−n−1(−x,−1/a)n+1(−axqn+2)∞q−in−i

(q2; q2)n(xqn+1)∞

+
∑

n≥0

(−a)nqkn2−(n

2)+nx(k−1)n(−x)n+1(−1/a)n(−axqn+1)∞xi−2qn(i−2)

(q2; q2)n(xqn+1)∞
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= xi−2
∑

n≥0

(−a)nqkn2−(n

2)+ni−nx(k−1)n(−x)n+1(−1/a)n(−axqn+2)∞
(q2; q2)n(xqn+1)∞

×
(
(1 + axqn+1) − axk−i+1q2kn−2ni+n+k−i+1(1 + qn/a)

)

= xi−2
∑

n≥0

(−a)nqkn2−(n

2)+ni−nx(k−1)n(−x)n+1(−1/a)n(−axqn+2)∞
(q2; q2)n(xqn+1)∞

(1 − xk−i+1q(k−i+1)(2n+1))

+ xi−2
∑

n≥0

(−a)nqkn2−(n

2)+ni−nx(k−1)n(−x)n+1(−1/a)n(−axqn+2)∞
(q2; q2)n(xqn+1)∞

axqn+1(1 − xk−iq(k−i)(2n+1))

= xi−2(1 + x)
∑

n≥0

(−a)nqkn2−(n

2)+ni−nx(k−1)n(−xq)n(−1/a)n(−axqn+2)∞
(q2; q2)n(xqn+1)∞

(1 − xk−i+1q(k−i+1)(2n+1))

+ xi−2(1 + x)axq
∑

n≥0

(−a)nqkn2−(n

2)+nix(k−1)n(−xq)n(−1/a)n(−axqn+2)∞
(q2; q2)n(xqn+1)∞

(1 − xk−iq(k−i)(2n+1))

= xi−2(1 + x)
(
H̃k,k−i+1(a; xq; q) + axqH̃k,k−i(a; xq; q)

)

= xi−2(1 + x)J̃k,k−i+1(a; xq; q).

�

Now assume that 1 ≤ i ≤ k. The following recurrences for the J̃k,i(a; x; q) are fundamental.

Theorem 2.2.

J̃k,1(a; x; q) = J̃k,k(a; xq; q) (2.4)

J̃k,2(a; x; q) = (1 + xq)J̃k,k−1(a; xq; q) + axqJ̃k,k(a; xq; q) (2.5)

J̃k,i(a; x; q) − J̃k,i−2(a; x; q) = (xq)i−2(1 + xq)J̃k,k−i+1(a; xq; q) (2.6)

+ a(xq)i−2(1 + xq)J̃k,k−i+2(a; xq; q) (3 ≤ i ≤ k)

Proof. Using (2.3) followed by (2.2) and then (2.1), we have

J̃k,k(a; xq; q) =
H̃k,1(a; xq; q) − H̃k,−1(a; xq; q)

(xq)−1(1 + xq)

=
H̃k,1(a; xq; q) + (xq)−1H̃k,1(a; xq; q)

(xq)−1(1 + xq)

= H̃k,1(a; xq; q)

= H̃k,1(a; xq; q) + axqHk,0(a; xq; q)

= J̃k,1(a; x; q),
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which is (2.4). For (2.5), we have

J̃k,2(a; xq; q) = H̃k,2(a; xq; q) + axqH̃k,1(a; xq; q)

= H̃k,2(a; xq; q) − H̃k,0(a; xq; q) + axqH̃k,1(a; xq; q)

= (1 + x)J̃k,k−1(a; xq; q) + axqJ̃k,1(a; x; q).

Finally, using (2.3) we have

J̃k,i(a; x; q) − J̃k,i−2(a; x; q) = H̃k,i(a; xq; q) + axqH̃k,i−1(a; xq; q)

− H̃k,i−2(a; xq; q) − axqH̃k,i(a; xq; q)

= (xq)i−2(1 + xq)J̃k,k−i+1(a; xq; q)

+ axq(xq)i−3(1 + xq)J̃k,k−i+2(a; xq; q),

which is (2.6) and which completes the proof of the Theorem. �

We now turn to the proof of Theorem 1.1. If we write

J̃k,i(a; x; q) =
∑

j,m,n≥0

bk,i(j, m, n)ajxmqn,

then the recurrences in Theorem 2.2 imply that

bk,1(j, m, n) = bk,k(j, m, n − m), (2.7)

bk,2(j, m, n) = bk,k−1(j, m, n − m) (2.8)

+ bk,k−1(j, m − 1, n − m)

+ bk,k(j − 1, m − 1, n − m),

and for 3 ≤ i ≤ k,

bk,i(j, m, n) − bk,i−2(j, m, n) = bk,k−i+1(j, m − i + 2, n − m) (2.9)

+ bk,k−i+1(j, m − i + 1, n − m)

+ bk,k−i+2(j − 1, m − i + 2, n − m)

+ bk,k−i+2(j − 1, m − i + 1, n − m).

We shall demonstrate that the ck,i(j, m, n) also satisfy these recurrences. In what follows we

shall repeatedly employ a mapping λ → λ̂, where λ̂ is obtained by removing all of the ones from
λ and then subtracting one from each remaining part. Before continuing, we make a couple of
observations regarding this mapping. First, if λ satisfies condition (ii) in the statement of the

theorem, so does λ̂. Second, if λ is an overpartition counted by ck,i(j, m, n) and λ̂ is saturated
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at ℓ, then λ was saturated at ℓ + 1, so we have

ℓfℓ(λ̂) + (ℓ + 1)fℓ+1(λ̂) + (ℓ + 1)fℓ+1(λ̂) = ℓfℓ+1(λ) + (ℓ + 1)fℓ+2(λ) + (ℓ + 1)fℓ+2(λ)

= (ℓ + 1)fℓ+1(λ) + (ℓ + 2)fℓ+2(λ) + (ℓ + 2)fℓ+2(λ)

− (fℓ(λ̂) + fℓ+1(λ̂) + fℓ+1(λ̂)) (2.10)

≡ i − 1 + Vλ(ℓ + 1)

− (fℓ(λ̂) + fℓ+1(λ̂) + fℓ+1(λ̂)) (mod 2)

≡ Vλ(ℓ + 1) + k − i (mod 2)

Finally, it is clear that

Vbλ(ℓ) ≡

{
Vλ(ℓ + 1) (mod 2), if 1 /∈ λ

Vλ(ℓ + 1) + 1 (mod 2), if 1 ∈ λ
(2.11)

We begin with (2.7). Given an overpartition λ counted by ck,1(j, m, n), λ̂ is an overpartition
of n − m with m parts, j of which are overlined. Since λ could have had at most k − 1

twos, λ̂ has at most k − 1 ones. If λ̂ is saturated at ℓ, then from (2.10) and (2.11) we have

ℓfℓ(λ̂) + (ℓ + 1)fℓ+1(λ̂) + (ℓ + 1)fℓ+1(λ̂) ≡ k − 1 + Vbλ(ℓ) (mod 2). Thus λ̂ is an overpartition

counted by ck,k(j, m, n−m). Since the mapping from λ to λ̂ is reversible, we have the recurrence
(2.7) for the functions ck,i(j, m, n).

We turn to (2.8). Suppose now that λ is an overpartition counted by ck,2(j, m, n). Then λ
has at most one 1. We consider three cases.

First, if λ has no ones, then it can have at most k − 2 twos. For if λ had k − 1 twos,
then 1f1(λ) + 2f2(λ) + 2f2(λ) ≡ 0 (mod 2) violates condition (iii) in the definition of the

ck,2(j, m, n). Hence λ̂ is an overpartition of n − m into m parts, ℓ of which are overlined,

and having at most k − 2 ones. If λ̂ is saturated at ℓ, then from (2.10) and (2.11) we have

ℓfℓ(λ̂) + (ℓ + 1)fℓ+1(λ̂) + (ℓ + 1)fℓ+1(λ̂) ≡ k − 2 + Vbλ(ℓ) (mod 2). Hence λ̂ is an overpartition
counted by ck,k−1(j, m, n − m).

Second, if 1 occurs (non-overlined) in λ, then there can be up to k − 2 twos, so λ̂ has at

most k − 2 ones. If λ̂ is saturated at ℓ, then from (2.10) and (2.11) we have ℓfℓ(λ̂) + (ℓ +

1)fℓ+1(λ̂) + (ℓ + 1)fℓ+1(λ̂) ≡ k − 2 + Vbλ(ℓ) (mod 2). Hence λ̂ is an overpartition counted by
ck,k−1(j, m − 1, n − m).

Third and finally, if 1 occurs in λ, then there can be at most k − 1 twos, so λ̂ has at most

k − 1 ones. If λ̂ is saturated at ℓ, then from (2.10) and (2.11) we have ℓfℓ(λ̂) + (ℓ + 1)fℓ+1(λ̂) +

(ℓ + 1)fℓ+1(λ̂) ≡ k − 1 + Vbλ(ℓ) (mod 2). Hence λ̂ is an overpartition counted by ck,k(j − 1, m−
1, n − m).

Since the mappings are reversible, we have the recurrence (2.8) for the functions ck,i(j, m, n).
For the recurrence (2.9), everything continues to work out nicely as above. Note that for

3 ≤ i ≤ k, ck,i(j, m, n) − ck,i−2(j, m, n) counts those overpartitions λ counted by ck,i(j, m, n)
having exactly i−1 or i−2 ones. We consider two cases. First, if 1 does not occur, then if λ has

i−1 ones then there can be at most k− i twos in λ and therefore at most k− i ones in λ̂. If λ has
i−2 ones there can still be at most k−i twos, or else the defining condition (iii) would be violated.

So in either case, there are at most k−i ones in λ̂. And, in either case, if λ̂ is saturated at ℓ, using
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(2.10) and (2.11) as usual shows that ℓfℓ(λ̂) + (ℓ + 1)fℓ+1(λ̂) + (ℓ + 1)fℓ+1(λ̂) ≡ k − i + Vbλ(ℓ)

(mod 2). So λ̂ is an overpartition counted by ck,k−i+1(j, m − i + 1, n − m) in the first case, and
ck,k−i+1(j, m − i + 2, n − m) in the second case.

Now if 1 does occur in λ, then whether there are i−1 or i−2 ones there can be up to k− i+1

twos, and so λ̂ has at most k − i + 1 ones. Finally, if λ̂ is saturated at ℓ, then ℓfℓ(λ̂) + (ℓ +

1)fℓ+1(λ̂)+ (ℓ+1)fℓ+1(λ̂) ≡ k − i + 1 + Vbλ(ℓ) (mod 2). Therefore λ̂ is an overpartition counted
by ck,k−i+2(j − 1, m− i + 1, n−m) if λ has i− 1 ones and ck,k−i+2(j − 1, m− i + 2, n−m) if λ
has i − 2 ones. Again the mappings here are reversible, so we have the recurrence (2.9) for the
functions ck,i(j, m, n).

To finalize the claim that the two families of functions are equal, we note that

bk,i(j, m, n) =

{
0, if j ≤ 0, m ≤ 0 or n ≤ 0, and (j, m, n) 6= (0, 0, 0)

1, if (j, m, n) = (0, 0, 0),
(2.12)

which is indeed also true for the ck,i(j, m, n). �

We now deduce Corollaries 1.2 - 1.4. First, we’ll prove a proposition which is a piece of
Theorem 1.5 and from which it follows that several instances of the J̃k,i(a; 1; q) are infinite
products.

Proposition 2.3. We have

J̃k,i(a; 1; q) =
(−aq)∞
(q)∞

∑

n∈Z

(−1/a)n(−1)nanq(2k−1)(n+1

2 )−in+n

(−aq)n

. (2.13)

Proof. Using the definition, we have

J̃k,i(a; 1; q) = H̃k,i(a; q; q) + aqH̃k,i(a; q; q)

=
(−aq)∞
(q)∞

∑

n≥0

(−a)nqkn2+kn−(n

2)−in(1 − qi(2n+1))(−1/a)n

(−aq)n+1

+ aq
(−aq)∞
(q)∞

∑

n≥0

(−a)nqkn2+kn−(n

2)−(i−1)n(1 − q(i−1)(2n+1))(−1/a)n

(−aq)n+1

=
(−aq)∞
(q)∞

∑

n≥0

(−a)nqkn2+kn−(n

2)−in(−1/a)n

(−aq)n+1

(
1 − q(2n+1)i + aqn+1 − aqn+1+(i−1)(2n+1)

)

=
(−aq)∞
(q)∞

∑

n≥0

(−a)nqkn2+kn−(n

2)−in(−1/a)n

(−aq)n

−
(−aq)∞
(q)∞

∑

n≥0

(−a)nqkn2+kn−(n

2)−in+i(2n+1)(−1/a)n

(−aq)n+1
(1 + aq−n).
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In this last sum, we replace n by −n − 1 and simplify using the fact that

(x)−n =
(−1)nq(

n+1

2 )

xn(q/x)n

.

The result is precisely (2.13). �

Corollary 2.4. We have

J̃k,i(0; 1; q) =
(qi, q2k−i, q2k; q2k)∞

(q)∞
, (2.14)

J̃k,i(1/q; 1; q2) =
(−q; q2)∞(q2i−1, q4k−2i−1, q4k−2; q4k−2)∞

(q2; q2)∞
, (2.15)

and

J̃k,1(1/q, 1; q) =
(−q)∞(q, q2k−2, q2k−1; q2k−1)∞

(q)∞
. (2.16)

Proof. These are immediate upon invoking Proposition 2.3 and the Jacobi triple product identity,
∑

n∈Z

znq(
n+1

2 ) = (−zq,−1/z, q)∞. (2.17)

�

We are now ready to prove the corollaries. In the following, we consider that λ is an over-
partition of n with j overlined parts, hence it is counted in the coefficient of qnaj of J̃k,i(a, 1; q).
This overpartition is such that (i) f1(λ) + f1(λ) ≤ i − 1, (ii) fℓ(λ) + fℓ+1(λ) + fℓ+1(λ) ≤
k − 1, and (iii) if λ is saturated at ℓ, that is, if the maximum in (ii) is achieved, then
ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) + (ℓ + 1)fℓ+1(λ) ≡ i − 1 + Vλ(ℓ) (mod 2).

For Corollary 1.2, we consider the functions J̃k,i(0; 1; q). From Theorem 1.1 we easily see that

the coefficient of qn in Jk,i(0; 1; q) is B̃k,i(n). Indeed when (a, q) = (0, q), this implies that λ
has no overlined parts, that is fℓ = Vλ(ℓ) = 0 for all ℓ. Therefore the conditions (i), (ii) and
(iii) are now (i) f1(λ) ≤ i − 1, (ii) fℓ(λ) + fℓ+1(λ) ≤ k − 1, and (iii) if the maximum in (ii) is
achieved at ℓ, then ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) ≡ i − 1 (mod 2). On the other hand, from (2.14) of

Corollary 2.4, the coefficient of qn in J̃k,i(0; 1; q) is also Ãk,i(n). �

For Corollary 1.3, we use the functions J̃k,i(1/q; 1; q2). A little thought reveals that the co-

efficient of qn in J̃k,i(1/q; 1; q2) is B̃2
k,i(n). When (a, q) = (1/q, q2), for any ℓ all the parts equal

to ℓ̄ in λ are changed to 2ℓ− 1 and all the parts equal to ℓ in λ are changed to 2ℓ. This implies
that (i) f1(λ)+f2(λ) ≤ i−1, (ii) f2ℓ(λ)+f2ℓ+1(λ)+f2ℓ+2(λ) ≤ k−1, and (iii) if the maximum
in (ii) is achieved at ℓ, then ℓf2ℓ(λ) + (ℓ + 1)f2ℓ+2(λ) + (ℓ + 1)f2ℓ+1(λ) ≡ i− 1 + V o

λ (ℓ) (mod 2).

Rewriting of the product in (2.15) as

(q2; q4)∞(q8k−4; q8k−4)∞(q2i−1, q4k−2i−1; q4k−2)∞(−q2k−1; q4k−2)∞
∏

n6≡2k−1 (mod 4k−2)

1

(1 − qn)

shows that the coefficient of qn in J̃k,i(1/q; 1; q2) is also Ã2
k,i(n). �
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Figure 1. This path has four peaks : two NES peaks (located at (2, 2) and
(6, 1)) and two NESE peaks (located at (4, 1) and (7, 1)). Its major index is
2 + 4 + 6 + 7 = 19.

Finally, for Corollary 1.4, we use the functions J̃k,1(1/q; 1; q). Again it may readily be seen

that the coefficient of qn therein is B̃3
k(n). Indeed when i = 1, f1(λ) = f1(λ) = 0, and when

(a, q) = (1/q, q) all the overlined parts of λ are decreased by one. That implies that (i) f1(λ) = 0,
(ii) fℓ(λ) + fℓ(λ) + fℓ+1(λ) ≤ k − 1, and (iii) if the maximum in condition (ii) is achieved at ℓ,
then ℓfℓ(λ) + (ℓ + 1)fℓ(λ) + (ℓ + 1)fℓ+1(λ) ≡ Vλ(ℓ − 1) (mod 2). As Vλ(ℓ − 1) + fℓ(λ) = Vλ(ℓ),
this is equivalent to ℓfℓ(λ) + ℓfℓ(λ) + (ℓ + 1)fℓ+1(λ) ≡ Vλ(ℓ) (mod 2). On the other hand, from

(2.16) of Corollary 2.4, the coefficient qn in J̃k,1(1/q; 1; q) is also Ã3
k(n). �

3. Lattice Paths

We study paths in the first quadrant that use four kinds of unitary steps:

• North-East NE : (x, y) → (x + 1, y + 1),
• South-East SE : (x, y) → (x + 1, y − 1),
• South S : (x, y) → (x, y − 1),
• East E : (x, 0) → (x + 1, 0).

The height corresponds to the y-coordinate. A South step can only appear after a North-East
step and an East step can only appear at height 0. The paths must end with a North-East or
South step. A peak is a vertex preceeded by a North-East step and followed by a South step
(in which case it will be called a NES peak) or by a South-East step (in which case it will be
called a NESE peak). If the path ends with a North-East step, its last vertex is also a NESE
peak. The major index of a path is the sum of the x-coordinates of its peaks (see Figure 1 for
an example). When the paths have no South steps, this is the definition of the paths in [13].

Let k and i be a positive integers with i ≤ k. Let Ẽk,i(n, j) be the number of paths of major
index n with j South steps which satisfy the following special (k, i)-conditions: (i) the paths
start at height k − i, (ii) their height is less than k, (iii) every peak of coordinates (x, k − 1)
satisfies x − u ≡ i − 1 (mod 2) where u is the number of South steps to the left of the peak.

Let Ẽk,i(a, q) be the generating function of those paths, that is Ẽk,i(a, q) =
∑

n,j Ẽk,i(n, j)ajqn.

Let Ẽk,i(N) be the generating function of paths counted by Ẽk,i(a, q) which have N peaks.

Moreover, for 0 ≤ i < k, let Γ̃k,i(N) be the generating function of paths obtained by deleting

the first NE step of a path which is counted in Ẽk,i+1(N) and begins with a NE step. Then

Proposition 3.1.

Ẽk,i(N) = qN Ẽk,i+1(N) + qN Γ̃k,i−1(N); 0 < i < k (3.1)

Γ̃k,i(N) = qN Γ̃k,i−1(N) + (a + qN−1)Ẽk,i+1(N − 1); 0 < i < k (3.2)

Ẽk,k(N) = qN Ẽk,k−1(N) + qN Γ̃k,k−1(N) (3.3)

Ẽk,i(0) = 1 Γ̃k,0(N) = 0. (3.4)
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Proof. We prove that by induction on the length of the path. If the path is empty, it is the path
counted in Ẽk,i(0). For 1 < i < k, if the path is not empty, then we take off its first step. When
we do this, we increase or decrease i by 1 and thus change the parity of i− 1 ; moreover, all the
peaks are shifted by 1, so the parity of x−u− i is not changed (if the step we remove is a South
step, the peaks are not shifted but u decreases by 1 for all peaks, so the result is the same).
The case i = 0 is straightforward as a path that starts at height k − 1 can not start with a
North-East step. The case i = k needs further explanation. For these paths the fact that every
peak of coordinates (x, k− 1) satisfies x−u ≡ k− 1 (mod 2) is equivalent to the fact that every
peak of coordinates (x, k − 1) has an even number of East steps to its left. Therefore the paths

counted in Ẽk,k(N) that start with an East step where this step is deleted are in bijection with

the paths counted in Ẽk,k−1(N). This bijection is easy to describe. If the path does not have
any other East step, then the path is shifted up, i.e each vertex of the path (x, y) is changed to

(x, y + 1). This creates a path in Ẽk,k−1(N) that does not have any vertex of the form (x, 0). If
the path does contain an East step, then the path before the first East step is shifted up, the
East step is changed to a South-East step and the rest of the path is not changed. This creates
a path in Ẽk,k−1(N) that has at least one vertex of the form (x, 0). Moreover it is easy to see

that the paths counted in Ẽk,k(N) that start with a South-East step where this step is deleted

are the paths counted in Γ̃k,k−1(N). �

These recurrences uniquely define the series Ẽk,i(N) and Γ̃k,i(N). We get that

Theorem 3.2.

Ẽk,i(N) = aNq(
N+1

2 )(−1/a)N

N∑

n=−N

(−1)n q(k−1)n2+(k−i)n

(q)N−n(q)N+n

(3.5)

Γ̃k,i(N) = aNq(
N

2 )(−1/a)N

N−1∑

n=−N

(−1)n q(k−1)n2+(k−i−1)n

(q)N−n−1(q)N+n

(3.6)

The proof is omitted. It uses simple algebraic manipulation to prove that these generating
functions satisfy the recurrence relations of Proposition 3.1.

We recall a proposition proved in [17] that will enable us to compute Ẽk,i(a, q) from the
recurrences:

Proposition 3.3. [17] For any n ∈ Z

∑

N≥|n|

(−azq)n(−qn/a)N−nq(
N+1

2 )−(n+1

2 )zN−naN−n

(zq)N+n(q)N−n

=
(−azq)∞
(zq)∞

.

From (3.5), summing on N using Proposition 3.3, we get

∑

n,j≥0

Ẽk,i(n, j)ajqn =
(−aq)∞
(q)∞

∑

n∈Z

(−1/a)n(−1)nanq(2k−1)(n+1

2 )−in+n

(−aq)n

. (3.7)

This is Equation (1.6).
We now need to recall the definition of the relative height of a peak. This notion was defined

by Bressoud in [13]. The definition we use is a simpler version taken from [9].
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Definition 3.4. [9] The relative height of a peak (x, y) is the largest integer h for which we can
find two vertices on the path, (x′, y − h) and (x′′, y − h), such that x′ < x < x′′ and such that
between these two vertices there are no peaks of height y and every peak of height y has weight
≥ x.

We now state a result of Bressoud [13] which will be used to prove our next proposition.

Lemma 3.5. [13]

qn2
2
+···+n2

k−1
+ni+···+nk−1

(q)n2−n3
. . . (q)nk−2−nk−1

(q2; q2)nk−1

is the generating function of the paths with no South steps which start at height k − i, whose
height is less than k − 1, with nj peaks of relative height ≥ j − 1 for 2 ≤ j ≤ k − 1 and where
the peaks of coordinates (x, k − 2) are such that x is congruent to i − 2 modulo 2.

Proposition 3.6.

q(
n1+1

2 )+n2
2
+···+n2

k−1
+ni+···+nk−1(−1/a)n1

an1

(q)n1−n2
. . . (q)nk−2−nk−1

(q2; q2)nk−1

is the generating function of the paths (counted by major index and number of south steps)
satisfying the special (k, i)-conditions and having nj peaks of relative height ≥ j for 1 ≤ j ≤ k−1.

Proof. It is similar to that of Proposition 6.1 of [17] except that its starting point is Lemma 3.5.
We first insert a NES peak at each peak. This “volcanic uplift” operation increases the relative
height of each peak by one. Moreover, it transforms a peak of height k− 2 into a peak of height
k − 1 and changes the parity of x − u for all peaks. Indeed, if we consider the jth peak from
the left, its x-coordinate increases by j and it has j − 1 South steps to its left after the uplift.
Therefore, for this peak, x − u has increased by j − (j − 1) = 1. We then insert n1 − n2 NES
peaks of relative height one at the begining of the path, transform some of the NES peaks into
NESE peaks and move some of the peaks of relative height one we inserted. These operations
do not modify the parity of x − u for any peak. Besides, it is important to note that when we
move the peaks, the distribution of relative heights is not modified. �

4. Successive Ranks

The Frobenius representation of an overpartition [16, 22] of n is a two-rowed array
(

a1 a2 ... aN

b1 b2 ... bN

)

where (a1, . . . , aN ) is a partition into distinct nonnegative parts and (b1, . . . , bN ) is an over-
partition into nonnegative parts where the first occurrence of a part can be overlined and
N +

∑
(ai + bi) = n.

We call that the Frobenius representation of an overpartition because it is in bijection with
overpartitions. We say that the generalized Durfee square of an overpartition λ has side N if N
is the largest integer such that the number of overlined parts plus the number of non-overlined
parts greater or equal to N is greater than or equal to N .

Proposition 4.1. [17] There exists a bijection between overpartitions whose Frobenius repre-
sentation has N columns and whose bottom line has j non-overlined parts and overpartitions
with generalized Durfee square of size N and j overlined parts.
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We now define the successive ranks.

Definition 4.2. [17] The successive ranks of an overpartition can be defined from its Frobenius
representation. If an overpartition has Frobenius representation

(
a1 a2 · · · aN

b1 b2 · · · bN

)

then its ith successive rank ri is ai−bi minus the number of non-overlined parts in {bi+1, . . . , bN}.

For example, the successive ranks of

(
7 4 2 0
3 3 1 0

)
are (2, 0, 1, 0).

The purpose of this Section is to prove the following Proposition.

Proposition 4.3. There exists a one-to-one correspondence between the paths of major index
n with j South steps, counted by Ẽk,i(n, j) and the overpartitions of n with j non-overlined
parts in the bottom line of their Frobenius representation and whose successive ranks lie in
[−i + 2, 2k − i − 2], counted by C̃k,i(n, j). This correspondence is such that the paths have N
peaks if and only if the Frobenius representation of the overpartition has N columns.

Proof. Let Ek,i(n, j) be the number of paths counted by Ẽk,i(n, j) where the last condition
(x−u ≡ i−1 (mod 2) for the peaks of height k−1) is dropped. In [17], we proposed a bijection
between paths counted by Ek,i(n, j) and overpartitions of n with j non-overlined parts in the
bottom line of their Frobenius representation and whose successive ranks lie in [−i+2, 2k−i−1].

We recall now this map. Given a lattice path which starts at (0, k − i) and a peak (x, y), let
the parameter u be the number of South steps to the left of the peak. We map this peak to the
pair (s, t) where

s = (x + k − i − y + u)/2

t = (x − k + i + y − 2 − u)/2

if there are an even number of East steps to the left of the peak, and

s = (x + k − i + y − 1 + u)/2

t = (x − k + i − y − 1 − u)/2

if there are an odd number of East steps to the left of the peak. Moreover, we overline t if the
peak is a NESE peak. The map is easily reversible. In both cases, s and t are integers and we
have s + t + 1 = x. The successive rank of that pair (s, t) is r = s− t− u and the conditions on
the paths imply that −i + 2 ≤ r ≤ 2k − i − 1.

Let N be the number of peaks in the path and j the number of South steps. Let (xi, yi) be
the coordinates of the ith peak from the right and (si, ti) be the corresponding pair. Then we
proved in [17] that (

s1 s2 · · · sN

t1 t2 · · · tN

)

is the Frobenius representation of an overpartition whose weight is

N∑

i=1

(si + ti + 1) =
N∑

i=1

xi
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(i.e. the major index of the corresponding path), with j non-overlined parts in the bottom line
(i.e. the number of South steps of the corresponding path) and whose successive ranks lie in
[−i + 2, 2k − i − 1].

If we apply this map to a path counted by Ẽk,i(n, j) then we can show that no successive
rank can be equal to 2k − i− 1. Indeed, if it was the case, we would have s− t− u = 2k − i− 1
and from the map we know that s− t− u = k− i− y + 1 or k− i + y. The first case is therefore
impossible. The second case implies that y = k − 1 and s = 1

2(x + u + 2k − i − 2). As s is an
integer, we have x − u ≡ i (mod 2). This is forbidden by the last condition of the definition of

Ẽk,i(n, j). �

5. Generalized self-conjugate overpartitions

We define an operation for overpartitions called k-conjugation, where k ≥ 2 is an integer.
From the Frobenius representation of an overpartition π, we use Algorithm III of [22] to get
three partitions λ1, λ2 and µ as described in the following paragraph.

Let N be the number of columns of the Frobenius representation. We get λ1, which is a
partition into N nonnegative parts, by removing a staircase from the top row (i.e. we remove 0
from the smallest part, 1 from the next smallest, and so on). We get λ2 (which is a partition into
N nonnegative parts) and µ (which is a partition into distinct nonnegative parts less than N)
as follows. First, we initialize λ2 to the bottom row. Then, if the mth part of the bottom row
is overlined, we remove the overlining of the mth part of λ2, we decrease the m − 1 first parts
of λ2 by one and we add a part m − 1 to µ. For example, the overpartition whose Frobenius
representation is (

7 5 4 2 0
6 4 4 3 1

)

gives λ1 = (3, 2, 2, 1, 0), λ2 = (4, 3, 3, 2, 1) and µ = (4, 1).
Let λ′

1 (resp. λ′
2) be the conjugate of λ1 (resp. of λ2). λ′

1 and λ′
2 are thus partitions into

parts less than or equal to N . Recall that the Durfee square of a partition is the largest square
contained in its diagram [7] and that the ith Durfee square is the Durfee square of the partition
that is under the (i − 1)st Durfee square.

We now consider two regions. The first region is the portion of λ′
2 below its (k− 2)-th Durfee

square (for k = 2, this region is λ′
2). The second region consists of the parts of λ′

1 which are less
than or equal to the size of the (k − 2)-th Durfee square of λ′

2 (for k = 2, this region is λ′
1).

Definition 5.1. The k-conjugation consists in interchanging these two regions (if λ′
2 has less

than k − 2 Durfee squares, the k-conjugation is the identity).

Example 1. We consider the overpartition π whose Frobenius representation is
(

14 13 10 8 7 5 3 0
14 12 10 8 7 5 3 2

)
.

The above algorithm gives us λ1 = (7, 7, 5, 4, 4, 3, 2, 0), λ2 = (11, 10, 8, 7, 6, 5, 3, 2) and µ =
(5, 3, 1). We thus have λ′

1 = (7, 7, 6, 5, 3, 2, 2) and λ′
2 = (8, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1). λ′

1 and λ′
2

are represented in Figure 2, where the two regions defined above (for k = 4) are highlighted.
If we swap these two regions, we get λ′

1 = (7, 7, 6, 5, 2, 2, 1) and λ′
2 = (8, 8, 7, 6, 6, 5, 4, 3, 3, 2, 2).

Conjugating thse two partitions, we have λ1 = (7, 6, 4, 4, 4, 3, 2, 0) and λ2 = (11, 11, 9, 7, 6, 5, 3, 2).
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λ′
1 λ′

2 λ′
1 λ′

2

Figure 2. Illustration of the 4-conjugation (see Example 1). For the
initial overpartition π (on the left), we have λ′

1 = (7, 7, 6, 5, 3, 2, 2)
and λ′

2 = (8, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1). The regions highlighted are inter-
changed by 4-conjugation, which gives λ′

1 = (7, 7, 6, 5, 2, 2, 1) and λ′
2 =

(8, 8, 7, 6, 6, 5, 4, 3, 3, 2, 2) for π(4), the 4-conjugate of π (on the right).

Applying Algorithm III of [22] in reverse (remember that µ = (5, 3, 1), we get that the 4-conjugate
of π is

π(4) =

(
14 12 9 8 7 5 3 0
14 13 11 8 7 5 3 2

)

Remark 5.2. For k = 2, we just swap λ′
1 and λ′

2 (which boils down to swapping λ1 and λ2)
and we get the F -conjugation defined by Lovejoy [22].

Remark 5.3. If there are no overlined parts, we get the k-conjugation for partitions defined by
Garvan [18]. Indeed, for partitions, the (k − 2)-th Durfee square of λ′

2 is in fact the (k − 1)-th
Durfee square of the partition π. Consequently, the parts of λ′

2 below this Durfee square (first
region) are the parts of π below its (k−1)-th Durfee square. Moreover, the parts of λ′

1 which are
less than or equal to the size of the (k−2)-th Durfee square of λ′

2 (second region) are the columns
of π to the right of its first Durfee square whose length is less than or equal to the size of the
(k − 1)-th Durfee square of π. We thus see that the regions we interchange in the k-conjugation
are the same as in [18].

Definition 5.4. We say that an overpartition is self-k-conjugate if it is fixed by k-conjugation.

Proposition 5.5. The generating function of self-k-conjugate overpartitions is

∑

n1≥n2≥...≥nk−1≥0

q(
n1+1

2 )+n2
2
+···+n2

k−1(−1/a)n1
an1

(q)n1−n2
. . . (q)nk−2−nk−1

(q2; q2)nk−1

where n1 is the number of columns of the Frobenius symbol and n2, . . . , nk−1 are the sizes of the
k − 2 first successive Durfee squares of λ′

2.

Proof. We decompose a self-k-conjugate overpartition in the following way :

• µ (region IV in Figure 3), which is counted by

an1(−1/a)n1
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λ′
1

I

II
III

µ

IV

λ′
2

V

V VI

VII

Figure 3. Decomposition of a self-k-conjugate overpartition (in this example,
k = 4).

• the staircase of the top row and the part n1 (region III), which are counted by

q(
n1+1

2 )

• the k − 2 Durfee squares of λ′
2 (region V), which are counted by

qn2
2
+···+n2

k−1

• the regions between the Durfee squares of λ′
2 (region VI), which are counted by

[
n1

n2

]

q

· · ·

[
nk−2

nk−1

]

q

• the parts in λ′
1 which are > nk−1 and of course ≤ n1 (region I) : they are counted by

1

(1 − qnk−1+1) · · · (1 − qn1)
=

(q)nk−1

(q)n1

• the two identical regions (regions II and VII), which are counted by

1

(q2; q2)nk−1

.

Summing on n1, n2, . . . , nk−1, we get the generating function :

∑

n1≥n2≥...≥nk−1≥0

(−1/a)n1
an1q(

n1+1

2 )qn2
2
+···+n2

k−1

[
n1

n2

]

q

· · ·

[
nk−2

nk−1

]

q

(q)nk−1

(q)n1

1

(q2; q2)nk−1

=
∑

n1≥n2≥...≥nk−1≥0

q(
n1+1

2 )+n2
2
+···+n2

k−1(−1/a)n1
an1

(q)n1−n2
. . . (q)nk−2−nk−1

(q2; q2)nk−1

�

Corollary 5.6. When there are no overlined parts, a → 0 and we get the generating function
of self-k-conjugate partitions [18].

Definition 5.7. Let i and k be integers with 1 ≤ i ≤ k. We say that an overpartition is self-
(k, i)-conjugate if it is obtained by taking a self-k-conjugate overpartition and adding a part nj

(nj is the size of the (j − 1)-th successive Durfee square of λ′
2) to λ′

2 for i ≤ j ≤ k − 1 (if i = k,
no parts are added).



AN EXTENSION TO OVERPARTITIONS OF THE ROGERS-RAMANUJAN IDENTITIES FOR EVEN MODULI17

Remember that we denote by D̃k,i(n, j) the number of self-(k, i)-conjugate overpartitions
with j overlined parts (or, equivalently, the number of self-(k, i)-conjugate overpartitions whose
Frobenius representation has j non-overlined parts in its bottom row: see Proposition 4.1).

Proposition 5.8.

Ẽk,i(a, q) =
∑

n,j

D̃k,i(n, j)ajqn.

Proof. It is obvious from Proposition 5.5 that

∑

n,j

D̃k,i(n, j)ajqn =
∑

n1≥n2≥...≥nk−1≥0

q(
n1+1

2 )+n2
2
+···+n2

k−1
+ni+···+nk−1(−1/a)NaN

(q)n1−n2
. . . (q)nk−2−nk−1

(q2; q2)nk−1

which is Ẽk,i(a, q) by Proposition 3.6. �

6. Concluding Remarks

We would like to mention that the Jk,i(a; x; q) and J̃k,i(a; x; q) can be embedded in a family of
functions that satisfy recurrences like those in Lemma 2.1 and are sometimes infinite products
when x = 1. For m ≥ 1 we define

Jk,i,m(a; x; q) = Hk,i,m(a; xq; q) + axqHk,i−1,m(a; xq; q), (6.1)

where

Hk,i,m(a; x; q) =
∑

n≥0

(−a)nqkn2+n−in−(m−1)(n

2)xn(k−m−1)(1 − xiq2ni)(−1/a)n(−axqn+1)∞(xm; qm)n

(qm; qm)n(x)∞
.

(6.2)

The case m = 1 gives the Jk,i(a; x; q) and m = 2 corresponds to the J̃k,i(a; x; q). Equations (2.1)
and (2.2) of Lemma 2.1 are true for the Hk,i,m(a; x; q), and following the proof of (2.3), one may
show that

Hk,i,m(a; x; q) − Hk,i−m,m(a; x; q) = xi−m(1 + x + x2 + · · · + xm−1)Jk,k−i+1,m(a; x; q).

It would certainly be worth investigating what kinds of combinatorial identities are stored in
these general series.
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