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Abstract. In this paper we propose two bijections between permutation
tableaux and permutations. These bijections show how natural statistics on
the tableaux are equidistributed to classical statistics on permutations: de-
scents, RL-minima and pattern enumerations. We then use those bijections to
define subclasses of permutation tableaux that are in bijection with set parti-
tions.

Keywords: enumeration, bijections, permutations, tableaux, permutation
patterns.

1. Introduction

Permutation tableaux are fairly new objects that come from the enumeration of
the totally positive Grassmannian cells [12, 15]. Surprisingly they are also connected
to a statistical physics model called the Partially ASymmetric Exclusion Process
[5, 7, 8]. As in [13], a permutation tableau T is a shape (the Ferrers diagram of a
partition into non negative parts) together with a filling of the cells with 0’s and
1’s such that the following properties hold:

(1) Each column contains at least one 1.
(2) There is no 0 which has a 1 above it in the same column and a 1 to its left

in the same row.

An example of a permutation tableau is given in Figure 1. Different statistics on
permutation tableaux were defined in [8, 13]. We list a few here. The length of a
tableau is the number of rows plus the number of columns of the tableau. A zero
in a permutation tableau is restricted if there is a one above it in the same column.
A row is unrestricted if it does not contain a restricted entry. A one is superfluous
if it contains a one above itself in the same column.
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Figure 1: Example of a permutation tableau

We label the South-East border of the shape of the tableau from 1 to its length,
going from top-right to bottom-left. On Figure 1, a permutation tableau of shape
(3, 3, 3, 3, 1) and length 8 is given. The rows 1, 3 and 7 are unrestricted and the
rows 2 and 4 are restricted.

Our main interest here is that there exist n! permutation tableaux of length n.
To our knowledge two bijections between permutations and permutation tableaux
are known and appeared in [2, 13]. The bijection given in [13] is quite complicated;
but a lot of statistics of the permutation (weak excedances, crossings [5], alignments
[15]. . . ) can be read from the tableau. In particular the set of weak excedances of
the permutation corresponds to the set of rows of the tableau. See [13] for many
more details. The bijection in [2] is the same as the one in [13], except that before
applying the map some of the entries equal to one are changed into zero.
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In this paper, we focus on descent statistics and generalized pattern enumeration
and give two bijections between permutation tableaux and permutations.

Let us consider a permutation σ = (σ1, . . . , σn) of [n] = {1, 2, . . . , n}. For i < n,
we say that σi is a descent if σi > σi+1, otherwise we call it an ascent. The shape
of a permutation of n is a partition λ = (λ1, . . . , λk) with λk ≥ 0 such that the ith

step of the boundary of λ is West (resp. South) if i is a descent (resp. ascent) of
σ. For example, if σ = (7, 1, 2, 6, 4, 3, 5), then the descents are 7, 6 and 4 and the
shape of σ is (3, 3, 3, 2). As in [1], the generalized pattern (31-2) occurs in σ if there
exist i < j such that σi−1 > σj > σi. The number of occurrences of (31-2) in σ is
the cardinality of the set {1 < i < j | σi−1 > σj > σi}, and will be written 31-2(σ).
In the previous example, σ has six occurrences of the pattern (31-2). An entry σi

is a RL-minimum of a permutation σ if and only if σi < σ` for any ` > i.
Our main result is the following:

Theorem 1. There exists a bijection ξ between permutations of [n] and permutation
tableaux of length n. This bijection is such that if T = ξ(σ) then

(1) the shape of T is the same as the shape of σ.
(2) i is an unrestricted row of T if and only if i is a RL-minimum of σ.
(3) T has s superfluous ones if and only if there are s occurrences of the pattern

(31-2) in σ.

Remark. Theorem 1 without item (2) is implied by the composition of the
two bijections presented in [13]. Our map is different from this composition or any
variation of it and gives the full Theorem 1.

In Section 2, we give a very simple proof that there are n! permutation tableaux
of length n. We present in Section 3 a first bijection between permutation tableau
and permutations which gives Theorem 1 without item (3). To prove Theorem
1 we give the other bijection in Section 4. We give some applications to pattern
enumeration in Section 5, define some families of tableaux counted by Bell numbers
in 6 and we conclude in Section 7.

2. How many tableaux?

Let t(n, k, `) be the number of tableaux of length n with k + 1 unrestricted rows
and ` ones in the first row, and let Tn(x, y) =

∑

k,` t(n, k, `)xky`.

Proposition 1. If n > 1,

Tn(x, y) =
n−1
∏

i=0

(x + y + i)

and T1(x, y) = 1. In particular Tn(1, 1), the number of tableaux of length n, is equal
to n!.

Proof. The proof uses an argument close to the one used in [15] to enumerate
permutation tableaux with at most two rows. Given a tableau of length n− 1 with
j + 1 unrestricted rows and ` ones in the first row, one can

• add an empty row and create a tableau of length n with j + 2 unrestricted
rows and ` ones in the first row or,
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• one can add a column to this tableau. In this case, the cells of the new
column need to be filled with zeros and ones. The cells of the restricted
rows must get a zero to make sure the tableau is still a permutation tableau.
The cells of the unrestricted rows can get a zero or a one. Number the
unrestricted rows from 0 to j starting from the top. If k − i + 1 cells get a
one and the topmost one is put in the ith unrestricted row, then the tableau
has k + 1 unrestricted rows and there are

(

j−i

k−i

)

ways to do this. Therefore

there are
(

j

k

)

ways to create a tableau of length n with k + 1 unrestricted

rows and `+ 1 ones in the first row and
∑

i≥1

(

j−i
k−i

)

=
(

j
k−1

)

ways to create
a tableau of length n with k + 1 unrestricted rows and ` ones in the first
row.

Therefore if 0 ≤ l < n and 0 ≤ k < n we have

(1) t(n, k, `) =

n−1
∑

j=k

(

j

k

)

t(n − 1, j, ` − 1) +

(

j

k − 1

)

t(n − 1, j, `),

while t(1, 0, 0) = 1, and t(n, k, `) = 0 otherwise. Using this recurrence, we directly
get that Tn(x, y) = (x + y)Tn−1(x + 1, y) if n > 1 and T1(x, y) = 1. This completes
the proof. �

In particular, Tn(x, y) = Tn(y, x) and we get a symmetry result which was proved
combinatorially in [8].

Corollary 1. The number of permutation tableaux of length n with k + 1 unre-
stricted rows and ` ones in the first row is equal to the number of tableaux of length
n with ` + 1 unrestricted rows and k ones in the first row.

The proposition also implies a result proved in [6] thanks to the bijection of [13] :

Corollary 2. The number of permutation tableaux of length n with k + 1 unre-
stricted rows (or k ones in the first row) is equal to the first Stirling number s(n, k)
which enumerates the number of permutations of [n] with k cycles.

3. Bijection I

In this section we exhibit a bijection between permutation tableaux of length n

and permutations of [n]. This bijection is such that if σ is the image of T then

(1) the shape of T and the shape of σ are the same and
(2) the list of the RL-minima of σ is the same as the list of the labels of the

unrestricted rows of T .

Therefore this proves the first two items of Theorem 1.

A zero in a permutation tableau is a rightmost restricted zero if it is a restricted
zero and there is no restricted zero to its right in the same row. The bijection relies
on the following claim. A permutation tableau is uniquely determined by its top-
most ones and rightmost restricted zeros. Indeed if one knows the positions of the
topmost ones (resp. rightmost restricted zeros), then all the cells above (resp. to
their left) them are filled with zeros. The rest of the cells are filled with superfluous
ones.
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From tableaux to permutations. We start with the tableau T of shape λ.
Then we initialize the permutation σ to the list of the labels of the unrestricted
rows in increasing order. Now for each column, starting from the left proceeding
to the right, if the column is labeled by j and if (i, j) is the topmost one of the
column then we add j to the left of i in the permutation σ. Moreover if column
j contains rightmost restricted zeros in rows i1, . . . , ik then we add i1, . . . , ik in
increasing order to the left of j in the permutation σ.

It is easy to see that that the result is a permutation of shape λ. We now prove
that the unrestricted rows correspond to the RL-minima of the permutation. This
is true when we initialize the permutation to the list of the labels of the unrestricted
rows. When we add a descent this does not change the RL-minima, as a descent
can not be a RL-minima. When we add the label of a restricted row, it is always
inserted to the left of the label of an unrestricted row that has a smaller label.
Therefore the RL-minima do not change.

Example 1. We start with the tableau in Figure 1. The unrestricted rows are
rows 1,3 and 7. The rightmost restricted zeros are in cells (2, 8) and (4, 8). We start
with the permutation (1, 3, 7), We add 8 to the left of 1 and add 2 and 4 to the
left of 8. We get (2, 4, 8, 1, 3, 7). We add 6 to the left of 3 and get (2, 4, 8, 1, 6, 3, 7).
Finally we add 5 to the left of 1. The permutation is (2, 4, 8, 5, 1, 6, 3, 7).
Example 2. We start with the tableau in Figure 2. The unrestricted rows are
rows 1 and 6. The rightmost restricted zeros are in cells (4, 7) and (2, 3). We start
with the permutation (1, 6). We add 8 to the left of 1 and get (8, 1, 6). We add 7
to the left of 1 and 4 to the left of 7 and get (8, 4, 7, 1, 6). We then add 5 to the left
of 4 and get (8, 5, 4, 7, 1, 6). Finally we add 3 to the left of 1 and 2 to the left of 3.
The result is (8, 5, 4, 7, 2, 3, 1, 6).
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Figure 2: Image of the permutation (8, 5, 4, 7, 2, 3, 1, 6).

The reverse is as easy to define.
From permutations to tableaux. Let σ be a permutation of {1, . . . , n} and

let T be its image. We first draw the shape of the tableau T which is the same
as the shape of σ. For i from 1 to n, we draw a West step if i is a descent and
a South step otherwise and we label those steps from 1 to n. An example for
σ = (2, 4, 8, 5, 1, 6, 3, 7) is given in Figure 1, as 5,6 and 8 are the descents of σ. Now
let us fill the cells of the tableau T with topmost ones and rightmost restricted
zeros. As remarked at the beginning of the section, the rest of the entries can be
filled in a unique way when the topmost ones and the rightmost restricted zeros are
known. Let (i, j) be the eastmost and southmost cell that is not yet visited and is
such that i and j are adjacent in the permutation.
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• if i is before j, fill cell (i, j) with a rightmost restricted zero and delete i

from the permutation σ.
• otherwise fill cell (i, j) with a topmost one and delete j from the permuta-

tion σ.

At the end of this process, σ is the list of the labels of the unrestricted rows of T

in increasing order. Then fill the rest of the cells of T . One can see that this is the
reverse mapping.

Example 1. We start with σ = (2, 4, 8, 5, 1, 6, 3, 7), and we draw the shape of T (see
Figure 1). We first fill (1,5) with a topmost one and delete 5 from the permutation.
The permutation is now σ = (2, 4, 8, 1, 6, 3, 7). We then fill cell (3, 6) with a topmost
one and delete 6 from the permutation. The permutation is now σ = (2, 4, 8, 1, 3, 7).
Then cell (4, 8) gets a rightmost restricted zero and 4 is deleted. The permutation
is now σ = (2, 8, 1, 3, 7). Finally cell (2, 8) gets a rightmost restricted zero and 2 is
deleted. The permutation is now (8, 1, 3, 7). Cell (1, 8) gets a topmost one and 8 is
deleted. The permutation is finally (1, 3, 7). The result is given in Figure 1.

We have thus defined in this Section a simple bijection that possesses the first
two properties of Theorem 1; to get all three properties, we will define another
bijection in a quite different way.

4. Bijection II

4.1. Reduction of the tableaux. We give in this Section a recursive decomposi-
tion of the tableaux that was used in [15] to enumerate permutation tableaux with
two rows. This decomposition will be essential to define our second bijection.

Let T be a tableau of length n > 0 and of shape (λ1, λ2, . . . , λm). We suppose
that the last row of T is labeled by k and that the length of this row is t. Then
three cases are possible:

• Type 1 : The last row does not contain any ones.
• Type 2 : The rightmost entry of the last row contains a topmost one.
• Type 3 : The rightmost entry of the last row contains a superfluous one.

From the definition of the permutation tableaux we know that these are the only
three possible cases. Indeed if the rightmost entry of the last row is a zero then all
the entries of the row are zeros.

We can then reduce a tableau T according to its type:

• If the tableau T is of type 1, then we can delete the last row and get a
tableau of length n − 1 and shape (λ1, . . . , λm−1).

• If the tableau is of type 2, then we can delete the column k + 1 and get a
tableau of length n − 1 and shape (λ1 − 1, . . . , λm − 1).

• If the tableau is of type 3, we can delete the rightmost entry of the last row
and get a tableau of length n and shape (λ1, . . . , λm−1, λm − 1).

The resulting tableau is denoted red(T ); note that when applying this reduction,
the sum of the length of the tableau plus its number of superfluous ones decreases
by one. Therefore, given a tableau of length n with j superfluous ones, exactly
n + j reductions will give the empty tableau. If each time we reduce the tableau,
we keep in mind the type 1(t) (t is the length of the last row), 2 or 3, this gives
an encoding of the tableau, since it allows us to inverse the specific reduction that
took place.
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Figure 3: Successive reductions of a tableau (from right to left).

Let us give a simple example in Figure 3. The tableau of shape (2, 2, 2) at
the extreme right is reduced successively, and 1(0), 2, 2, 1(2), 1(0), 3, 3 is the code
obtained in the process.

4.2. Reduction of a permutation. Given a permutation σ = (σ1, . . . , σn) with
σj = k, we denote by (31-2)(k) the cardinality of the set {1 < i < j | σi−1 > k > σi}.
This corresponds to the number of occurrences of the pattern 31-2 where k is the ”2”
of the pattern. For example, if σ = (5, 2, 1, 6, 3, 4) then (31-2)(4) = 2. Let σ be a
permutation of shape λ = (λ1, . . . , λm) such that k is the largest ascent. We suppose
that σ0 = 0 and σn+1 = n + 1. We say that σi is a peak (resp. double descent,
resp. valley, resp. double ascent) if σi−1 < σi > σi+1 (resp. σi−1 > σi > σi+1,
resp. σi−1 > σi < σi+1, resp. σi−1 < σi < σi+1).

Three types of permutations exist :

• Type 1 : k is a double ascent in σ and (31-2)(k) = 0.
• Type 2 : k is to the right of k + 1 in σ and (31-2)(k + 1) = 0 and one of

the following holds
– k + 1 is a double descent
– k and k + 1 are adjacent

• Type 3 : None of the previous configurations appears. That is
(1) k is a valley and is adjacent to k + 1 and to its left; or
(2) k+1 is a peak and k is just to the right of k +1 and (31-2)(k+1) > 0;

or
(3) k is to the left of k + 1 and k is a double ascent and (31-2)(k) > 0; or
(4) k+1 is to the left of k and k+1 is a double descent and (31-2)(k+1) > 0;

or
(5) k is a valley and is not adjacent to k + 1 and to its left; or
(6) k + 1 is a peak and is not adjacent to k and to its left.

This takes care of all the possible cases.

We define a reduction RED of the permutation σ whose largest ascent is k :

• If σ is of type 1 : Delete k and decrease by one all the entries greater than
k. The result is a permutation of [n − 1] and shape (λ1, . . . , λm−1).

• If σ is of type 2 : delete k+1 and decrease by one all the entries greater than
k and get a permutation of [n− 1] and shape (λ1 − 1, . . . , λi − 1, λi+1, . . .).

• If σ is of type 3 : apply bijection Φ defined below and get a permutation
of [n] and shape (λ1, . . . , λm−1, λm − 1) with one less occurrence of (31-2).

We now give a bijection Φ between permutations of [n] of type 3 of shape λ

with j occurrences of (31-2) and permutations of shape (λ1, . . . , λm−1, λm−1) with
j − 1 occurrences of (31-2). The basic idea is to exchange k and k + 1 in σ in order
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to transform k into a descent, k + 1 into an ascent. This will work unless k and
k + 1 are adjacent. Moreover we will decrease by one the number of occurrences of
(31-2), unless k is to the left and not adjacent to k +1 or k is adjacent to k +1 and
to its right. In those cases, we will have to do a bit more.

We give the details in the following paragraph and illustrate in parallel the
bijection on Figure 4. We write the permutation σ = (σ1, . . . , σn) as the word
0σ1 . . . σn(n + 1). We suppose that p1, p2, . . . are words with elements smaller than
k; G1, G2, . . . are words with elements larger than k; and that X, Y, Z are words.
The words denoted X, Y, Z may be empty, while the pi and Gi are nonempty unless
explicitly stated otherwise:

(1) If k is a valley and is just to the left of k + 1, then σ can be written as
Xp1G1k(k + 1)p2Y . We set Φ(σ) = Xp1(k + 1)G1kp2Y .

(2) If k + 1 is a peak, just to the left of k, and (31-2)(k + 1) > 0, then σ can
be written as XG1p1(k + 1)kG2Y . We set Φ(σ) = XG1kp1(k + 1)G2Y .

(3) If k is to the left of k + 1, k is a double ascent and (31-2)(k) > 0, then
σ can be written as Xp1G1p2kG2Y (k + 1)p3Z. We set Φ(σ) = Xp1(k +
1)G1p2G2Y kp3Z. (Here G2Y may be empty.)

(4) If k + 1 is on the left of k, k + 1 is a double descent and (31-2)(k + 1) > 0,
then σ = XG1p1G2(k + 1)p2Y kZ and Φ(σ) = XG1kp1G2p2Y (k + 1)Z.
(Here p2Y may be empty.)

(5) If k is a valley, on the left of k + 1 but not adjacent to it, then σ can be
written as Xp1G1kG2Y (k + 1)Z. We set Φ(σ) = Xp1G1(k + 1)G2Y kZ.

(6) If k + 1 is a peak, on the left of k but not adjacent to it, then σ can be
written as Xp1(k + 1)p2Y kZ. We set Φ(σ) = Xp1kp2Y (k + 1)Z.

The six cases are pictured on Figure 4. The dots represent k and k + 1, and
possible prefixes and suffixes are not pictured since they are not modified by Φ. One
sees, in the first four cases, how the number of occurrences of (31-2) is decremented
by suitably moving one of the entries among k, k+1 to the left; this is not required
in the last two cases, where the mere exchange of k and k + 1 suffices to decrement
31-2(σ).

To show that this is indeed a bijection, we give the inverse algorithm. Start with
a permutation π where k + 1 is the largest ascent and k is a descent. Note that k

and k + 1 can not be adjacent in the permutation.

(1) If k + 1 is to the left of k and k + 1 is a double ascent:
(a) If all entries between k + 1 and k are greater than k + 1, then π =

Xp1(k + 1)G1kp2Y and Φ−1(π) = Xp1G1k(k + 1)p2Y .
(b) Otherwise π = Xp1(k+1)G1p2G2Y kp3Z and Φ−1(π) = Xp1G1p2kG2Y (k+

1)p3Z (G2Y may be empty here) .
(2) If k is to the left of k + 1 and k is a double descent:

(a) If all entries between k and k + 1 are smaller than k, then π =
XG1kp1(k + 1)G2Y and Φ−1(π) = XG1p1(k + 1)kG2Y .

(b) Otherwise, π = XG1kp1G2p2Y (k + 1)Z and Φ−1(π) = XG1p1G2(k +
1)p2Y kZ (p2Y may be empty here).

(3) If k+1 is to the left of k and k+1 is a valley, then π = Xp1G1(k+1)G2Y kZ

and Φ−1(π) = Xp1G1kG2Y (k + 1)Z.
(4) Otherwise k is to the left of k+1 and k is a peak, then π = Xp1kp2Y (k+1)Z

and Φ−1(π) = Xp1(k + 1)p2Y kZ.
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Figure 4: The six cases in the definition of Φ.

Proposition 2. Φ is a bijection between permutations of [n] of type 3 of shape λ

with j occurrences of (31-2) and permutations of shape (λ1, . . . , λm−1, λm −1) with
j − 1 occurrences of (31-2)

Proof. We gave details of the construction of Φ, as well as its tentative inverse : it
is then an easy task (albeit a bit tedious) to check that there is in fact a bijective
correspondence between cases 1 to 6 in the definition of Φ and, respectively, cases
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1(a), 2(a), 1(b), 2(b), 3 and 4 of the definition of Φ−1. Details can be found in [10].
�

From the previous result, we can derive easily an algorithmic bijection between
permutation tableaux and permutations. This is what we explain in the following
section.

4.3. The bijection ξ.
From permutations to tableaux. Let σ be a permutation of [n] and k its largest
ascent. If σ is the empty permutation then ξ(σ) is the empty tableau.

Otherwise we define ξ(σ) by induction. Let T ′ be the tableau ξ(RED(σ)).

• If σ is of type 1 : ξ(σ) is the tableau T ′ with one extra row of length n− k

filled with zeros.
• If σ is of type 2 : ξ(σ) is the tableau T ′ with one extra column made of as

many rows as T ′ with its lower cell at the end of the last row of T ′. This
lower cell is filled with a one and all the cells above it with zeros.

• If σ is of type 3 : ξ(σ) is the tableau T ′ with one extra cell added to the
last row and filled with a superfluous one.

This can be expressed by the encoding described at the end of paragraph 4.1:
if c is the encoding of the tableau T ′, then T = c, 1(n − k) (resp. T = c, 2, resp.
T = c, 3) if σ is of type 1 (resp. of type 2, resp. of type 3).

An example is given on Figure 5. When σ = (2, 4, 8, 5, 1, 6, 3, 7). We first com-
pute RED(σ) = (2, 4, 7, 5, 1, 6, 3, 8), and get ξ(RED(σ)) (which is supposed known
by induction) on the left of Figure 5. As σ is of type 3, we add a cell with a one at
the end of the last row and get ξ(σ) on the right of Figure 5.

7
8

4

6 5

3

2

1

0 0 0

1 1 1

0 0 0

1 1 0

7

8

4

6 5

3

2

1

1

0 0 0

1 1 1

0 0 0

1 1 0

Figure 5: Images of (2,4,7,5,1,6,3,8) and (2, 4, 8, 5, 1, 6, 3, 7)

To give a full example, let us consider the permutation (2, 5, 1, 4, 3). It is of type
3, and its successive reductions are (2, 5, 3, 1, 4) of type 3, (2, 4, 3, 1, 5) of type 1,
(2, 4, 3, 1) of type 1, (3, 2, 1) of type 2, (2, 1) of type 2, (1) of type 1, and the empty
permutation. From this one can build the corresponding tableau inductively, and
the result is none other than Figure 3, and ξ((2, 5, 1, 4, 3)) is thus the tableau on
the far right of this Figure.
Proof of Theorem 1. We now prove by induction that

(1) the shape of T = ξ(σ) is the same as the shape of σ.
(2) i is an unrestricted row of T if and only if i is a RL-minimum of σ.
(3) T has s superfluous ones if and only if there are s occurrences of the pattern

(31-2) in σ.

If σ is the empty partition, the claims are true. Now we suppose by induction
that everything holds for T ′ = ξ(RED(σ)). As explained in the subsection on the
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reduction of the permutation, the shape of RED(σ) is the same as the shape of σ

with one deleted row, column or cell depending on the type on σ. Since we add
back the same row, column or cell to the shape of T ′ to create T , the shape of T is
the same as the shape of σ, so (1) is proved.

The RL-minima of RED(σ) are the same as the RL-minima of σ (up to an
obvious renumbering in types 1 and 2 for σ), unless σn = n and σ has one extra
RL-minimum. Equivalently T and T ′ have the same unrestricted rows unless we
add a row of length zero to T ′ which is indeed unrestricted. This happens only if
σn = n, which proves (2).

Finally the number of occurrences of (31-2) of RED(σ) is the same as for σ

unless σ is of type 3, in which case σ has one extra occurrence of (31-2). The
number of superfluous ones of T and T ′ differ at most by one. They differ by one
exactly when a cell is appended to the last row, which is exactly done when σ is of
type 3 and proves (3).

To finish the proof, we need to prove that ξ is a bijection and we give the reverse
mapping, where we will use the notations pi, Gi, X, Y introduced in the definition
of the function Φ.

From tableaux to permutations. If T is the empty tableau then ξ−1(T ) is the
empty permutation. Otherwise we will define ξ−1(T ) by induction; let σ be the
permutation ξ−1(red(T )):

• If T is of type 1 and its last row is of length n− k : increase all the entries
of σ greater than or equal to k by one. Insert k to the left of the leftmost
entry greater than k, so that we transform p1G1X in p1kG1X .

• If T is of type 2, then let k be the largest ascent of the permutation σ.
Increase by one all the entries greater then k.
(1) If there is no entry larger than k to its left, then insert k + 1 to the

left of k; that is, we transform p1kX in p1(k + 1)kX .
(2) Otherwise let i be the leftmost element greater than k such that i is to

the left of k and the element after i is smaller than k+1. Insert k+1 to
the right of i in σ: thus we transform p1G1XkY in p1G1(k + 1)XkY .

• If T is of type 3 then σ becomes Φ−1(σ).

In each case the permutation ξ−1(T ) is defined to be the permutation τ obtained;
it is respectively of type 1, 2 and 3, and RED(τ) is exactly the permutation σ. This
proves Theorem 1.

5. Permutation patterns

5.1. Bijection between permutation tableaux and PT-words. We will show
that the reduction defined in Section 4 directly defines a bijection Υ between per-
mutation tableaux and certain words on the alphabet {D, U, V }. We define the
height h of the letters h(D) = −1, h(U) = h(V ) = 1. The height of a word is the
sum of the heights of its letters. To define Υ, it is easier to define first a function
Υ0 as follows: if T is the empty tableau then Υ0(T ) is the empty word. Otherwise,
let t be the length of the last row of T :

• If T is of type 1, then Υ0(T ) = Υ0(red(T ))DiU , where i is such that
h(Υ0(T )) = t + 1.

• If T is of type 2, then Υ0(T ) = Υ0(red(T ))U .
• If T is of type 3, then Υ0(T ) = Υ0(red(T ))V ,
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where red(T ) is the reduction defined in Section 4.1.
We add t + 1 letters D at the end of Υ0(T ) if the last row of T has length t, and

this gives us finally the word Υ(T ).
There is an easily equivalent non-recursive description of Υ(T ) as follows: con-

sider the rows of T from top to bottom, read from left to right. For each row,
first write down a U , and then a U (respectively a V ) every time you encounter
a topmost one (resp. a superfluous one) in the row. When you reach the end of
the row, consider the word formed up until then (i.e. with the possible previous
rows), and add as many Ds as necessary so that its height is equal to the number
of restricted zeros of the following row. The resulting word is then Υ(T ).

Example 3. Consider the tableau T0 on the extreme right of Figure 3, the word
Υ0(T0) is U ·U ·U ·DU ·DDDU ·V ·V , and one adds DDD at the end to obtain the
final word Υ(T ) = UUUDUDDDUV V DDD. To take a bigger example, consider
the tableau T1 of Figure 1. We have Υ(T1) = Υ0(T1)DD because the last row of
T1 has length 1. Then one checks that

Υ0(T1) = UUUDDUV DDDUV UV DDDUV V DDDDUV.

We explicit the family of words given by this construction:

Definition 1. A PT-word is a word w on the alphabet {D, U, V } such that for each
prefix X of w, h(X) ≥ 0 and h(w) = 0; a letter D can not be followed by a letter
V ; and w can be decomposed into w1D

d+1UMDw2 with M a word on the alphabet
{U, V } and d maximal if and only if M contains at most d letters V . Finally, only
letters U can precede the first letter D.

Proposition 3. Υ is a bijection between permutation tableaux of length n, k super-
fluous ones and j unrestricted rows and PT-words of length 2n + 2k, with k letters
V and j prefixes of height 0.

Proof. We will describe the inverse bijection by induction on the length of the
PT-words. Let a nonempty PT-word w be given, and consider its factorization
w = w0D

tUMDu, where M is a word on the alphabet {U, V }, and t is chosen
maximal:

(1) if M is empty, then define w′ = w0D
t+u−1;

(2) if M ends with a U , i.e M = M ′U , then w′ = w0D
tUM ′Du−1.

(3) if M ends with a V , i.e M = M ′V , then w′ = w0D
tUM ′Du−1.

It is immediate to check that w′ is a PT-word; so, by induction, there exists a
unique tableau T ′ such that w′ = Υ(T ′). We then define T as the tableau T ′ to
which a certain operation is applied according to the three cases above:

(1) T is obtained by adding a row of zeros of length u − 1 under T ′.
(2) T is obtained by inserting a column in T ′, with as many rows as T ′, and

with its lower cell at the end of the last row of T ′. This cell contains a one,
and all other cells above it are filled with zeros.

(3) T is obtained by adding a cell containing a one at the end of the last row
of T ′.

This construction from w to T is the inverse of the bijection Υ; details can be
found in [10]. The preservation of the different statistics is immediate. �
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5.2. Shape of a tableau T given Υ(T ). We can easily describe the shape of a
tableau T given its associated PT-word Υ(T ): if Υ(T ) is empty then T is the empty
tableau. Otherwise, decompose Υ(T ) in the form

Υ(T ) = Uk0Dl1Mk1
· · ·DltMkt

Dlt+1 ,

where all ki and li are positive, and Mki
is a word on the alphabet {U, V } for each

i. Define vi as the number of letters V in the word Mki
; by definition of a PT-word

we have vi 6 li − 1. Then the South East border of the tableau T is given by

SW l1−1−v1SW l2−1−v2S · · ·W lt−1−vtSW lt+1−1.

This is easily proved by induction.
For the word Υ(T1) of Example 3, we have l1 = 2, v1 = 1; l2 = 3, v2 = 2; l3 =

3, v3 = 2; l4 = 4, v4 = 1 and finally l5 = 2. This gives a South East border encoded
by SSSSWWSW , in concordance with the tableau of Figure 1.

5.3. One occurrence of (31-2). It is well known that the number of permutations
of [n] with no occurrence of the pattern (31-2) is equal to the nth Catalan number
[3] . The bijection between permutation tableaux and PT-words given in Section
5.1 gives another proof of this fact. Indeed if the permutation tableau has no
superfluous ones, the corresponding word is a Dyck word. Thanks to this approach,
we can also give the first bijective proof of the following fact :

Proposition 4. [4] The number of permutations of [n] with one occurrence of the
pattern (31-2) is equal to

(

2n

n − 3

)

.

Proof. There exist simple bijections between

(1) PT-words of length 2n + 2 with one letter V

(2) Words on {D, U} of length 2n which end at height -2 such that the height
after the last D step is strictly larger than the minimal height of the path.

(3) Words on {D, U} of length 2n that end at height -6.

These bijections imply the result as the number of words on {D, U} of length 2n

that end at height -6 is
(

2n
n−3

)

. The reader is advised to follow the constructions on
Figure 6.

(1) ↔ (2). Let w be a PT-word of length 2n + 2 with one letter V . Then w

can be decomposed uniquely into w0D
2U tV w1 with t > 0. Then the image of w is

w′ = w1Dw0DU t−1, which belongs to the family (2). It is easy to see that this is
a bijection, where the inverse construction goes like this. A path P from (2) can
be decomposed a p0Dp1DUu with u ≥ 0, where p0D is the prefix after which P

reaches its minimal height for the first time. Then the word of (1) corresponding
to P is p1D

2Uu+1V p0.
(2) ↔ (3). Let w′ be a path of the family (2). Then it can be uniquely decom-

posed into w2Dw3DU i such that: h(w2) = −i− 2, the height of every prefix of w2

is greater than or equal to −i − 2, and w2 is maximal for these properties. The
image of w′ is w2Dw̃3DU i where w̃3 is the word w3 where every U is changed into
D and every D into U . It is easy to check that this word ends at height -6, and
that this is indeed a bijection. �
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Another bijective proof of this result can be done by using the Françon-Viennot
correspondence [9] and similar arguments (see [10]). Actually, Parviainen [11]
proved Proposition 4 using a variation of the Françon-Viennot correspondence,
and in fact gave a general procedure to extract formulas for the number of permu-
tations of [n] with k occurrences of the pattern (31-2). Nevertheless, though more
combinatorial than in [4], his results are not fully bijective, and thus do not explain

the simplicity of
(

2n
n−3

)

in a completely satisfying way.

O

O

O

(3, 2, 4, 1, 9, 7, 6, 10, 11, 8, 5)

w1w0

w2 w3

0

0

0

0

00

0

0

0

0

0

0

0

0

1

1

1

1

111

Figure 6: A permutation with 31-2(σ) = 1, its tableau ξ−1(σ), and the three types
of paths used in the proof of Proposition 4

It would be interesting to pursue this approach to give bijective proofs of the
following simple formulas, first proved analytically by Claesson and Mansour:
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Proposition 5. [4] The number of permutations of [n] with two occurrences of
(31-2) is

n(n − 3)

2(n + 4)

(

2n

n − 3

)

and the number of permutations of [n] with three occurrences of (31-2) is

1

3

(

n + 2

2

)(

2n

n − 5

)

.

6. Bell tableaux

In this Section we give two subfamilies of permutation tableaux that are in
bijection with set partitions. A set partition of the set [n] is a set of pairwise
disjoint nonempty subsets of [n] whose union is [n]. A set partition can also be
seen as a permutation where all the cycles are increasing cycles. Recall that a one
is topmost if it has no ones above itself in its column. A one is leftmost if it has no
ones to its left in its row and rightmost if it has no ones to its right in its row.

6.1. L-Bell tableaux.

Definition 2. An L-Bell tableau is a permutation tableau where all the topmost
ones are also leftmost ones.

Proposition 6. There exists a bijection between L-Bell tableaux of length n such
that the sum of the number of columns and the number of zero rows is k and set
partitions of [n] with k blocks.

Proof. We start by giving the map from the tableaux to the set partitions. For
every column of the tableau, construct a block of the set partition that is made of
the label of the column and the labels of the rows that have a leftmost one in this
column. The labels of zero rows form blocks of size 1.

The reverse is as easy. Given a set partition, the shape of the corresponding
tableau is drawn such that the labels of the columns correspond to the largest
element of each block of size at least 2. Then the tableau is filled from left to right
and top to bottom :a cell is filled with a one if the label of its row is in the same
block as the label of its column, or if it has a one above and to the left of itself;
otherwise it is filled with a zero. �

For example, given the tableau on Figure 7, we get the set partition
{1, 7, 8}, {3, 4, 6}, {2, 5}.

7

8

4

6 5

3

2

1

1

0 1 1

0 1 1

0 0 1

1 0 0

Figure 7: Example of a tableau where the topmost ones are also leftmost
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6.2. R-Bell tableaux.

Definition 3. An R-Bell tableau is a permutation tableau where all the topmost
ones are also rightmost ones.

Proposition 7. There exists a bijection between L-Bell tableaux of length n such
that the sum of the number of columns and the number of zero rows is k and set
partitions of [n] with k blocks.

Proof. We propose a bijection based on the bijection of [13]. We apply this bijection
to construct a permutation σ. This bijection is such that for each row with label i,
if the row has no ones then σ(i) = i. Otherwise start with the leftmost one of row
i and travel South and East changing direction each time a one is reached until the
border is reached. Then σ(i) = j, where j is the label of the border. Apply the same
process for the columns, starting at the topmost one and traveling East and South.
It is easy to see that the tableau is an R-Bell tableau if and only if σ(i) < i implies
that σ(σ(i)) ≥ σ(i) and there does not exist j < i such that σ(j) < σ(i) < j < i.
Then we can transform σ in the set partition Π = {Π1, . . . , Πk} such that k is the
number of non excedances plus the number of fixed points of σ and such that in
each block {π1, π2, . . . , π`} then (` = 1 and σ(π`) = π`) or πi = σ(πi−1) for all
1 < i ≤ ` and σ(π`) < π`. �

6.3. Bijection between R-Bell and L-Bell tableaux. One might be surprised
that R-Bell and L-Bell tableaux of length n are in bijection with set partitions of
[n], since there is no apparent left-right symmetry in the definition of permutation
tableaux. Indeed we can show that

Proposition 8. There is a bijection between R-Bell tableaux of shape λ and L-Bell
tableaux of shape λ.

Proof. This is direct using the bijection between permutation tableaux and PT-
words defined in Section 5. Indeed a PT-word corresponds to a L-Bell tableau
(resp. R-Bell) if and only if each subword on the alphabet {U, V } is of the form
U tV n where t = 1 or 2 and n ≥ 0 (resp. UV nU t where t = 0 or 1 and n ≥ 0).
Given a word A = a1 . . . an, we define A to be the word an . . . a1. Then given
a PT-word w = UA1D

b1UA2D
b2 . . . we define I(w) = UA1D

b1UA2D
b2 . . .. The

function I is an involution on the set of PT-words. The previous remarks imply
that w is a PT-word that corresponds to a L-Bell tableau if and only of I(w) is a
PT-word that corresponds to a R-Bell tableau. The shapes of the tableaux are the
same, as is immediately implied by the result of section 5.2. We could also define
this involution directly on the tableaux, but it is less straightforward. �

7. Conclusion and open problems

In this paper we give two bijections between permutation tableaux and permu-
tations that send the columns of the tableaux to the descent of the permutation.
We also relate the superfluous ones of the tableaux to the number of occurrences
of the pattern (31-2) of the permutation. We then use this approach to enumerate
permutations with one occurrence of the pattern (31-2). We finally introduce Bell
tableaux that are in bijection with set partitions. It is well known that set parti-
tions are in one-to-one correspondence with permutations with no occurrences of
the pattern 32-1 [3]. It would be interesting to find the statistic on permutation
tableaux that has the same distribution as the number of occurrences of 32-1.
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