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Abstract

We compute the joint distribution of descent and major index over permutations of {1, . . . , n}
with no descents in positions {n− i, n− i+ 1, . . . , n− 1} for fixed i ≥ 0. This was motivated by
the problem of enumerating symmetrically constrained compositions and generalizes Carlitz’s
q-Eulerian polynomial.

1 Introduction

In [9], S. Lee and the third author of this paper consider the problem of enumerating symmetrically
constrained compositions. This study was motivated by problems in [3]. These symmetrically con-
strained compositions are integer sequences defined by linear constraints that are symmetric in the
variables. For example, the integer sequences (λ1, λ2, λ3) satisfying

λπ(1) + λπ(2) ≥ λπ(3) (1)

for every permutation π of {1, 2, 3}, are known as integer-sided triangles [1, 2, 8, 11]. However, in
contrast to other treatments, we are counting the number of ordered solutions, a harder problem.
Generalizing to n dimensions, one could ask for the integer sequences (λ1, λ2, . . . , λn) satisfying the
constraint (1) for every permutation π of [n] = {1, 2, . . . n}, or, more generally, given positive integers
k, `,m with k ≥ `, the integer sequences (λ1, λ2, . . . , λn) satisfying

kλπ(1) + `λπ(2) ≥ mλπ(3) (2)

for every permutation π of [n].
∗Research supported in part by NSF grants DMS-0300034 and INT-0230800
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If the constraints are symmetric in the λi, then the generating function

G(x1, x2, . . . , xn) =
∑
λ

xλ1
1 xλ2

2 · · ·xλnn

will be a symmetric function of the xi. The work in [9] is to show how to exploit the symmetry to
compute the generating function Gn(q) = G(q, q, . . . , q).

For example, the generating function for (2) has the following form when m = k + `− 1.

Proposition 1. [9] If m = k + ` − 1, then for n ≥ 3, the generating function for the solutions to
(2) is

Gn(q) =
1

(1− qn)(1− qn`−1)
∏n−2
j=1 (1− qj+nm)

∑
π∈Sn

∏
i∈D(π)

qi+nbi , (3)

where bi = m, 1 ≤ i ≤ n− 2 and bn−1 = m− k and D(π) is the set of descents of π:

D(π) = {i | 1 ≤ i < n and π(i) > π(i+ 1)}.

In order to simplify this generating function, we consider a new twist on the problem of computing
the distribution of permutation statistics. For a permutation π, des(π) = |D(π)| is the number of
descents of π and the major index of π is the sum of the descent positions: maj(π) =

∑
i∈D(π) i.

The joint distribution of des(π) and maj(π) over the set Sn of all permutations of [n] is given by
Carlitz’s q-Eulerian polynomial [5, 6]:

Cn(x, q) =
∑
π∈Sn

xdes(π)qmaj(π) =
n∏
i=0

(1− xqi)
∞∑
j=1

[ j ]nq x
j−1, (4)

where [ j ]q = (1− qj)/(1− q). (This is a special case of a result of MacMahon, who computed the
distribution of permutations of a multiset by descents and major index in [10], Vol. 2, Chapter 4.)

For i ≤ n − 1, let S(i)
n be the set of permutations of [n] that have no descent in positions

{n− i, n− i+ 1, ..., n− 1}. Let C(i)
n (x, q) be the joint distribution of maj and des over S(i)

n :

C(i)
n (x, q) =

∑
π∈S(i)

n

xdes(π)qmaj(π). (5)

Then C
(0)
n (x, q) = Cn(x, q). Now we can express Gn(q) in (3) via the following.

Proposition 2.∑
π∈Sn

∏
i∈D(π)

qi+nbi = C(1)
n (qnm, q) + q−nk(Cn(qnm, q)− C(1)

n (qnm, q)). (6)
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Proof. If π ∈ Sn does not have a descent in position n− 1, then π ∈ S(1)
n and∑

π∈S(1)
n

∏
i∈D(π)

qi+nbi =
∑
π∈S(1)

n

∏
i∈D(π)

qi+nm

=
∑
π∈S(1)

n

qmaj(π)(qnm)des(π)

= C(1)
n (qnm, q).

If π ∈ Sn has a descent in position n− 1, then π ∈ Sn − S(1)
n and∑

π∈Sn−S(1)
n

∏
i∈D(π)

qi+nbi =
∑

π∈Sn−S(1)
n

q−nk
∏

i∈D(π)

qi+nm

= q−nk
(∑
π∈Sn

∏
i∈D(π)

qi+nm −
∑
π∈S(1)

n

∏
i∈D(π)

qi+nm
)

= q−nk(Cn(qnm, q)− C(1)
n (qnm, q)).

Putting these two cases together gives the result. 2

Further simplification of (6) requires computing C(1)
n (x, q). In this paper, we compute C(i)

n (x, q),
for general i, in two ways. The first method derives a recurrence for C(i)

n (x, q) and solves it in terms
of Carlitz polynomials. The second is a “P -partitions” approach.

In the last section, the results are applied to Gn(q) of (3) to enumerate the sequences satisfying
the symmetric constraints (2).

Throughout the paper, the following notation is used: [n] = {1, 2, . . . , n}; [n ]q = (1−qn)/(1−q);
[n ]q! =

∏n
i=1[ i ]q; and (a; q)n =

∏n−1
i=0 (1− aqi).

2 The joint distribution of maj and des over S
(i)
n

2.1 Recursive approach

In this section, we give a recursive approach to the problem of computing the joint distribution of
inv and maj over the permutations of [n] with no descent in positions {n− 1, n− 2, . . . , n− i}.

A standard technique for counting the permutations with k descents is to derive a recurrence
(see, for example, Bóna [4], Theorem 1.7). What we need is a q-analog of this count, refined to
consider only permutations in S

(i)
n .

Proposition 3. Define e(i)
n,k(q) by

n−1∑
k=0

e
(i)
n,k(q)xk =

∑
π∈S(i)

n

xdes(π)qmaj(π) = C(i)
n (x, q).
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Then e
(i)
n,k(q) satisfies

e
(i)
n,k(q) = q[ k ]qe

(i)
n−1,k(q) + e

(i−1)
n−1,k(q) + ([n− i ]q − [ k ]q)e

(i)
n−1,k−1(q),

with initial conditions e(−1)
n,k = e

(0)
n,k; e(i)

n,0 = 1; and e(i)
n,k = 0 if k ≥ n− i.

Proof. We get a permutation in S
(i)
n with k descents by inserting n into

(i) a permutation in S
(i)
n−1 with k descents, immediately following a descent; or

(ii) a permutation in S
(i−1)
n−1 at the end of the permutation; or

(iii) a permutation in S(i)
n−1 with k−1 descents, immediately following any of the positions

0, 1, . . . , n− i− 2 that are not descents (leaving a total of (n− i− 1)− (k− 1) = n−k− i
positions for inserting n).

In (i) above, if n is inserted after the ith descent, maj increases by 1 for that descent and for
every later descent, i.e., by k + 1 − i. This gives the first term in the recurrence, with its factor
q + q2 + · · · qk.

In (ii) above, if n is inserted at the end of the permutation, maj does not increase at all, giving
the second term.

To see how (iii) gives rise to the third term in the recurrence, let π = π(1)π(2) . . . π(n − 1)
be a permutation in S

(i)
n−1 with k − 1 descents. Let 0 = j1 < j2 < · · · < jn−k−i ≤ n − i − 2

be the n − k − i positions where n can be inserted into π to create a permutation in S
(i)
n with k

descents. We claim that inserting n immediately following any of j1, j2, . . . , jn−k−i increases maj
by k, k+ 1, . . . , n− i− 1, respectively. This will give the third term of the recurrence with its factor
qk + qk+1 + · · ·+ qn−i = [n− i ]q − [ k ]q.

To prove this claim, let t` be the number of descents of π that are greater than j`. Inserting n
just after π(j`) creates a descent in position j` + 1 and increases by 1 the position of each of the t`
descents in π that are greater than j`. Thus maj increases by

m = j` + 1 + t`.

Let d = j`+1−j`. Then all of the positions j`+1, j`+2, . . . , j`+d−1 are descents. So t`+1 = t`−(d−1)
and inserting n just after π(j`+1) increases maj by

(j`+1 + 1) + t`+1 = (d+ j` + 1) + (t` − (d− 1)) = m+ 1.

Since inserting n at the front of π would increase maj by 1 + (k − 1) = k, the claim is proved. 2

From Proposition 3, we can derive a recurrence for C(i)
n (x, q). First, the i = 0 case gives the

following recurrence for Cn(x, q). It is straighforward to verify that (4) satisfies the recurrence,
giving a simple proof of Carlitz’s formula.

Proposition 4.

Cn(x, q) =
1− xqn

1− q
Cn−1(x, q)− q(1− x)

1− q
Cn−1(qx, q), (7)

with C0(x, q) = 1.
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Proof. Let en,k(q) = e
(0)
n,k(q). Since S(−1)

n = S
(0)
n , setting i = 0 in Proposition 3 gives

en,k(q) = [ k + 1 ]qen−1,k(q) + ([n ]q − [ k ]q)en−1,k−1(q) (8)

(which also appears in [5]). Multiply (8) by xk and sum over k. Substitute the definition of [ .. ]q
and (7) results immediately. 2

Similarly, from Proposition 3, we get a recurrence for general i.

Proposition 5. For n ≥ 0 and 0 ≤ i < n,

C(i)
n (x, q) =

(
q − xqn−i

1− q

)
C

(i)
n−1(x, q)−

(
q(1− x)

1− q

)
C

(i)
n−1(xq, q) + C

(i−1)
n−1 (x, q),

with C(−1)
n (x, q) = C

(0)
n (x, q) = Cn(x, q), and C(i)

n (x, q) = 1 if i ≥ n.

To solve the recurrence of Proposition 5, first observe that it can be simplified as follows.

Proposition 6. For i > 0 and n ≥ i

C(i)
n (x, q) =

C
(i−1)
n (x, q)−

(
n
i

)
xqn−iCn−i(x, q)

1− xqn−i
. (9)

Proof. For n = i the proposition is true, as both sides are equal to 1. For n > i, apply the
recurrence of Proposition 5 and then induction:

C(i)
n (x, q) =

q

1− q

(
(1− xqn−i−1)C(i)

n−1(x, q)− (1− x)C(i)
n−1(xq, q)

)
+ C

(i−1)
n−1 (x, q)

=
q(1− xqn−i−1)

1− q
C

(i−1)
n−1 (x, q)−

(
n−1
i

)
xqn−i−1Cn−i−1(x, q)

1− xqn−i−1

−q(1− x)
1− q

C
(i−1)
n−1 (xq, q)−

(
n−1
i

)
xqn−iCn−i−1(xq, q)

1− xqn−i
+ C

(i−1)
n−1 (x, q).

Rearranging terms,

C(i)
n (x, q) =

q

1− q
(1− xqn−i)C(i−1)

n−1 (x, q)− (1− x)C(i−1)
n−1 (xq, q)

1− xqn−i
+
C

(i−2)
n−1 (x, q)

1− xqn−i

+C(i−1)
n−1 (x, q)−

C
(i−2)
n−1 (x, q)

1− xqn−i

−
(
n−1
i

)
xqn−i

1− q
(1− xqn−i)Cn−i−1(x, q)− q(1− x)Cn−i−1(xq, q)

1− xqn−i
.

Apply Proposition 5 to the first line, the induction hypothesis to the second line, and Proposition 7
to the last line to obtain

C(i)
n (x, q) =

C
(i−1)
n (x, q)

1− xqn−i
−
(
n−1
i−1

)
xqn−iCn−i(x, q)
1− xqn−i

−
(
n−1
i

)
xqn−iCn−i(x, q)
1− xqn−i

.

=
C

(i−1)
n (x, q)−

(
n
i

)
xqn−iCn−i(x, q)

1− xqn−i
.

2

Finally, iterating the recurrence (9), we can solve for C(i)
n (x, q) in terms of Carlitz functions.
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Theorem 1.

C(i)
n (x, q) =

Cn(x, q)
(xqn−i; q)i

−
i∑

k=1

(
n

k

)
xqn−k

Cn−k(x, q)
(xqn−i; q)i−k+1

. (10)

In particular, the motivating problem of computing C(1)
n (x, q) is solved:

Corollary 1.

C(1)
n (x, q) =

Cn(x, q)− nxqn−1Cn−1(x, q)
1− xqn−1

. (11)

Substituting (4) into (10) and simplifying gives C(i)
n (x, q) explicitly:

Corollary 2.

C(i)
n (x, q) = (x; q)n−i

∑
j≥1

(
(1− xqn)[ j ]nq x

j−1 − xj
n−1∑
`=n−i

(
n

`

)
(q[ j ]q)`

)
.

Remark. Let C(i)
n (q) = C

(i)
n (1, q). It is easy to see from Proposition 5 that C(−1)

n (q) = C
(0)
n (q)

and that for i ≥ 0, C(i)
n (q) = C

(i−1)
n−1 (q) + q[n − i − 1 ]qC

(i)
n−1(q) if n > i and C

(i)
n (q) = 1 otherwise.

Therefore we have

Corollary 3.

C(i)
n (q) =

∑
π∈S(i)

n

qmaj(π) =
n−i−1∏
j=1

[ j ]q
n−i∑
k=1

(
k + i− 1

i

)
qk−1 = [n− i− 1 ]q!

n−i∑
k=1

(
k + i− 1

i

)
qk−1.

Compare this with the distribution over all permutations: C(0)
n (q) = [n ]q!.

2.2 Direct approach

Now we give a direct approach to the problem of computing the joint distribution of inv and maj
over the permutations of [n] with no descent in positions {n− 1, n− 2, . . . , n− i}.

Theorem 2.

C(i)
n (x, q) = (x; q)n−i

n−i∑
j=1

(
n− j
i

)
qn−i−j

∞∑
k=0

[ k + 1 ]j−1
q [ k ]n−i−jq xk.

Proof. Let S(i,j)
n be the set of permutations π of [n] with no descents in positions {n − i, n − i +

1, . . . , n − 1} with the additional property that π(n − i) = j. To obtain a permutation in S
(i,j)
n we

first choose a subset I ⊆ [n] of cardinality i to be the values of π(n− i+ 1), π(n− i+ 2), . . . , π(n).
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Since j = π(n− i) < π(n− i+ 1) < . . . < π(n) every element of I must be greater than j, so I must
be a subset of {j + 1, j + 2, . . . , n}, and (π(n − i + 1), π(n − i + 2), . . . , π(n)) must consist of the
elements of I arranged in increasing order. Then (π(1), π(2), . . . , π(n− i− 1)) may be an arbitrary
permutation of [n] \ (I ∪ {j}). Since π has no descents in positions {n − i, n − i + 1, . . . , n − 1},
the descent number and major index of π are the same as for (π(1), π(2), . . . , π(n − i)), and these
statistics are unchanged if we replace (π(1), π(2), . . . , π(n − i)) with the permutation of [n − i] in
which the entries have the same relative order (i.e., we replace (π(1), π(2), . . . , π(n − i)) with its
“pattern”). Note that this replacement does not change π(n− i) = j, since [j] ⊆ [n]\I (so 1, 2, . . . , j
all occur in (π(1), π(2), . . . , π(n− i)).) Now let

A(j)
m (x, q) =

∑
σ

xdes(σ)qmaj(σ),

where the sum is over all permutations σ of [m] with σ(m) = j. Then the contribution to C(i)
n (x, q)

from permutations π with π(n− i) = j corresponding to a given i-subset I ⊆ {j + 1, j + 2, . . . , n} is
A

(j)
n−i(x, q) independent of the choice of I. There are

(
n−j
i

)
possible choices for such a subset I, so

summing on j gives

C(i)
n (x, q) =

n−i∑
j=1

(
n− j
i

)
A

(j)
n−i(x, q).

We now derive a formula for A(j)
m (x, q) using the “P -partition” approach [11, 7]. This relies on

the observation that nonnegative integer sequences (a1, . . . , am) in which ai ≤ k, 1 ≤ i ≤ m have
generating function: ∑

max (a)≤k

q|a| = [ k + 1 ]mq ,

where |a| = a1 + · · ·+ am.

The method is to count nonnegative integer sequences (a1, . . . , am) such that aj = 0 and ai > 0
for i > j in two different ways.

First way: First count those in which ai ≤ k, 1 ≤ i ≤ m:∑
max (a)≤k

q|a| = [ k + 1 ]j−1
q (q[ k ]q)m−j .

Then multiply by xk and sum over k:
∞∑
k=0

∑
max (a)≤k

q|a|xk = qm−j
∞∑
k=0

[ k + 1 ]j−1
q [ k ]m−jq xk.

If we want only those a such than max (a) = k:∑
a

q|a|xmax (a) =
∞∑
k=0

∑
max (a)=k

q|a|xk = (1− x)qm−j
∞∑
k=0

[ k + 1 ]j−1
q [ k ]m−jq xk. (12)

Second way: For a permutation π, let D(π) be the descent set of π. Now, let π be the unique
permutation of [m] satisfying: (i) aπ(1) ≥ aπ(2) ≥ . . . ≥ aπ(m) and (ii) aπ(i) > aπ(i+1) when i ∈ D(π).
As aj = 0 and ai > 0 for i > j, this implies that π(m) = j.
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Let λi = aπ(i) − aπ(i+1) for 1 ≤ i < m.

Then (a1, . . . am)↔ (π, λ) is a bijection between nonnegative integer sequences of length m such
that aj = 0 and ai > 0 for i > j and pairs (π, λ) where π is a permutation of [m] with π(m) = j
and λ is a nonnegative integer sequence of length m − 1 satisfying λi > 0 when i ∈ D(π). Then∑m−1
i=1 λi = max (a) and |a| =

∑m−1
i=1 iλi. So,∑

a

q|a|xmax (a) =
∑

{π∈Sn :π(m)=j}

∑
λ1,...,λm−1

q
∑m−1
i=1 iλix

∑m−1
i=1 λi

=
∑

{π∈Sn:π(m)=j}

qmaj(π)xdes(π)
∑

λ′1,...,λ
′
m−1≥0

m−1∏
i=1

(xqi)λ
′
i

=

∑
{π∈Sn:π(m)=j} q

maj(π)xdes(π)

(1− xq)(1− xq2) · · · (1− xqm−1)
.

Equating this with (12) gives the desired formula for A(j)
m (x, q), namely,

A(j)
m (x, q) =

∑
{π∈Sn:π(m)=j}

qmaj(π)xdes(π) = (x; q)mqm−j
∞∑
k=0

[ k + 1 ]j−1
q [ k ]m−jq xk.

2

We can also give a direct proof of Corollary 2 using a similar approach.

Direct proof of Corollary 2. Let Tj be the sum of q|a| over all nonnegative integer sequences
(a1, . . . , an) with max(a) ≤ j and at least i + 1 entries equal to 0. We compute the generating
function

∑∞
j=0 Tjx

j in two ways.

First we relate the sequences a to the permutations in S
(i)
n . Given a sequence (a1, . . . , an) with

at least i + 1 entries equal to 0, we associate to it the unique permutation π of [n] satisfying
(i) aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n), and (ii) aπ(j) > aπ(j+1) if π(j) > π(j + 1). Since aπ(n−i) =
aπ(n−i+1) = · · · = aπ(n) = 0, we must have π(n − i) < π(n − i + 1) < · · · < π(n), so π has no
descents in {n − i, n − i + 1, . . . , n − 1}. Let λj = aπ(j) − aπ(j+1) for j = 1, 2, . . . , n − i − 1. Then
(a1, . . . , an)↔ (π, λ) is a bijection between nonnegative integer sequences of length n with at least
i+1 zeroes and pairs (π, λ) where π ∈ S(i)

n and λ is a nonnegative integer sequence of length n− i−1
satisfying λj > 0 for j ∈ D(π). Moreover,

∑n−i−1
j=1 λi = max(a) and |a| =

∑n−i−1
j=1 iλi. Now define

nonnegative integers λ′1, . . . , λ
′
n−i−1 by

λ′j =

{
λj , if j /∈ D(π)
λj − 1, if j ∈ D(π).

8



So
∞∑
j=0

Tjx
j =

∑
j

∑
max(a)≤j

q|a|xj =
1

1− x
∑
a

q|a|xmax(a)

=
1

1− x
∑
(π,λ)

qλ1+2λ2+···+(n−i−1)λn−i−1xλ1+λ2+···+λn−i−1

=
1

1− x
∑
π∈S(i)

n

qmaj(π)xdes(π)
∑

λ′1,...,λ
′
n−i−1

n−i−1∏
j=1

(xqj)λ
′
j

=
C

(i)
n (x, q)

(1− x)(1− xq) . . . (1− xqn−i−1)
. (13)

Next we compute Tj directly. The sum of q|a| over all nonnegative integer sequences a with
max(a) ≤ j is [j + 1]nq , and the sum of q|a| over all sequences a with max(a) ≤ j and with exactly `
nonzero entries is

(
n
`

)
(q[j]q)`. Thus

Tj = [j + 1]nq −
n∑

`=n−i

(
n

`

)
(q[j]q)`,

so
∞∑
j=0

Tjx
j =

∞∑
j=0

(
[j + 1]nq x

j − xj
n∑

`=n−i

(
n

`

)
(q[j]q)`

)

=
∞∑
j=1

[j]nq x
j−1 −

∞∑
j=0

xj
n∑

`=n−i

(
n

`

)
(q[j]q)`.

The sum on ` vanishes when j = 0 since for each term, ` ≥ n− i > 0 so [0]`q = 0. Thus

∞∑
j=0

Tjx
j =

∞∑
j=1

[j]nq x
j−1 −

∞∑
j=1

xj
(

(q[j]q)n +
n−1∑
`=n−i

(
n

`

)
(q[j]q)`

)

=
∞∑
j=1

(
(1− xqn)[j]qxj−1 − xj

n−1∑
`=n−i

(
n

`

)
(q[j]q)`

)
. (14)

Then Corollary 2 follows from (13) and (14).

3 Application

We apply the results of Section 2.1 to enumerate the sequences satisfying the constraints (2).

Theorem 3.

Gn(q) =
Cn(qnm, q)(1− qn`−1)− Cn−1(qnm, q)nqnm+n−1(1− q−nk)

(1− qn)(1− qn`−1)(qnm+1; q)n−1
. (15)
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Proof. From Proposition 1,

Gn(q) =
1

(1− qn)(1− qn`−1)(qnm+1; q)n−2

∑
π∈Sn

∏
i∈D(π)

qi+nbi , (16)

where bi = m, 1 ≤ i ≤ n− 2 and bn−1 = m− k, and m = k + `− 1.

Start with (6), apply (11) and rearrange terms to get:∑
π∈Sn

∏
i∈D(π)

qi+nbi = C(1)
n (qnm, q) + q−nk(Cn(qnm, q)− C(1)

n (qnm, q))

= (1− q−nk)C(1)
n (qnm, q) + q−nkCn(qnm, q)

=
(1− q−nk)(Cn(qnm, q)− nqnm+n−1Cn−1(qnm, q))

(1− qnm+n−1)
+ q−nkCn(qnm, q)

= Cn(qnm, q)
(1− q−nk) + q−nk(1− qnm+n−1)

(1− qnm+n−1)

−Cn−1(qnm, q)
nqnm+n−1(1− q−nk)

(1− qnm+n−1)

= Cn(qnm, q)
(1− q−nk+nm+n−1)

(1− qnm+n−1)
− Cn−1(qnm, q)

nqnm+n−1(1− q−nk)
(1− qnm+n−1)

= Cn(qnm, q)
(1− qn`−1)

(1− qnm+n−1)
− Cn−1(qnm, q)

nqnm+n−1(1− q−nk)
(1− qnm+n−1)

,

the last since m = k + `− 1. Substitution into (16) gives the result. 2

For example, since C2(x, q) = 1 + xq and C3(x, q) = 1 + 2xq + 2xq2 + x2q3, solutions to

{kλπ(1) + `λπ(2) ≥ (k + `− 1)λπ(3), | π ∈ S3}

are given by:

G3(q) =
1 + 2q3`−1 + 2q3(k+`)−2 + q6`+3(k−1)

(1− q3)(1− q3`−1)(1− q3k+3`−2)
.

When k = `, this becomes:

G3(q) =
1 + 2q3k−1 + 2q6k−2 + q9k−3

(1− q3)(1− q3k−1)(1− q6k−2)

and when k = 1, this gives the generating function for (ordered) integer-sided triangles:

G3(q) =
1 + 2q2 + 2q4 + q6

(1− q3)(1− q2)(1− q4)
=

1− q + q2

(1− q2)2(1− q)
.

When n = 4, solutions to

{kλπ(1) + `λπ(2) ≥ (k + `− 1)λπ(3), | π ∈ S4}

are given by:

G4(q) =
1 + 3q4`−1 + 3q4k+4`−3 + 5q4k+4`−2 + 5q8`+4k−4 + 3q8`+4k−3 + 3q8k+8`−5 + q12`+8k−6

(1− q4)(1− q4`−1)(1− q4k+4`−3)(1− q4k+4`−2)
.
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When k = `, this becomes:

G4(q) =
1 + 3q4k−1 + 3q8k−3 + 5q8k−2 + 5q12k−4 + 3q12k−3 + 3q16k−5 + q20k−6

(1− q4)(1− q4k−1)(1− q8k−3)(1− q8k−2)
.

Acknowledgement. Thanks to Sunyoung Lee for her contributions to calculations in Section 3.
We are grateful to the referees for their comments to improve the presentation.
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