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Abstract
To answer database queries over incomplete data the gold standard is finding certain answers: those

that are true regardless of how incomplete data is interpreted. Such answers can be found efficiently

for conjunctive queries and their unions, even in the presence of constraints such as keys or functional

dependencies. With negation added, the complexity of finding certain answers becomes intractable

however.

In this paper we exhibit a well-behaved class of queries that extends unions of conjunctive queries

with a limited form of negation and that permits efficient computation of certain answers even in the

presence of constraints by means of rewriting into Datalog with negation. The class consists of queries

that are the closure of conjunctive queries under Boolean operations of union, intersection and difference.

We show that for these queries, certain answers can be expressed in Datalog with negation, even in the

presence of functional dependencies, thus making them tractable in data complexity. We show that in

general Datalog cannot be replaced by first-order logic, but without constraints such a rewriting can be

done in first-order.

Keywords
Incomplete information, Certain answers, Datalog rewritings, First-order rewritings, Functional depen-

dencies, Chase

1. Introduction

We study the classical problem of answering queries over databases with incomplete information

where incompleteness is represented by means of nulls, as in the most common practice in

relational databases. Such databases are required to satisfy integrity constraints, most commonly

keys. This addition of constraints makes query answering more complex, even for fairly simple

queries.

We consider the setting of databases with marked nulls, as is often required in applications

such as data integration, data exchange, ontology-based data access, and others. This is markers

for missing information, but the same marker may appear in multiple places. These generalize
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nulls in SQL and relational database management systems where repetition is not allowed; our

results will thus apply to SQL nulls as well. We use the standard model of query answering,

namely finding certain answers which are guaranteed to be true regardless of the interpretation

of nulls. Over the years, we have learned that query answering is generally easy for conjunctive

queries (CQ) and closely related classes, while becoming computationally infeasible for more

general queries. For example, in the absence of constraints such as keys, and under the prevalent

closed-world semantics used in the case of database incompleteness [1, 2], we know that:

• Certain answers to conjunctive queries and their unions can be found by naïve evaluation,

i.e., the standard evaluation of queries in which nulls are treated as new distinct constants.

• This could be extended with a limited form of guarded negation [3]; in fact the limits of

such naive evaluation are dictated by the notion of query preservation under homomor-

phisms.

Under constraints, even such simple ones as keys, the picture is less complete. We know the

following:

• Certain answers to a conjunctive query 𝑄 (or a union of CQs) on a database 𝐷 under key

constraints Σ can be found by naïve evaluation of 𝑄 on the result of the chase of 𝐷 with

Σ. Mathematically, certΣ(𝑄,𝐷) = 𝑄(chaseΣ(𝐷)), where on the left-hand side we have

certain answers under constraints, and on the right hand side the naïve evaluation of 𝑄
over the result of the chase. Here chaseΣ refers to the classical textbook chase procedure

with keys, or more generally functional dependencies. In fact the above result applies

when Σ is a set of functional dependencies, not just keys.

Unfortunately the above result does not work when we move outside the class of select-

project-join-union queries, or unions of CQs. In fact even without constraints, certain answers

to a query of the form 𝑄1 −𝑄2, where both 𝑄1 and 𝑄2 are CQs, are not necessarily produced

by naïve evaluation. To see why, take a database containing one fact 𝑅(1,⊥) where ⊥ is a null

and 𝑄1 returning 𝑅 while 𝑄2 is given by a formula 𝑅(𝑥, 𝑦) ∧ 𝑥 = 𝑦. Here naïve evaluation of

𝑄1 −𝑄2 returns 𝑅 while certain answers is empty.

This motivates our question whether we can extend the class of CQs and their unions to

obtain tractable evaluation of certain answers under constraints such as keys and functional

dependencies. The answer is positive; in fact the query of the form 𝑄1 − 𝑄2 above will be

an example of a query in this class. To start with, the class must be such that finding certain

answers for its queries without constraints is already tractable. We know one such class: it

consists of arbitrary Boolean combinations of CQs, not just their union. We shall denote it

by BCCQ. It was proved in [4] that certain answers for it can be found in polynomial time,

though the procedure was a tableau-based and not particularly suitable for implementation

in a database system. To be implementable, certain answers should ideally be expressible in a

database query language: in an ideal world, in FO (and thus basic SQL), or at least in Datalog

(and thus recursive SQL).

This is precisely what we do in this paper. We establish three main results:

1. For an arbitrary BCCQ 𝑄 and a set of functional dependencies Σ one can construct a

Datalog (with negation) query𝑄′
whose naive evaluation computes certΣ(𝑄,𝐷), thereby

ensuring its polynomial-time data complexity.
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2. There are however simple BCCQs, in fact even CQs, 𝑄 and keys Σ such that certΣ(𝑄,𝐷)
cannot be expressed in FO.

3. Without constraints present, certain answers to BCCQs are not only polynomial-time

computable as had been shown previously, but also can be expressed in FO and thus

efficiently implemented in SQL databases.

After giving preliminaries in the next Section, the following three sections address these

items, respectively.

2. Preliminaries

Incomplete databases and constraints

We represent missing information in relational databases in the standard way using nulls

[5, 1, 6]. Incomplete databases are populated by constants and nulls, coming respectively from

two countably infinite sets Const and Null. We denote nulls by ⊥, sometimes with sub- or

superscript. We also allow them to repeat, thus adopting the model of marked nulls, as customary

in the context of applications such as OBDA or data integration and exchange. A relational

schema, or vocabulary 𝜎, is a set of relation names with associated arities. A database 𝐷 over

𝜎 associates to each relation name of arity 𝑘 in 𝜎, a k-ary relation which is a finite subset

of (Const ∪ Null)𝑘. Sets of constants and nulls occurring in 𝐷 are denoted by Const(𝐷) and

Null(𝐷). A database is complete if it contains no nulls, i.e. Null(𝐷) = ∅. The active domain of

𝐷 is the set of all values appearing in 𝐷, i.e. adom(𝐷) = Const(𝐷) ∪ Null(𝐷).
A valuation 𝑣 : Null(𝐷) → Const on a database 𝐷 is a map that assigns constant values

to nulls occurring in 𝐷. By 𝑣(𝐷) and 𝑣(𝑎̄) we denote the result of replacing each null ⊥ by

𝑣(⊥) in a database 𝐷 or in a tuple 𝑎̄. The semantics [[𝐷]] of an incomplete database 𝐷 is the set

{𝑣(𝐷) | 𝑣 is a valuation on 𝐷} of all complete databases it can represent. Here as is common

in research on incomplete data, we use closed world assumption [1, 7] (i.e., everything we don’t

know to be true is automatically assumed to be false and no new tuple can be added).

A functional dependency over a relation name 𝑅 is a first order sentence of the form

∀𝑥̄, 𝑦𝑧 (𝑅(𝑥̄, 𝑦, 𝑧) ∧𝑅(𝑥̄, 𝑦′, 𝑧′)→ 𝑧 = 𝑧′).
Throughout this paper we will assume that a set of functional dependencies Σ is associated

with the database schema 𝜎.

A valuation 𝑣 is consistent with Σ (or just consistent, when Σ is clear from the context) if

𝑣(𝐷) |= Σ. We denote by V(𝐷) the set of all consistent valuations defined on 𝐷.

Query answering

An 𝑚-ary query Q of active domain 𝐶 ⊆ Const is a map that associates with a database 𝐷
a subset of (adom(𝐷) ∪ 𝐶)𝑚. To answer an 𝑚-ary query 𝑄 over an incomplete database 𝐷
we follow [8] and adopt a slight generalisation of the usual intersection based certain answers

notion, defined as ∩𝑣𝑄(𝑣(𝐷)). The set of certain answers to 𝑄 over 𝐷 is

certΣ(𝑄,𝐷) = {𝑎̄ ∈ adom(𝐷)𝑚 | 𝑣(𝑎̄) ∈ 𝑄(𝑣(𝐷)) for all consistent 𝑣} .
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For queries that explicitly use constants, we shall expand this to allow 𝑎̄ range over adom(𝐷)
and those constants. The only difference with the usual notion is that we allow answers to

contain nulls, to avoid pathological situations when answers known with certainty are not

returned (e.g., in a query returning a relation 𝑅 one would expect 𝑅 to be returned while the

intersection-based certain answer will only return null-free tuples).

We study the certain answers problem from the data complexity perspective, fixing the query:

Problem: CertainAnswerΣ(𝑄)
Input: A database 𝐷 and a tuple 𝑎̄
Question: Is 𝑎̄ ∈ certΣ(𝑄,𝐷)?

For arbitrary FO queries and set of FDs, under the closed world semantics, the data complexity

of finding certain answers is coNP-complete (to show 𝑎̄ ̸∈ certΣ(𝑄,𝐷) it is enough to guess a

valuation 𝑣 with 𝑣(𝐷) |= Σ and 𝑣(𝐷) ̸|= 𝑄(𝑣(𝑎̄))); the problem is coNP-hard even when Σ is

empty [9].

Query languages

Here we shall study certain answers to first-order (FO) queries by means of their rewriting in

Datalog. FO queries of vocabulary 𝜎 use atomic relational and equality formulae and are closed

under Boolean connectives ∧,∨,¬ and quantifiers ∃, ∀. We write 𝜙(𝑥̄) for an FO-formula 𝜙
with free variables 𝑥̄. With slight abuse of notation, 𝑥̄ will denote both a tuple of variables

and the set of variables occurring in it. The set of constants used by 𝜙 is denoted by adom(𝜙).
We interpret FO-formulas under active domain semantics, i.e. quantified variable"s range over

adom(𝐷)∪adom(𝜙). Thus, an FO formula 𝜙(𝑥̄) represents a query (of active domain adom(𝜙))
mapping each database 𝐷 into the set of tuples {𝑡̄ over adom(𝐷) ∪ adom(𝜙) | 𝐷 |= 𝜙(𝑡̄)}.

A Datalog rule [5] is an expression of the form 𝑅1(𝑢1)← 𝑅2(𝑢2), . . . , 𝑅𝑛(𝑢𝑛) where 𝑛 ≥ 1,

𝑅1, . . . , 𝑅𝑛 are relation names and 𝑢1, . . . , 𝑢𝑛 are free tuples of appropriate arities. Each

variable occurring in 𝑢1 must occur in at least one of 𝑢2, . . . , 𝑢𝑛. A Datalog program is a finite

set of Datalog rules. The head of the rule is the expression 𝑅1(𝑢1); and 𝑅2(𝑢2), . . . , 𝑅𝑛(𝑢𝑛)
forms the body. The semantics is the standard fixed-point semantics.

As the language of our rewritings, we shall be using a fragment of stratified Datalog with
negation in bodies that can be seen in two different ways.

1. A program is evaluated in two steps. First, we can have a Datalog program 𝑃 defining

new idb predicates 𝑆1, . . . , 𝑆ℓ. Then we ask an FO query over the schema extended with

these predicates 𝑆1, . . . , 𝑆ℓ.

2. We evaluate a stratified Datalog with negation program in which the first stratum has no

negation (but may have recursion) and the second stratum has no recursion (but may

have negation).

From the rewritings we produce it will be clear that they fall in these classes. The key point

about them is that they can be implemented in recursive SQL, and that they both have PTIME

data complexity, making them feasible.
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Naïve evaluation and certain answers

For a query 𝑄 written in FO or Datalog, we write 𝑄(𝐷) to mean that such a query is evaluated

naïvely. That is, if 𝐷 contains nulls, nulls of 𝐷 are treated as new constants in the domain of 𝐷,

distinct from each other, and distinct from all the other constants in 𝐷 and 𝜙. For example the

query𝜙(𝑥, 𝑦) = ∃𝑧 (𝑅(𝑥, 𝑧)∧𝑅(𝑧, 𝑦)), on the database𝐷 = {𝑅(1,⊥1), 𝑅(⊥1,⊥2), 𝑅(⊥3, 2)}
selects only the tuple (1,⊥2).

There are known connections between naïve evaluation and certain answers. If Σ is empty

and 𝑄 is a union of conjunctive queries, then certΣ(𝑄,𝐷) = 𝑄(𝐷), see [1]. If Σ contains a set

of FDs, then certΣ(𝑄,𝐷) = 𝑄
(︀
chaseΣ(𝐷)

)︀
; cf. [10]. Here chaseΣ refers to the standard chase

procedure with a set of FDs [5].

3. Datalog Rewriting

Recall that conjunctive queries (CQs) are given by the ∃,∧-fragment of FO, and their unions

(UCQs) by the ∃,∧,∨-fragment of FO; these are also captured by the positive fragment of

relational algebra (select-project-union-join queries).

To extend tractability results for certain answers to CQs and UCQs, we extend them with a

mild form of negation (since adding negation leads to coNP-hardness of certain answers). This

mild form comes in the shape of Boolean combination of conjunctive queries (BCCQs), i.e., the

closure of conjunctive queries under operations 𝑞 ∩ 𝑞′, 𝑞 ∪ 𝑞′, and 𝑞 − 𝑞′.
If there are no constraints in Σ, finding certain answers to BCCQs is known to be tractable [4],

though by tableau-based techniques that are hard to implement in a database system. We now

extend this in two ways. First, we show that tractability is preserved even in the presence of

functional dependencies (and thus keys). Second, we show that certain answers can be obtained

by rewriting into a fragment of Datalog as described in Section 2. In particular, it means that

certain answers can be found by a query expressible in recursive SQL.

Building on constraint-free rewriting techniques from [11], we start by putting each con-

junctive query in a normal form which eliminates repetition of variables, by introducing new

equality atoms.

Definition 3.1 (NRV normal form). A conjunctive query 𝑄 is in non-repeating variable normal

form (NRV normal form) whenever it is of the form𝑄(𝑥̄) = ∃𝑤̄ (𝑞(𝑤̄)∧𝑒(𝑥̄, 𝑤̄)) where variables
in 𝑥̄𝑤̄ are pairwise distinct, and:

• 𝑞(𝑤̄) is a conjunction of relational atoms without constants, where each free variable in 𝑤̄
has at most one occurrence in 𝑞,

• 𝑒(𝑥̄, 𝑤̄) is a conjunction of equality atoms, possibly using constants, where each variable of
𝑥̄ is involved in at least one equality.

We say that 𝑞(𝑤̄) is the relational subquery of 𝑄, and 𝑒(𝑥̄, 𝑤̄) is the equality subquery of 𝑄.
A BCCQ is in NRV normal form if it is a Boolean combination of CQs in NRV normal form.

Clearly every CQ 𝑄 is equivalent to a query in NRV normal form; moreover 𝑄 can be easily

rewritten in NRV normal form (in linear time in the size of the query). Thus, in what follows,

5
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we assume w.l.o.g. that CQs are given in NRV normal form. Intuitively the NRV normal form

allows us to separate the two ingredients of a CQ : the existence of facts in some relations of the

database on the one side, and a set of equality conditions on data values occurring in these facts,

on the other side. The existence of facts does not depend on the valuation of nulls, and thus can

be directly tested on the incomplete database. Instead, equality atoms in an NRV normal form

imply conditions that valuations need to satisfy in order for the query to hold.

Given a query 𝑄, a database 𝐷, and a tuple 𝑎̄ over adom(𝐷) ∪ adom(𝑄) we let the support

of 𝑎̄ be the set of all valuations that witness it :

Supp(𝑄,𝐷, 𝑎̄) = {𝑣 ∈ V(𝐷) | 𝑣(𝑎̄) ∈ 𝑄(𝑣(𝐷))}

In order to look for rewritings of BCCQs, a key observation is that 𝑎̄ is a certain answer to

𝑄 iff Supp(¬𝑄,𝐷, 𝑎̄) = ∅. When 𝑄 is a BCCQ, so is ¬𝑄, thus we look for ways of expressing

(non-)emptiness of the support for BCCQs.

We start by concentrating on the support of equality subqueries. This will be encoded in

Datalog and then integrated, as a key ingredient, in the rewriting of the whole query. We let

𝛾(𝑦) be an arbitrary set of equality atoms among variables 𝑦 and possibly constants. Intuitively

we will be interested in the case that 𝛾(𝑦) is the equality subquery 𝑒(𝑥̄, 𝑤̄) of a CQ in NRV

normal form (thus notice that in the Datalog program below 𝑦 encompasses variables 𝑥̄𝑤̄ of an

equality subquery).

Membership in the set adom(𝐷) ∪ adom(𝛾) can be expressed by a UCQ formula that we call

𝐷𝑜𝑚(𝑥). We encode equivalence of database elements in adom(𝐷) ∪ adom(𝛾) w.r.t. a set of

equalities 𝛾(𝑦) using the following Datalog program
1
:

𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧)← ∧𝑖 𝐷𝑜𝑚(𝑦𝑖), 𝐷𝑜𝑚(𝑧)

𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧
′)← 𝑧 = 𝑦𝑘, 𝑧

′ = 𝑦𝑙,∧𝑖 𝐷𝑜𝑚(𝑦𝑖) for each (𝑦𝑘 = 𝑦𝑙) ∈ 𝛾
𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧

′)← 𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑢), 𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑢, 𝑧
′)

𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧
′)← 𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧

′, 𝑧)

𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧
′)← 𝑅(𝑢̄, 𝑣, 𝑧), 𝑅(𝑢̄′, 𝑣′, 𝑧′), ∧𝑖 𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑢𝑖, 𝑢′𝑖)

for each FD (𝑅(𝑢̄, 𝑣, 𝑧), 𝑅(𝑢̄, 𝑣′, 𝑧′)→ 𝑧 = 𝑧′) ∈ Σ

Intuitively, if 𝑡̄ is a tuple of database elements assigned to 𝑦, equivalent elements of 𝐷 are the

ones which should be collapsed into a single value in order for a valuation of 𝐷 to satisfy all

the equalities 𝛾(𝑡̄) and the FDs. For fixed 𝛾 and 𝑡̄, the relation {(𝑠, 𝑠′) |𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾(𝑡̄, 𝑠, 𝑠
′)} is

an equivalence relation over adom(𝐷)∪ adom(𝛾) where each element of adom(𝐷) neither in 𝑡̄
nor in adom(𝛾) forms a singleton equivalence class.

The formula 𝑒𝑞𝑢𝑖𝑣𝛾 is a key ingredient in our rewriting; as formalized in the following lemma,

it selects precisely the pairs of elements that a consistent valuation needs to collapse to satisfy

a set of equalities. In Lemmas 3.2, 3.5 and Propositions 3.3, 3.4 we use some of the machinery

developed in [11] and thus the proofs of those statements, which are adaptations of proofs in

[11] are omitted.

1

Queries we write hereafter can be domain dependent. So it is important to recall that we always use active domain

semantics.
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Lemma 3.2. Let 𝛾(𝑦) be a conjunction of equality atoms, 𝐷 a database, and 𝜈(𝑦) = 𝑡̄ an
assignment over adom(𝐷) ∪ adom(𝛾). Assume 𝑣 is a consistent valuation of nulls, then 𝑣(𝐷) |=
𝛾(𝑣(𝑡̄)) if and only if 𝑣(𝑠) = 𝑣(𝑠′) for all 𝑠, 𝑠′ such that 𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾(𝑡̄, 𝑠, 𝑠

′).

Formulas we write in the remainder are over signature 𝜎 ∪𝑁𝑢𝑙𝑙, where 𝜎 is the database

schema. In any incomplete database 𝐷 over 𝜎 ∪𝑁𝑢𝑙𝑙, 𝑁𝑢𝑙𝑙 is always interpreted by the set of

nulls occurring in 𝐷 (in accordance with the semantics of the SQL construct IS NULL). I.e. we

allow rewritings to test whether a database element is null or not.

For 𝛾(𝑦) a conjunction of equality atoms, using 𝑒𝑞𝑢𝑖𝑣𝛾 we define a new formula 𝑐𝑜𝑚𝑝𝛾(𝑦)
stating the existence of a consistent valuation that collapses all equivalent elements of a tuple:

𝑐𝑜𝑚𝑝𝛾(𝑦) := ∀𝑧𝑧′(𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧′) ∧ ¬𝑁𝑢𝑙𝑙(𝑧) ∧ ¬𝑁𝑢𝑙𝑙(𝑧′)→ 𝑧 = 𝑧′)

Proposition 3.3. Let 𝛾(𝑦) be a conjunction of equality atoms, 𝐷 a database, and 𝜈(𝑦) = 𝑡̄ an
assignment over adom(𝐷) ∪ adom(𝛾), then 𝐷 |= 𝑐𝑜𝑚𝑝𝛾(𝑡̄) if and only if there exists a consistent
valuation 𝑣 of nulls such that 𝑣(𝐷) |= 𝛾(𝑣(𝑡̄)).

We are now ready to define a formula capturing the inclusion of supports between two

conjunctions of equality atoms, which will be a crucial ingredient in our rewriting. Let 𝛾(𝑥̄)
and 𝛾′(𝑦) be conjunctions of equality atoms with adom(𝛾) = adom(𝛾′). We define :

𝑖𝑚𝑝𝑙𝑦𝛾,𝛾′(𝑥̄, 𝑦) := ∀𝑧𝑧′ (𝑒𝑞𝑢𝑖𝑣𝛾′(𝑦, 𝑧, 𝑧′)→ 𝑒𝑞𝑢𝑖𝑣𝛾(𝑥̄, 𝑧, 𝑧
′))

Using Proposition 3.3 and Lemma 3.2 we obtain :

Proposition 3.4. Let 𝛾(𝑥̄), 𝛾′(𝑦) be conjunctions of equality atoms with adom(𝛾) = adom(𝛾′),
𝐷 a database and 𝜈(𝑦) = 𝑡̄, 𝜈 ′(𝑦) = 𝑡′̄ assignments over adom(𝐷) ∪ adom(𝛾). Then 𝐷 |=
𝑖𝑚𝑝𝑙𝑦𝛾,𝛾′(𝑡̄, 𝑡̄′) ∨ ¬𝑐𝑜𝑚𝑝𝛾(𝑡̄) iff for all consistent valuations 𝑣, one has 𝑣(𝐷) |= 𝛾(𝑣(𝑡̄)) implies
𝑣(𝐷) |= 𝛾′(𝑣(𝑡̄′)).

So far, we have dealt with equality subqueries and we have characterized the emptiness and

inclusion of their supports (cf. Proposition 3.3 and Proposition 3.4, respectively). We can now

use this machinery to characterize the support of a BCCQ. We start by expressing membership

in the support of an individual CQ :

Lemma 3.5. Let 𝐷 be a database, 𝑣 a consistent valuation of 𝐷 and 𝑄(𝑥̄) a conjunctive query
in NRV-normal form, with relational subquery 𝑞(𝑤̄) and equality subquery 𝛾(𝑥̄, 𝑤̄). Then 𝑣 ∈
Supp(𝑄,𝐷, 𝑟̄) if and only there exists 𝑠̄ such that𝐷 |= 𝑞(𝑠̄)∧ 𝑐𝑜𝑚𝑝𝛾(𝑟̄𝑠̄) and 𝑣(𝐷) |= 𝛾(𝑣(𝑟̄𝑠̄)).

In the remainder we consider BCCQs 𝑄(𝑥̄) := 𝑄1(𝑥̄) ∨ . . . ∨ 𝑄𝑛(𝑥̄) in NRV disjunctive

normal form (DNF) where for all 1 ≤ 𝑖 ≤ 𝑛 :

𝑄𝑖 := 𝑄𝑖0(𝑥̄) ∧ ¬𝑄𝑖1(𝑥̄) ∧ . . . ∧ ¬𝑄𝑖𝑚(𝑥̄)

and for all 1 ≤ 𝑗 ≤ 𝑚 :

𝑄𝑖𝑗 := ∃𝑤̄𝑖𝑗𝑞𝑖𝑗 (𝑤̄𝑖𝑗 ) ∧ 𝛾𝑖𝑗 with 𝛾𝑖𝑗 := 𝑒𝑖𝑗 (𝑥̄𝑤̄𝑖𝑗 )

7
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For convenience, we assume w.l.o.g every conjunction of literals to be of the same length 𝑚.

We can also assume without loss of generality that for each 𝑖 we have adom(𝛾𝑖𝑗 ) = adom(𝛾𝑖0)
for all 𝑗. In fact we can always pad any 𝛾𝑖𝑗 with dummy equalities 𝑐 = 𝑐 to extend its active

domain.

Given a disjunct 𝑄𝑖 in a BCCQ in DNF, we now define poss𝑄𝑖 , encoding the set of possible

answers to 𝑄𝑖, and cons𝑄𝑖 , checking the compatibility of an answer with the negative literals in

𝑄𝑖.

𝑝𝑜𝑠𝑠𝑄𝑖(𝑥̄𝑤̄) := 𝑞𝑖0(𝑤̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑥̄𝑤̄) ∧ 𝑐𝑜𝑛𝑠𝑄𝑖(𝑥̄𝑤̄)

𝑐𝑜𝑛𝑠𝑄𝑖(𝑥̄𝑤̄) :=⋀︁
1≤𝑗≤𝑚

∀𝑤̄′((𝑞𝑖𝑗 (𝑤̄
′) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖𝑗 (𝑥̄𝑤̄

′))→ ¬𝑖𝑚𝑝𝑙𝑦𝛾𝑖0 ,𝛾𝑖𝑗 (𝑥̄𝑤̄, 𝑥̄𝑤̄
′))

Using these new formulae, we show that the non-emptiness of Supp(𝑄(𝑥̄), 𝐷, 𝑟̄) can be ex-

pressed as the existence of a possible answer.

Proposition 3.6. Let 𝐷 be a database and 𝑄(𝑥̄) a DNF BCCQ in NRV normal form, then
Supp(𝑄(𝑥̄), 𝐷, 𝑟̄) ̸= ∅ if and only if 𝐷 |=

⋁︀
1≤𝑖≤𝑛 ∃𝑤̄ 𝑝𝑜𝑠𝑠𝑄𝑖(𝑟̄𝑤̄).

Proof. ⇐ Let 𝐷 |=
⋁︀

1≤𝑖≤𝑛 ∃𝑤̄ 𝑝𝑜𝑠𝑠𝑄𝑖(𝑟̄𝑤̄), then there exists 1 ≤ 𝑖 ≤ 𝑛 and an assignment

𝜈 with 𝜈(𝑤̄) = 𝑠̄, 𝐷 |= 𝑞𝑖0(𝑠̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄) and for all 1 ≤ 𝑗 ≤ 𝑚, 𝑠′̄ such that 𝐷 |=
𝑞𝑖𝑗 (𝑠

′̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖𝑗 (𝑟̄𝑠
′̄), one has 𝐷 |= ¬𝑖𝑚𝑝𝑙𝑦𝛾𝑖0 ,𝛾𝑖𝑗 (𝑟̄𝑠̄, 𝑟̄𝑠̄

′). Since 𝐷 |= 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄), it’s

easy to see that for each 𝑠 ∈ 𝑎𝑑𝑜𝑚(𝐷) ∪ adom(𝛾𝑖0) there exists at most one constant 𝑐 such

that 𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑠, 𝑐). In fact if for constants 𝑐1 and 𝑐2, 𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑠, 𝑐1) and

𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑠, 𝑐2), by transitivity 𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑐1, 𝑐2), implying 𝑐1 = 𝑐2.

Using this observation we now build a consistent valuation 𝑣* having the following

“tightness" property : for all 𝑠, 𝑠′ ∈ adom(𝐷) ∪ adom(𝛾𝑖0), we have 𝑣*(𝑠) = 𝑣*(𝑠′) iff

𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑠, 𝑠
′). To build 𝑣* we associate to each equivalence class 𝒞 of the rela-

tion {(𝑠, 𝑠′) |𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 (𝑟̄𝑠̄, 𝑠, 𝑠
′)}, a new fresh constant 𝑐𝒞 outside adom(𝐷) ∪ adom(𝛾𝑖0).

Then 𝑣* can be defined as follows. For 𝑠 ∈ adom(𝐷), if𝐷 |= 𝑒𝑞𝑢𝑖𝑣𝛾(𝑟̄𝑠̄, 𝑠, 𝑐), for some constant

𝑐, then 𝑣*(𝑠) = 𝑐; otherwise 𝑣*(𝑠) = 𝑐𝒞 where 𝒞 is the equivalence class of 𝑠. Consistency of

𝑣* derives from the tightness property, and the fact that 𝑒𝑞𝑢𝑖𝑣𝛾𝑖0 satisfies the last rule of the

Datalog program that defines it. Moreover by Lemma 3.2, 𝑣*(𝐷) |= 𝛾𝑖0(𝑣
*(𝑟̄𝑠̄)) and we can

prove the following claim :

Claim 3.7. For all conjunction of equalities 𝛾′(𝑦) with adom(𝛾′) = adom(𝛾𝑖0) and all 𝑡̄ over
adom(𝐷) ∪ adom(𝛾𝑖0), one has 𝑣*(𝐷) |= 𝛾′(𝑣*(𝑡̄)) iff for all consistent valuations 𝑣, 𝑣(𝐷) |=
𝛾𝑖0(𝑣(𝑟̄𝑠̄)) implies 𝑣(𝐷) |= 𝛾′(𝑣(𝑡̄)).

Now fix some arbitrary 𝑗 ≥ 1 and 𝑠′̄ with 𝐷 |= 𝑞𝑖𝑗 (𝑠
′̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖𝑗 (𝑟̄𝑠

′̄). By Proposi-

tion 3.4, it follows from 𝐷 |= ¬𝑖𝑚𝑝𝑙𝑦𝛾𝑖0 ,𝛾𝑖𝑗 (𝑟̄𝑠̄, 𝑟̄𝑠
′̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄) that there exists a con-

sistent valuation 𝑣′ with 𝑣′(𝐷) |= 𝛾𝑖0(𝑣
′(𝑟̄𝑠̄)) but 𝑣′(𝐷) ̸|= 𝛾𝑖𝑗 (𝑣

′(𝑟̄𝑠′̄)). By the above claim

𝑣*(𝐷) ̸|= 𝛾𝑖𝑗 (𝑣
*(𝑟̄𝑠′̄)). In summary we have :

8
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(i) 𝐷 |= 𝑞𝑖0(𝑠̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄) and 𝑣*(𝐷) |= 𝛾𝑖0(𝑣
*(𝑟̄𝑠̄)) and so by Lemma 3.5, we have

𝑣* ∈ Supp(𝑄𝑖0(𝑥̄), 𝐷, 𝑟̄), i.e., 𝑣*(𝐷) |= 𝑄𝑖0(𝑣
*(𝑟̄)).

(ii) For all 1 ≤ 𝑗 ≤ 𝑚 and assignment 𝜈 ′ with 𝜈 ′(𝑤̄) = 𝑠′̄, if 𝐷 |= 𝑞𝑖𝑗 (𝑠
′̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖𝑗 (𝑟̄𝑠

′̄)

then 𝑣*(𝐷) ̸|= 𝛾𝑖𝑗 (𝑣
*(𝑟̄𝑠′̄)) and so by Lemma 3.5, we have 𝑣* ̸∈ Supp(𝑄𝑖𝑗 (𝑥̄), 𝐷, 𝑟̄), i.e.,

for all 1 ≤ 𝑗 ≤ 𝑚, 𝑣*(𝐷) |= ¬𝑄𝑗(𝑣
*(𝑟̄)).

This means we have 𝑣* ∈ Supp(𝑄𝑖0(𝑥̄) ∧ ¬𝑄𝑖1(𝑥̄) ∧ . . . ∧ ¬𝑄𝑖𝑚(𝑥̄), 𝐷, 𝑟̄) for all 1 ≤ 𝑖 ≤ 𝑛
and so 𝑣* ∈ Supp(𝑄(𝑥̄), 𝐷, 𝑟̄).
⇒ Let 𝑣 ∈ Supp(𝑄(𝑥̄), 𝐷, 𝑟̄), so 𝑣 is consistent and there is some 1 ≤ 𝑖 ≤ 𝑛 with : (i)

𝑣 ∈ Supp(𝑄𝑖0 , 𝐷, 𝑟̄), (ii) for all 1 ≤ 𝑗 ≤ 𝑚, 𝑣 ̸∈ Supp(𝑄𝑖𝑗 , 𝐷, 𝑟̄). Using Lemma 3.5 (i) implies

that there exists 𝑠̄ such that 𝐷 |= 𝑞𝑖0(𝑠̄) ∧ 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄) and 𝑣(𝐷) |= 𝛾𝑖0(𝑣(𝑟̄𝑠̄)). Again by

Lemma 3.5, (ii) implies that for all 1 ≤ 𝑗 ≤ 𝑚 and 𝑠′̄, if𝐷 |= 𝑞𝑖𝑗 (𝑠
′̄)∧𝑐𝑜𝑚𝑝𝛾𝑖𝑗 (𝑟̄𝑠

′̄) then 𝑣(𝐷) ̸|=
𝛾𝑖𝑗 (𝑣(𝑟̄𝑠

′̄)). This entails by Proposition 3.4 that 𝐷 |= 𝑐𝑜𝑚𝑝𝛾𝑖0 (𝑟̄𝑠̄) ∧ ¬𝑖𝑚𝑝𝑙𝑦𝛾𝑖0 ,𝛾𝑖𝑗 (𝑟̄𝑠̄, 𝑟̄𝑠
′̄).

This shows 𝐷 |=
⋁︀

1≤𝑖≤𝑛 ∃𝑤̄ 𝑝𝑜𝑠𝑠𝑄𝑖(𝑟̄𝑤̄).

Now that we have defined the formula expressing for a BCCQ 𝑄 non-emptiness of

Supp(𝑄(𝑥̄), 𝐷, 𝑟̄) (Proposition 3.6), we can easily define a rewriting for the problem

CertainAnswerΣ(𝑄). To do so, we rely on the fact that 𝑟̄ ∈ certΣ(𝑄,𝐷) iff Supp(¬𝑄,𝐷, 𝑟̄) =
∅.

Theorem 3.8 (Datalog rewriting). Let D be a database whose schema contains a set of functional
dependenciesΣ, and let𝑄(𝑥̄) be a BCCQ in NRV-normal form. Let𝑄′ = 𝑄′

1(𝑥̄)∨. . .∨𝑄′
𝑛(𝑥̄) be¬𝑄

in DNF normal form. Then 𝑟̄ ∈ certΣ(𝑄,𝐷) if and only if 𝐷 |= 𝜌(𝑟̄) where 𝜌(𝑥̄) =
⋀︀

1≤𝑖≤𝑛 ∀𝑤̄
¬𝑝𝑜𝑠𝑠𝑄′

𝑖
(𝑥̄𝑤̄).

Proof. One has that 𝑟̄ ∈ certΣ(𝑄,𝐷) iff 𝑆𝑢𝑝𝑝(𝑄′, 𝐷, 𝑟̄) = ∅. Being 𝑄′
still a BCCQ, Proposi-

tion 3.6 tells us that 𝑆𝑢𝑝𝑝(𝑄′, 𝐷, 𝑟̄) = ∅ iff 𝐷 |=
⋀︀

1≤𝑖≤𝑛 ∀𝑤̄ ¬𝑝𝑜𝑠𝑠𝑄′
𝑖
(𝑟̄𝑤̄).

Corollary 3.9. For each fixed BCCQ query 𝑄 and a set of FDs Σ, the complexity of
CertainAnswerΣ(𝑄) is in PTIME.

4. Non-rewritability in FO

The basic starting points for our investigation was the fact that certΣ(𝑄,𝐷) = 𝑄(chaseΣ(𝐷))
for a CQ 𝑄 and a set Σ of FDs, for every database 𝐷. This remained true for unions of CQs,

but failed for BCCQs, forcing us to produce a Datalog rewriting to obtain certain answers. But

can a first-order rewriting be obtained instead? This would make it possible to produce certain

answers using the core of SQL as opposed to its recursive features which do not always perform

as well in practice.

In this section we show that the answer, in general, is negative even for CQs (and thus for

BCCQs). In the next section however we show that such rewritings can be obtained in FO for

BCCQs whenever Σ is empty.

The main result of this section is the following.

9
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Theorem 4.1. There exists a Boolean CQ 𝑄 and single FD Σ over a relational schema of binary
and unary relations such that certΣ(𝑄,𝐷) is not expressible as an FO query.

Proof. Consider a schema with one binary relation 𝐸 and two unary relations 𝐴 and 𝐵. The

only FD in Σ is ∀𝑥∀𝑦∀𝑧
(︀
𝐸(𝑥, 𝑦) ∧ 𝐸(𝑥, 𝑧)→ 𝑦 = 𝑧

)︀
; in other words, the first attribute of 𝐸

is a key. The query 𝑄 is a Boolean CQ ∃𝑥 (𝐴(𝑥) ∧𝐵(𝑥)).
To prove inexpressibility of certΣ(𝑄, ·) in FO, for each 𝑛 > 0 we create two databases 𝐷𝑛

and 𝐷′
𝑛. In both of them, 𝐸 is interpreted as a disjoint union 𝑇1 ∪ 𝑇2 where 𝑇1 and 𝑇2 are

balanced binary trees of depth 𝑛 in which all nodes are distinct nulls. In both 𝐴 and 𝐵 are

singleton sets. In 𝐷𝑛, the set 𝐴 contains a leaf of 𝑇1 and 𝐵 contains a leaf of 𝑇2. In 𝐷′
𝑛, both

𝐴 and 𝐵 contain leaves of 𝑇1 such that their only common ancestor in the tree is the root (in

other words, they are leaves of subtrees rooted at different children of the root of 𝑇1).

Because of the constraint Σ, for every valuation 𝑣 such that the resulting database satisfies

it we have that both 𝑣(𝑇1) and 𝑣(𝑇2) are chains. Indeed, consider any node ⊥ with children

⊥1,⊥2 in 𝑇𝑖. If 𝑣(⊥1) ̸= 𝑣(⊥2) then the resulting tuples (𝑣(⊥), 𝑣(⊥1)) and (𝑣(⊥), 𝑣(⊥2))
violate the constraint. Thus 𝑣(⊥1) = 𝑣(⊥2) and applying this construction inductively we see

that 𝑣(𝑇𝑖) is a chain. Hence, it has a single leaf, and thus certΣ(𝑄,𝐷
′
𝑛) is true, since 𝐴 and

𝐵 must be interpreted as that leaf. On the other hand, certΣ(𝑄,𝐷𝑛) is false, since there is a

valuation 𝑣 that sends 𝑇1 and 𝑇2 into two disjoint chains, and thus 𝐴 and 𝐵 are interpreted as

two distinct elements.

Assume now that certΣ(𝑄, ·) is rewritable as an FO sentence 𝜑. Then, for every 𝑛 > 0, we

have 𝐷′
𝑛 |= 𝜑 and 𝐷𝑛 |= ¬𝜑. We next show that such a sentence cannot exist, thereby proving

non-FO-rewritability.

Recall that in a database (with one binary relation, like considered here) a radius 𝑟 neighbor-

hood of an element 𝑎 is its restriction to the set of all elements reachable from 𝑎 by a path of

length at most 𝑟, where the path does not take into account the orientation of edges of 𝐸 (for

example, if we have 𝐸(𝑎, 𝑏) and 𝐸(𝑐, 𝑎) then both 𝑏 and 𝑐 are in the radius 1 neighborhood of

𝑎). When two neighborhoods, of elements 𝑎 and 𝑏, are isomorphic, it means that there is an

isomorphism between them that sends 𝑎 to 𝑏. In other words, centers of neighborhoods are

viewed as distinguished elements when it comes to defining neighborhoods. It is known that

each first order sentence 𝜓 is Hanf-local [12]: that is, there exists a number 𝑟 > 0 such that

for any two databases 𝐷1 and 𝐷2, if there is a bijection 𝑓 between 𝐷1 and 𝐷2 such that the

radius 𝑟 neighborhoods of 𝑎 in 𝐷1 and 𝑓(𝑎) in 𝐷2 are isomorphic then 𝐷1 and 𝐷2 agree on 𝜓,

i.e. either both satisfy it or both do not.

Now let 𝑟 be such a number for the sentence 𝜑 we assumed exists. Consider 𝐷𝑛 and 𝐷′
𝑛

and let 𝑇1𝑎, 𝑇1* be the subtrees of the root of 𝑇1 in 𝐷𝑛 such that the first contains 𝐴 while the

second contains neither 𝐴 not 𝐵, and let 𝑇2𝑏, 𝑇2* be defined similarly for subtrees of the root

of 𝑇2 with respect to 𝐵. In 𝐷′
𝑛 we define 𝑇 ′

1𝑎, 𝑇
′
1𝑏 as subtrees of the root of the tree containing

𝐴,𝐵 such that the first contains the 𝐴 leaf and the second contains the 𝐵 leaf, while 𝑇 ′
2*, 𝑇

′
2**

be the subtrees of the root of the tree having neither 𝐴 nor 𝐵 elements. Then it is easy to see

that the following pairs of trees are isomorphic: 𝑇1𝑎 and 𝑇 ′
1𝑎, 𝑇2𝑏 and 𝑇 ′

1𝑏, 𝑇1* and 𝑇 ′
2*, 𝑇2* and

𝑇 ′
2**.

We now define the bijection 𝑓 as the union of those isomorphisms plus mapping roots of

trees 𝑇𝑖 in 𝐷 into roots of 𝑇𝑖 in 𝐷′
. It is an immediate observation that if 𝑛 > 𝑟 + 1 (i.e., leaves
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are not in the radius 𝑟 neighborhood of children of roots) then 𝑓 satisfies the condition that

neighborhoods of 𝑎 and 𝑓(𝑎) of radius 𝑟 are isomorphic. This would tell us that 𝐷𝑛 and 𝐷′
𝑛

agree on 𝜑 but we know they do not. This contradiction completes the proof.

As a corollary to the proof, we obtain the following result showing that non-recursive SQL is

incapable of computing certΣ(𝑄,𝐷) in the setting of Theorem 4.1.

Corollary 4.2. There exists a Boolean CQ 𝑄 and single FD Σ over a relational schema
of binary and unary relations such that certΣ(𝑄,𝐷) is not expressible in the basic
SELECT-FROM-WHERE-GROUP BY-HAVING fragment of SQL with arbitrary aggregate func-
tions.

This is due to the fact that queries in this fragment of SQL with grouping and aggregation can

be translated into a logic with aggregate functions [13] which itself is known to be Hanf-local

[14].

5. An FO rewriting

We now focus on the special case whereΣ is empty. First notice that the only Datalog component

in our rewriting was the 𝑒𝑞𝑢𝑖𝑣𝛾 formula. Let ∼𝛾 be the reflexive symmetric transitive closure

of {(𝑥,𝑤) | 𝑥 = 𝑤 ∈ 𝛾}. As shown in [11], as Σ is empty, we can rewrite as follows the 𝑒𝑞𝑢𝑖𝑣𝛾
formula in FO, where 𝑚 is the number of equivalence classes of ∼𝛾 :

𝑒𝑞𝑢𝑖𝑣𝐹𝑂
𝛾 (𝑦, 𝑧, 𝑧′) := 𝑧 = 𝑧′ ∨⋁︁

𝑢1,𝑣1...𝑢𝑚,𝑣𝑚∈ 𝑦 ∪ adom(𝛾) |
𝑢𝑖∼𝛾𝑣𝑖 for all 1≤𝑖≤𝑚

(𝑧 = 𝑢1 ∧ 𝑧′ = 𝑣𝑚 ∧
⋀︁

1≤𝑖<𝑚

𝑣𝑖 = 𝑢𝑖+1)

Intuitively this holds because each disjunct of 𝑒𝑞𝑢𝑖𝑣𝛾(𝑡̄, 𝑠, 𝑠
′) corresponds to a possible deriva-

tion of (𝑠, 𝑠′) in the reflexive symmetric transitive closure of {(𝜈(𝑥), 𝜈(𝑤)) | 𝑥 = 𝑤 ∈ 𝛾},
and one can prove that there is a bound only depending on 𝛾 on the number of steps of this

derivation.

As a consequence, we can rewrite in FO the formula poss𝑄𝑖 of Section 3 encoding the set of

possible answers to 𝑄𝑖. It is enough to replace each occurrence of the Datalog 𝑒𝑞𝑢𝑖𝑣𝛾(𝑦, 𝑧, 𝑧
′)

program in it by 𝑒𝑞𝑢𝑖𝑣𝐹𝑂
𝛾 (𝑦, 𝑧, 𝑧′). We denote by poss

𝐹𝑂
𝑄𝑖

the rewriting so obtained. With this,

we obtain an extension to BCCQ of the rewriting techniques proposed in [11] for UCQ.

Theorem 5.1 (FO rewriting). Let D be a database, Σ = ∅ and let𝑄(𝑥̄) be a BCCQ in NRV-normal
form. Let 𝑄′ = 𝑄′

1(𝑥̄) ∨ . . . ∨𝑄′
𝑛(𝑥̄) be ¬𝑄 in DNF normal form. Then 𝑟̄ ∈ certΣ(𝑄,𝐷) if and

only if 𝐷 |= 𝜌(𝑟̄) where 𝜌(𝑥̄) =
⋀︀

1≤𝑖≤𝑛 ∀𝑤̄ ¬𝑝𝑜𝑠𝑠𝐹𝑂
𝑄′

𝑖
(𝑥̄𝑤̄).

Note that tractability of BCCQ was already proved in [4] using tableau based methods. We

now refine complexity as follows.

Corollary 5.2. For each fixed BCCQ query 𝑄, the complexity of CertainAnswerΣ(𝑄) is in
DLOGSPACE whenever Σ = ∅.

11
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6. Future work

Our rewriting techniques are closer to a practical implementation than the previous tableau

based method from [4]. This is due to their expressibility in recursive SQL (or even non-recursive

in the case of Theorem 5.1). However, while theoretically feasible, an actual implementation

will need additional techniques to achieve acceptable performance. To see why, notice that

the first rule in the definition of 𝑒𝑞𝑢𝑖𝑣𝛾 creates a cross product over the full active domain,

i.e., the set of all elements that appeared in the database. This of course will be prohibitively

large. While this may appear to be a significant obstacle, a similar situation with computing or

approximating certain answers is not new in the literature. For instance, the first approximation

scheme for certain answers to SQL queries that appeared in [15] has done exactly the same, and

generated very large Cartesian products even for simple queries with negation. Nonetheless, an

alternative was found quickly [16] that completely avoided the need for such expensive queries,

and it was shown to work well on several TPC-H queries. Thus, looking for a practical and

implementable rewriting is one of the possible directions for future work.

As another open problem, we note that the query for which we have shown certain answers

to be non-rewritable in FO has DLOGSPACE data complexity. Indeed the problem is essentially

reachability over trees, which can be easily encoded using deterministic transitive closure [17].

To express DLOGSPACE problems, we need a language weaker than Datalog with negation.

Thus, it is natural to ask whether a low complexity Datalog fragment would be sufficient to

express rewritings of BCCQ, or a separating example that is PTIME-complete can be found.
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