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Abstract. We describe simple call-by-value and call-by-name abstract
machines, expressed with the help of Felleisen’s evaluation contexts, for
a toy functional language. Then we add a simple control operator and
extend the abstract machines accordingly. We give some examples of
their use. Then, restricting our attention to the sole core (typed) λ-
calculus fragment augmented with the control operator, we give a logical
status to the machinery. Evaluation contexts are typed “on the left”, as
they are directed towards their hole, or their input, in contrast to terms,
whose type is that of their output. A machine state consists of a term
and a context, and corresponds logically to a cut between a formula
on the left (context) and a formula on the right (term). Evaluation,
viewed logically, is cut-elimination: this is the essence of the so-called
Curry-Howard isomorphism. Control operators correspond to classical
reasoning principles, as was first observed by Griffin.

1 A simple call-by-value evaluator

Consider the following simple functional programming language, whose data
types are (nonnegative) integers and lists.

M ::= x || n || T || F || nil || ?l || h(l) || t(l) ||M op M
M 7→ [M , M ] ||MM || λx.M || Y f.M .

Here op denotes collectively operations such as addition, multiplication, consing
(notation a · l), or equality test of two integers (notation (m = n)); nil is the
empty list, ?l tests whether l is empty (i.e., ?nil evaluates to T and ?(a · l) eval-
uates to F), h(l) and t(l) allow us to retrieve the first element of a list and the
rest of the list, respectively; M 7→ [N , P ] passes control to N (resp. P ) if M
evaluates to T (resp. F); MN is function application; λx.M is function abstrac-
tion; finally, Y f.M denotes a recursive function definition. The more familiar
construct (let rec fx = M in N) is defined from it as (λf.N)(Y f.(λx.M)).

Next, we specify an interpreter for the mini-language. The interpreter pro-
gressively transforms the whole program to be evaluated, and at each step main-
tains a pointer to a subprogram, in which the current work is done. Felleisen and
Friedman [4] have formalized this using evaluation contexts, which are programs
with a (single) hole that in our case are built recursively as follows:

E ::= [ ] || E[[ ]M ] || E[M [ ]]
|| E[[ ] op M ] || E[M op [ ]] || E[h([ ])] || E[t([ ])] || E[?[ ]] || E[[ ] 7→ [M , M ]]



The notation should be read as follows: E is a term with a hole, and, say, E[[ ]M ]
is the context whose single occurrence of [ ] has been replaced by [ ]M : thus, in
E[[ ]M ], the external square brackets refer to the hole of E, while the internal
ones refer to the hole of E[[ ]M ]. For example, [ ][[ ]M ] = [ ]M , and if this context
is called E, then E[[ ]N ] = ([ ]N)M . (The above syntax is in fact too liberal, see
exercise 2.)

The abstract machine rewrites pairs (term,context) that we write 〈N || E 〉
to stress the interaction (and the symmetry) of terms and contexts. We call such
pairs 〈N || E 〉 states, or commands. The initial command is of the form 〈M || [ ] 〉.
The rules (in call-by-value) are as follows:

〈MN || E 〉 → 〈M || E[[ ]N ] 〉
〈λx.P || E[[ ]N ] 〉 → 〈N || E[(λx.P )[ ]] 〉
〈V || E[(λx.P )[ ]] 〉 → 〈P [x← V ] || E 〉

〈Y f.M || E 〉 → 〈M [f ← Y f.M ] || E 〉

〈M op N || E 〉 → 〈M || E[[ ] op N ] 〉
〈m || E[[ ] op N ] 〉 → 〈N || E[m op [ ]] 〉
〈n || E[m op [ ]] 〉 → 〈m op n || E 〉 (operation performed)

〈 ?(M) || E 〉 → 〈M || E[?([ ])] 〉 (? =?, h, t)
〈nil || E[?([ ])] 〉 → 〈 T || E 〉
〈 a · l || E[?([ ])] 〉 → 〈 F || E 〉
〈 a · l || E[h([ ])] 〉 → 〈 a || E 〉
〈 a · l || E[t([ ])] 〉 → 〈 l || E 〉
〈M 7→ [N , P ] || E 〉 → 〈M || E[[ ] 7→ [N , P ] 〉
〈 T || E[[ ] 7→ [N , P ] 〉 → 〈N || E 〉
〈 F || E[[ ] 7→ [N , P ] 〉 → 〈P || E 〉

The first rule amounts to moving the pointer to the left son: thus the evaluator is
also left-to-right. The second rule expresses call-by-value: the argument N of the
function λx.P must be evaluated before being passed to λx.P . In the third rule,
V denotes a value – that is, a function λx.P , an integer n, or a list l which is either
nil or a · l′ where a is a value and l′ is a value (later, we shall add more values)
–, that can be passed, i.e., that can be substituted for the formal parameter x.
The fourth rule allows us to unfold the definition of a recursive function. The
last rules specify the (left-to-right) evaluation of the binary operations, and the
precise meaning of the unary operations ?, h and t, as well as of M 7→ [N , P ].

Notice that the above system of rules is deterministic, as at each step at most
one rule may apply.

Exercise 1. Characterize the final states, i.e., the states that cannot be rewritten.

Exercise 2. Design a more restricted syntax for call-by-value evaluation contexts
(hint: replace E[M [ ]] by E[V [ ]], etc...).



Remark 1. The call-by-name abstract machine is slightly simpler. The context
formation rule E[M [ ]] disappears, as well as the third rule above. The only rule
which changes is the rule for λx.P , which is now

〈λx.P || E[[ ]N ] 〉 → 〈P [x← N ] || E 〉

i.e., N is passed unevaluated to the function λx.P . All the other rules stay the
same.

Remark 2. In call-by-name, the left-to-right order of evaluation given by the
rule 〈MN || E 〉 → 〈M || E[[ ]N ] 〉 is forced upon us: we should not attempt to
evaluate N first. But in call-by-value, both M and N have to be evaluated, and
the right-to-left order of evaluation becomes an equally valid strategy. In this
variant, the first three rules are modified as follows:

〈MN || E 〉 → 〈N || E[M [ ]] 〉
〈V || E[M [ ]] 〉 → 〈M || E[[]V ] 〉
〈λx.P || E[[ ]V ] 〉 → 〈P [x← V ] || E 〉

Below, we give a few examples of execution. We first consider a program that
takes a natural number x as input and returns the product of all prime numbers
not greater than x. One supposes given an operation π? that tests its argument
for primality, i.e., π?(n) evaluates to T if n is prime, and to F if n is not prime.
The program is a mere transcription of the specification of the problem:

π× = Y f.λ.n. (n = 1) 7→ [ 1 , (π?(n) 7→ [n× f(n− 1) , f(n− 1) ]) ]

Here is the execution of this program with input 4:

〈π×(4) || [ ] 〉 → 〈 (4 = 1) 7→ [ 1 , (π?(4) 7→ [ 4× π×(4− 1) , π×(4− 1) ]) ] || [ ] 〉
→ 〈π?(4) 7→ [ 4× π×(4− 1) , π×(4− 1) ] || [ ] 〉
→ 〈π×(4− 1) || [ ] 〉
→? 〈π×(3) || [ ] 〉
→? 〈 3× π×(3− 1) || [ ] 〉
→? 〈π×(2) || 3× [ ] 〉
→? 〈π×(1) || 3× (2× [ ]) 〉
→? 〈 1 || 3× (2× [ ]) 〉
→ 〈 2 || 3× [ ] 〉
→ 〈 6 || [ ] 〉

Our next example is the function that takes an integer n and a list l as
arguments and returns l if n does not occur in l, or else the list of the elements
of l found after the last occurrence of n in l. For example, when applied to 3
and 1 · (3 · (2 · (3 · (4 · nil)))), the function returns the list 4 · nil . The following
program for this function makes use of an auxiliary list, that can be called an
accumulator:

F = λn.λl.(Y f.λl1.λl2. ?l1 7→ [ l2 , h(l1) = n 7→ [ f t(l1) t(l1) , f t(l1) l2 ] ]) l l



We present the execution of F with inputs 3 and 1 · (3 · (2 · (3 · (4 · nil)))). We
set:

ε = Y f.λl1.λl2.?l1 7→ [ l2 , h(l1) = 3 7→ [ f t(l1) t(l1) , f t(l1) l2 ] ]

We have:

〈 (F 3) (1 · (3 · (2 · (3 · (4 · nil))))) || [ ] 〉
→? 〈 ε (1 · (3 · (2 · (3 · (4 · nil))))) (1 · (3 · (2 · (3 · (4 · nil))))) || [ ] 〉
→? 〈 ε (3 · (2 · (3 · (4 · nil)))) (1 · (3 · (2 · (3 · (4 · nil))))) || [ ] 〉
→? 〈 ε (2 · (3 · (4 · nil))) (2 · (3 · (4 · nil))) || [ ] 〉
→? 〈 ε (3 · (4 · nil)) (2 · (3 · (4 · nil))) || [ ] 〉
→? 〈 ε (4 · nil) (4 · nil) || [ ] 〉
→? 〈 εnil (4 · nil) || [ ] 〉
→? 〈 4 · nil || [ ] 〉

Note that the execution is tail-recursive: the evaluation context remains empty.
This is good for efficiency, but, conceptually, handling the auxiliary list is some-
what “low level”.

Remark 3. Similarly, our first example can be programmed in a tail recursive
way, as

Y f.λ(n, c). n = 1 7→ [ c(1) , f (n− 1, π?(n) 7→ [λp.c(n× p) , c ]) ]

Here, c is an additional parameter, called the continuation, which is a function
from natural numbers to natural numbers. This is the continuation passing style
(CPS). We encourage the reader to run this new program on input (4, λx.x),
and to check that the execution is indeed tail-recursive.

2 Control operators

We now add two primitive operations, in addition to those of the previous section:

M ::= · · · || κk.M || ?E

The second construction allows us to consider, or reflect evaluation contexts
as values (in addition to those considered above). It is then possible to bind a
variable k to a (reflected) context, and thus to memorize and reuse contexts. This
is what the first construction κk.M does. It exists in programming languages like
SCHEME, where it is written as (call/cc (lambda (k)M))). We add two rules
to the abstract machine (whether in call-by-value or in call-by-name):

〈κk.M || E 〉 → 〈M [k ← ?E ] || E 〉
〈 ?E1

|| E2[[ ]N ] 〉 → 〈N || E1 〉

The second rule throws away the current evaluation context E2 and replaces it
with a context E1 captured earlier using the first rule. Note thatN is unevaluated
(compare with the rule for λ which swaps function and argument).



We illustrate the new primitives through some examples. First, consider the
function that takes as input a list of integers and returns the product of the
elements of the list. A näıve program for this function is:

Π1 = Y f.λl. ?l 7→ [ 1 , h(l)× f(t(l) ]

The execution of this program applied to the list [2,4,3,0,7,8,1,13] involves the
full multiplication 2×(4×(3×(0×(7×(8×(1×13)))))), which is not particularly
perspicuous, given that 0 is absorbing for ×. A better try is:

Π2 = Y f.λl. ?l 7→ [ 1 , (h(l) = 0) 7→ [ 0 , h(l)× f(t(l) ] ]

Here, the final multiplications by 7, 8, 1, and 13 have been avoided. But the
execution still involves the successive multiplications of 0 by 3, 4, and 2. The
following program, which makes use of the control operator κ, takes care of this:

Π3 = κk.Y f.λl. ?l 7→ [ 1 , (h(l) = 0) 7→ [ k (λl′0) , h(l)× f(t(l) ] ]

It is easily checked that the execution on the same input [2,4,3,0,7,8,1,13] now
returns 0 without performing any multiplication.

Remark 4. We can reach the same goal (of avoiding any multiplication by 0)
using CPS (cf. Remark 3). The CPS tail-recursive version of Π2 is:

Π4 = Y f.λlλk′′. ?l 7→ [ k′′ 1 , (h(l) = 0) 7→ [ k′′ 0 , f(t(l))(λx.k′′(h(l)× x)) ] ]

It should be clear how tail-recursiveness is achieved: the additional parameter
k′′ is an abstraction of the stack/context. If k′′ currently stands for E, then
λx.k′′(h(l)×x) stands for E[h(l)× []]. The program Π4 does no better than Π2,
as it does not avoid to multiply by zero back along the recursive calls. But the
following program Π5 avoids this:

Π5 = Y f.λlλk′. ?l 7→ [ k′ 1 , (h(l) = 0) 7→ [ 0 , f(t(l))(λx.k′(h(l)× x)) ] ]

We owe to Olivier Danvy the following rationale for a smooth transformation
from Π4 to Π5. The program Π4 takes a list and a function from nat (the type
of natural numbers) to nat as arguments and returns a natural number. Now,
natural numbers split into 0 and (strictly) positive numbers, let us write this as
nat = 0 + nat?. There is a well-known isomorphism between (A+B)→ C and
(A→ C)× (B → C). By all this, we can rewrite Π4 as

Π ′5 = Y f.λlλkλk′. ?l 7→ [ k′ 1 , (h(l) = 0) 7→ [ k 0 , f(t(l))(λx.k′(h(l)× x)) ] ]

(with k : 0→ nat and k′ : nat? → nat, where (k, k′) represents k′′ : nat→ nat).
We then remark that k is not modified along the recursive calls, hence there is
no need to carry it around. Assuming that k was initially mapping 0 to 0, we
obtain Π5. So, the CPS program Π5 gets rid of k and retains only k′. Quite
dually, we could say that the program Π3 gets rid of k′ (which has the normal
control behaviour) and retains only k (whose exceptional control behaviour is
handled via the κ abstraction).



A similar use of κ abstraction leads to a more “natural” way of programming
the function underlying program F of section 1:

F ′ = λn.λl.κk.(Y f.λl1.?l1 7→ [ nil , (h(l1) = n) 7→ [ k(f(t(l1))) , h(l1)·f(t(l1)) ] ]) l

We set ε′ = Y f.λl1.?l1 7→ [ nil , (h(l1) = 3) 7→ [ ?[](f(t(l1))) , h(l1)·f(t(l1)) ] ]) l,
and we abbreviate 4 · nil as 4. Here is the execution of F ′ on the same input as
above:

〈F ′(3)(1 · (3 · (2 · (3 · 4)))) || [ ] 〉 →? 〈 ε′ (1 · (3 · (2 · (3 · 4)))) || [ ] 〉
→? 〈 ε′ (3 · (2 · (3 · 4))) || 1 · [ ] 〉
→? 〈 ?[ ](ε′(2 · (3 · 4))) || 1 · [ ] 〉
→? 〈 ε′(2 · (3 · 4)) || [ ] 〉
→? 〈 4 || [ ] 〉

Exercise 3. [6] Consider a slight variation of the toy language, in which lists are
replaced by binary trees whose leaves are labeled by integers. This is achieved
by reusing the operations ·, h, t, ?, and by removing nil: a tree t is either a
number or is of the form t1 · t2; the meaning of h and t are “left immediate
subtree” and “right immediate subtree”, respectively; ?t is now a function from
trees to a sum type whose values are F or integers, it returns F if t = t1 · t2
and n if t = n. The weight of a tree is computed as follows: w(n) = n, and
w(t1 · t2) = w(t1) + w(t2) + 1. A tree is called well-balanced if t = n, or if
t = t1 · t2 and w(t1) = w(t2) and t1, t2 are well-balanced. Write three programs
for testing if a tree is well-balanced. All programs should traverse the input tree
only once. The second program should save on weight computations, the third
one should also save on successive returns of the negative information that the
tree is not well-balanced. (Hint: for the first two programs, make use of the above
sum type.)

So far, we have only demonstrated how the κ construct allows us to escape
from an evaluation context. The following exercises propose examples where
continuations are passed around in more sophisticated ways. Exercises 5 and
6 are variations on the theme of coroutines. Coroutines are two programs that
are designed to be executed in an interleaving mode, each with its own stack of
execution. Each program works in turn for a while until it calls the other. Call
them P and Q, respectively. When P calls Q, the execution of P is suspended
until P is called back by Q, and then P resumes its execution in the context it
had reached at the time of its last suspension.

Exercise 4. [11, 12] The following programs illustrate the reuse of evaluation
contexts or continuations. What do they compute?

(κk.λx.k(λy.x+ y)) 6
κl.(λ(a, h).h(a+ 7))(τ(3, l)) (τ = λ(n, p).κk.(λm.k(m, p))(κq.k(n, q)))



Exercise 5. [12] Consider the following programs:

π = λa.φ(λx.write a;x) and φ = λf.λh.κk.h(fk)

where the new command write applies to a character string, say, ′toto, and is
executed as follows:

〈 write ′toto;M || E 〉 → 〈M || E 〉 !toto

by which we mean that the execution prints or displays toto and then proceeds.
Describe the execution in call-by-name of ((π ′ping)(π ′pong))((π ′ping)(π ′pong)).
Does it terminate? Which successive strings are printed? (Hint: setting P =
(π ′ping)(π ′pong), Va = λh.κk.h((λx..write a;x)k) , and E = [ ]P , here are
some intermediate steps:

〈PP || [ ] 〉 →? 〈V′pong || E[V′ping [ ]] 〉
→? 〈 ?E || E[[]((λx..write ′pong ;x)?E)] 〉
→ 〈 (λx..write ′pong ;x)?E || E 〉.)

Exercise 6. [8] The toy language is extended with references and commands:

M := · · · || let x = ref V inM || !x || x := V ||M ;M

(a variable defined wih the ref construct is called a reference). The machine
states have now a store component (a list S of term/reference associations),
notation 〈M || E 〉S . The evaluation rules are as follows:

〈M || E 〉S → 〈M ′ || E′ 〉S (for all the above rules 〈M || E 〉 → 〈M ′ || E′ 〉
〈 let x = ref V inN || E 〉S → 〈N || E 〉S[x←V ] (x not defined in S)
〈 !x || E 〉S → 〈S(x) || E 〉S
〈x := V || E 〉S → 〈 || E 〉S[x←V ]

〈M ;N || E 〉S → 〈M || E[[];N ] 〉S
〈 || E[[];N ] 〉S → 〈N || E[] 〉S

Write two programs get first and get next that work on a binary tree (cf.
exercise 2) and whose effects are the following: (get first t) returns the value
of the first leave (in left-to-right traversal) of t, and then evaluations of get next

return the values of the leaves of t in turn, suspending the traversal between two
get next calls. (Hints: define two references and two auxiliary functions start

and suspend that use κ abstraction to store the stack in the respective references:
start is invoked by get first and get next at the beginning (storing the
context of the caller who communicates with the tree via these get functions),
while suspend is invoked when the value of a leaf is returned (storing the context
that will guide the search for the next leave).)

3 Curry-Howard

In this section, we assign typing judgements to terms M , to contexts E, and to
commands c = 〈M || E 〉. We restrict our attention to λ-calculus, extended with



the above control operations. We also switch to call-by-name, for simplicity (cf.
remark 1). In this section, we adopt the alternative notation M · E for E[[ ]M ]
(“push M on top of E considered as a stack”). The resulting syntax is as follows:

M ::= x ||MN || λx.M || κk.M || ?E
E ::= [ ] ||M · E

The abstract machine for this restricted language, called λκ-calculus [2], boils
down to the following four rules:

〈MN || E 〉 → 〈M || N · E 〉
〈λx.M || N · E 〉 → 〈M [x← N ] || E 〉
〈κk.M || E 〉 → 〈M [k ← ?E ] || E 〉
〈 ?E1

||M · E2 〉 → 〈M || E1 〉

Note that the first rule suggests that the application and the push operation are
redundant. As a matter of fact, we shall remove the application from the syntax
in a short while.

As is well-known, terms are usually typed through judgements Γ ` M :
A, where Γ is a sequence x1 : A1, . . . , xn : An of variable declarations, and
where M can also be interpreted as a notation for a proof tree of the sequent
A1, . . . , An ` A. Let us recall the notion of sequent, due do the logician Gentzen
(for an introduction to sequent calculus, we refer to, say, [5]). A sequent is given
by two lists of formulas, separated by the sign ` (which one reads as “proves”):

A1, . . . , Am ` B1, . . . , Bn

The intended meaning is: “if A1 and . . . and Am, then B1 or . . . or Bn”. The Ai’s
are the assumptions, and the Bi’s are the conclusions. Notice that there may be
several formulas on the right of `. In sequent calculus, limiting the right hand
side list to consist of exactly one formula corresponds to intuitionistic logic. As
a hint as to why multiple conclusions have to do with classical reasoning, let
us examine how we can derive the excluded middle ¬A ∨ A (the typical non-
constructive tautology of classical logic) from the very innocuous axiom A ` A.
First, we denote false as ⊥, and we encode ¬A as A→ ⊥ (a simple truth-table
check will convince the reader that the encoding is sensible). Then, we use the
multi-conclusion facility to do a right weakening. Weakening means adding more
assumptions, or more conclusions (or both), its validity corresponds to something
like “one who can do the most can do less”. And finally, one gets the excluded
middle by right implication introduction (see below):

A ` A

A ` ⊥, A

` ¬A,A

As we shall see, control operators lead us outside of intuitionistic logic, so we
shall adopt unconstrained sequents rightaway.



Sequents may be combined to form proofs, through a few deduction rules.
Here are two of them:

Γ |A ` ∆ Γ ` A |∆

Γ ` ∆

Γ,A ` B |∆

Γ ` A→ B |∆

The first rule is the cut rule, that can be interpreted backwards as “proving a
theorem with the help of a lemma”: in order to prove ∆ from assumptions Γ ,
we first prove an auxiliary property A, and then prove ∆, taking the auxiliary
property as an additional assumption. The second rule is the one corresponding
to λ-abstraction. Read A → B as a function type. Then a program of type
B depending on a parameter x of type A can be viewed as a function of type
A → B. (The role of the vertical bars in the sequents is explained in the next
paragraph.)

More generally, the Curry-Howard isomorphism says that there is a one-
to-one correspondence between proofs and programs. We shall extend here the
correspondence to let also contexts and commands fit into it. We shall con-
sider three sorts of sequents, corresponding to terms, contexts, and commands,
respectively. They are given in the following table:

. . . , Ai, . . . ` B | . . . , Bj , . . .

. . . , Ai, . . . |A ` . . . , Bj , . . .
. . . , Ai, , . . . ` . . . , Bj , . . .

←→
 . . . , xi : Ai, . . . `M : B | . . . , αj : Bj , . . .
. . . , xi : Ai, . . . |E : A ` . . . , αj : Bj , . . .
c : (. . . , xi : Ai, . . . ` . . . , αj : Bj , . . .)

In the sequents corresponding to terms, one conclusion is singled out as the
current one, and is placed between the ` and the vertical bar. Symmetrically,
in the sequents corresponding to contexts, one assumption is singled out as the
current one, and is placed between the vertical bar and the `. Note that a context
is typed on the left: what we type is the hole of the context, that standds for the
input it is wainting for. A command is obtained by cutting a conclusion that is
singled out against an assumption that is singled out, and the resulting sequent
has no conclusion nor assumption singled out.

We now turn to the typing rules. But we first note that the evaluation rule
for κ is rather complicated: it involves copying the context, and transforming one
of the copies into a term. It turns out that both κk.M and ?E can be encoded
simply using a more primitive operation: Parigot’s µ-abstraction [9], which has
the following behaviour:

〈µα.c || E 〉 → c[α← E]

Moreover, the application can also be encoded with the help of the µ abstraction.
The encodings are as follows (cf. also [3]):

?E = λx.µα.〈x || E 〉 (α not free in E)
κk.M = µβ.〈λk.M || ?β · β 〉 (β not free in M)
MN = µα.〈M || N · α 〉 (α not free in M,N)



Exercise 7. Check that the encodings simulate the evaluation rules for ?E , κk.M ,
and MN .

Exercise 8. Prove the following equality:

(κk.M)N = κk′.M [k ← λm.k′(mN)]N

More precisely, prove that the encodings of the two sides of this equality have a
common reduct.

Note that the µ operation involves an explicit continuation variable (that
may be bound to a context), while κ does not (it involves an ordinary variable
that may be bound to a term representing a context). We shall give typing rules
for the following more primitive syntax, called λµ-calculus [1]:

M ::= x || λx.M || µα.c
E ::= α ||M · E
c ::= 〈M || E 〉

with the following reduction rules:

〈λx.M || N · E 〉 → 〈M [x← N ] || E 〉
〈µα.c || E 〉 → c[α← E]

Note that in addition to the ordinary variables (x, y, k, k′, . . .), there are now
first-class continuation variables α, in place of the (constant) empty context
(the top-level continuation). We can now revisit the three sorts of typing judge-
ments. All judgements allow us to type an expression containing free ordinary
variables . . . , xi : Ai, . . . and continuation variables . . . , αj : Bj , . . .. The judge-
ments . . . , xi : Ai, . . . `M : B | . . . , αj : Bj , . . ., . . . , xi : Ai, . . . |E : A ` . . . , αj :
Bj , . . ., and c : (. . . , xi : Ai, . . . ` . . . , αj : Bj , . . .) say that M delivers a value of
type B, that E accepts a term of type A, and that c is a well-formed command,
respectively. The typing rules are as follows:

Γ |α : A ` α : A,∆ Γ, x : A ` x : A |∆

Γ `M : A |∆ Γ |E : B ` ∆

Γ | (M · E) : A→ B ` ∆

Γ, x : A `M : B |∆

Γ ` λx.M : A→ B |∆

c : (Γ ` β : B , ∆)

Γ ` µβ.c : B |∆

Γ `M : A |∆ Γ |E : A ` ∆

〈M || E 〉 : (Γ ` ∆)

Let us read the rules logically. The first two rules are variations of the axiom: a
sequent holds if one formula A is both among the assumptions and the conclu-
sions. The following two rules correspond to the introduction of the implication
on the right and on the left: this is typical of sequent calculus style. Let us spell



out the left introduction rule, returning to the old notation E[[ ]M ]. This ex-
pression has two bracketings [ ]: call them the inner hole and the outer hole. If
M has type A, then the inner hole (which is the hole of E[[ ]M ]) must have a
type A → B, hence [ ]M has type B, and the outer hole (which is the hole of
E) must have type B. Thus, sequent calculus’ left introduction is interpreted as
“push M on stacke E”. The rule for µ can be viewed as a sort of coercion: the
sequent to be proved does not vary, but the status of the sequent changes from
having no assumption or conclusion singled out to having one conclusion singled
out, which is a key step in writing a cut. The final rule is the cut rule: 〈M || E 〉
is well-formed when M has the type that E expects.

Remark 5 (for the logically oriented reader). In this typing system, we have left
contraction (e.g., from Γ,A,A ` ∆ deduce Γ,A ` ∆) and weakening implicit:
weakening is built-in in the two axioms for variables and continuation variables
(when Γ or ∆ or both are non-empty), and contraction is implicit in the “push”
rule (M · E) and in the cut rule (〈M || E 〉).

Beyond the particularity of having a conclusion or an assumption singled
out, the above rules are nothing but the rules of sequent calculus, and the above
encoding of application is the essence of the translation from natural deduction
style to sequent calculus style [5].

Exercise 9. Give a technical contents to the second part of remark 5, by defining
a translation from λ-calculus to λµ-calculus that preserves reductions. (Note that
in the λµ-calculus, the evaluation rules are not deterministic anymore: since
commands are recursively part of the syntax, it makes sense to reduce not only
at the root.)

Now we can derive the typing rules for κk.M and ?E :

Γ, x : A ` x : A |∆ Γ |E : A ` ∆

〈x || E 〉 : (Γ, x : A ` ∆)

Γ, x : A ` µα.〈x || E 〉 : R |∆

Γ ` ?E : A → R |∆

Here, R is an arbitrary (fixed) formula/type of results. Note that we have slightly
departed from the typing rules as written above, in order to make the essential
use of weakening explicit: α : R is a fresh variable.



Γ |β : A ` ∆,β : A

Γ ` ?β : A→ R |∆,β : A Γ |β : A ` ∆,β : A

Γ | ?β ·β : (A→ R)→ A ` ∆,β : A

Γ, k : A → R `M : A |∆

Γ ` λk.M : (A→ R)→ A |∆

〈λk.M || ?β · β 〉 : (Γ ` ∆,β : A)

Γ ` κk.M : A |∆

The last derivation reveals one of these unexpected mysteries that makes re-
search so fascinating. The control feature encoded by κ abstraction corresponds
under the Curry-Howard correspondence to reasoning by contradiction, as first
discovered in [7]. Indeed, think of R as ⊥. Then A→ R is ¬A, and

Γ, k : A → R `M : A |∆

Γ ` κk.M : A |∆

reads as: “if we can prove A assuming ¬A, then we reach a contradiction, and
hence A is proved”. The implication ((A→ R)→ A)→ A is known as Peirce’s
law. The reader will find related classical reasoning principles in the following
exercise.

Exercise 10. We call the sequents ¬¬A ` A and ⊥ ` A double negation elimi-
nation and ⊥ elimination, respectively.

(1) Show that Peirce’s law plus ⊥ elimination imply double negation elimination
(hint: apply the contravariance of implication, i.e., if A′ implies A, then A→ B
implies A′ → B).

(2) Show that double negation elimination implies ⊥ elimination (hint: prove
that ⊥ implies ¬¬B).

(3) Show that double negation elimination implies Peirce’s law (hint: use (2)).

Remark 6. Double negation elimination (cf. exercise 10) corresponds to another
control operator, Felleisen’s C, whose behaviour is the following:

〈 C(M) || E 〉 → 〈M || ?E · [ ] 〉

Thus, C(λk.M) is quite similar to κk.M , except that the stack is not copied, but
only captured. The λµ counterpart of C(M) is given by µβ.〈M || ?β · α 〉 where
the variables β and α are not free in M ; α can be understood as a name for
the toplevel continuation. The typing, as literally induced by the encoding, is as
follows

Γ `M : (A→ R)→ R |∆

Γ ` C(M) : A |α : R,∆



It looks a little odd, because α is a variable not mentioned in the C construction.
One way out is to assimilate R with ⊥, which amounts to viewing R as the
(unique) type of final results. Then we can remove altogether α : ⊥ from the
judgement (as “∆ or ⊥” is the same as ∆), and obtain:

Γ `M : (A→ ⊥)→ ⊥|∆

Γ ` C(M) : A |∆

i.e., “C is double negation elimination” [7].

4 Conclusion

We have shown some basic relations between continuations and control opera-
tors, abstract machines, and sequent caclulus. The connection with logic is lost
when we admit recursion into the language (section 2). But the detour through
logic is extremely useful, as it brings to light a deep symmetry between terms
and contexts.

The λµ calculus can be extracted from the logical considerations and can then
be considered as an untyped calculus per se. An extension of the λµ-calculus that
allows for a completely symmetric account of call-by-name and call-by-value is
presented in [1].
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