Games in computer science: a survey

Pierre-Louis Curien

CNRS – Université Paris 7

Globus Seminar, Moscow, April 2005
“Provability” versus “proofs”

• Games to reason about programs

• Programs as strategies
Model-checking 1/2

Satisfiability problem for various logics (modal, temporal, \(\mu \)) for automata or concurrent systems

\[\iff \]

Existence of winning strategies in associated games.
Model-checking 2/2

Also \Leftrightarrow (non-)emptyness problem for languages recognized by various kinds of automata on (infinite) words or trees.

Also, bisimulation in concurrency theory.
Game semantics 1/2

Strategies as proofs / programs / morphims. Composition corresponds to cut elimination / normalization. Games semantics is very active since a decade.
Game semantics 2/2

New results in the semantics of programming languages: simple and direct semantics for programming features such as control or references,

Full abstraction results connecting denotational and operational semantics tightly.
A theorem on lattices

Joyal (1997) used games to give a nice proof of the following theorem (Whitman 1947): The free lattice L over a partial order X (with $i : X \to L$) is characterized by
- L is a lattice and i is monotonous
- If $u_1 \land u_2 \leq v_1 \lor v_2$, then $u_1 \land u_2 \leq v_1$ or $u_1 \land u_2 \leq v_2$ or $u_1 \leq v_1 \lor v_2$ or $u_2 \leq v_1 \lor v_2$
- If $i(x) \leq v_1 \lor v_2$, then $i(x) \leq v_1$ or $i(x) \leq v_2$
- If $u_1 \land u_2 \leq i(x)$, then $u_1 \leq i(x)$ or $u_2 \leq i(x)$
- If $i(x) \leq i(y)$, then $x \leq y$
- L is generated by $i(X)$
Uniqueness easy. For existence, construct a suitable preorder on the following set of terms:

\[
\frac{x \in X}{x \in T(X)} \quad \frac{V \in T(X)}{F \in T(X)}
\]

\[
\frac{A_1 \in T(X) \quad A_2 \in T(X)}{A_1 \land A_2 \in T(X)} \quad \frac{A_1 \in T(X) \quad A_2 \in T(X)}{A_1 \lor A_2 \in T(X)}
\]
The preorder is defined by: \(A \leq B \) if and only if \((A, B)\) is a \textit{winning position} in some graph game.

The set of nodes is \(T(X) \times T(X) \).
PROLOGUE 5/13

Edges:

\[(A_1 \lor A_2, B) \rightarrow (A_1, B)\]
\[(A, B_1 \land B_2) \rightarrow (A, B_1)\]
\[(A_1 \lor A_2, B) \rightarrow (A_2, B)\]
\[(A, B_1 \land B_2) \rightarrow (A, B_2)\]

\[(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_1, B_1 \lor B_2)\]
\[(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_1 \land A_2, B_1)\]
\[(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_2, B_1 \lor B_2)\]
\[(A_1 \land A_2, B_1 \lor B_2) \rightarrow (A_1 \land A_2, B_2)\]

\[(A_1 \land A_2, F) \rightarrow (A_1, F)\]
\[(V, B_1 \lor B_2) \rightarrow (V, B_1)\]
\[(A_1 \land A_2, F) \rightarrow (A_1 \land A_2, B_1)\]
\[(V, B_1 \lor B_2) \rightarrow (V, B_2)\]

\[(A_1 \land A_2, x) \rightarrow (A_1, x)\]
\[(x, B_1 \lor B_2) \rightarrow (x, B_1)\]
\[(A_1 \land A_2, x) \rightarrow (A_2, x)\]
\[(x, B_1 \lor B_2) \rightarrow (x, B_2)\]
Each node has a polarity $\in \{P, O, N\}$ (Player, Opponent, Neutral).

\[
\begin{align*}
O &= (A_1 \lor A_2, B) \\
O &= (F, B) \\
O &= (A, B_1 \land B_2) \\
O &= (A, V)
\end{align*}
\]

\[
\begin{align*}
P &= (A_1 \land A_2, B_1 \lor B_2) \\
P &= (V, F) \\
P &= (x, B_1 \lor B_2) \\
P &= (x, F) \\
P &= (V, B_1 \lor B_2) \\
P &= (A_1 \land A_2, F) \\
P &= (A_1 \land A_2, x) \\
P &= (V, x) \\
N &= (x, y)
\end{align*}
\]
A strategy is a full subgraph \(S \) s.t.
- If \((A, B) \in S\), then \(S \) contains at least one edge out of \((A, B)\).
- If \((A, B) \in S\), then \(S \) contains all edges of \(G \) out of \((A, B)\).
- If \((x, y) \in S\), then \(x \leq y \) in \(X \).
We say that \((A, B)\) is a winning position if \((A, B)\) belongs to some strategy. We then write \(A \leq B\).
A proof is a strategy which satisfies:

- In the first condition, replace “at least one” by “exactly one”.
- There is a root (an edge from which all other edges can be reached following (oriented) paths of the strategy).
Lemma 1. (A, B) is winning iff there is proof rooted in (A, B).

Lemma 2. $A_1 \land A_2$ is a greatest lower bound of A_1 and A_2, etc... .

Lemma 3. \leq is transitive.
(1) Easy (induction on formulas)

(2) Use the presentation by proofs

(3) Use the presentation by strategies. The composition of two strategies S and T witnessing $A \leq B$ and $B \leq C$ is:

$$S \circ T = \left\{ (x, z) \mid \exists y \ (x, y) \in S \text{ et } (y, z) \in T \right\}.$$
This example embodies ideas of using games for both
- model-checking (we are interested in the mere existence of strategies for inequality predicates) and
- game semantics: we want a compositional semantics: combine strategies to build other strategies.
The situation proofs / strategies somehow matches the operational / denotational distinction in the semantics of programming languages: Proofs compose by normalization / cut-elimination / interaction, while strategies compose as mathematical functions. (Cf. also functions as relations vs functions as algorithms).
AUTOMATA, LOGICS . . .

Büchi (1962): Two-way correspondence between automata on infinite words and monadic second order logic over infinite words α:

$$\forall \alpha \ (\alpha \models \phi \iff A \text{ accepts } \alpha)$$

This logic is decidable.
and GAMES

second order monadic logic \iff automata

\updownarrow parity

parity games

McNaughton, Rabin, Gurevitch-Harrington, Zielonka, Thomas, \ldots
Determinacy

Parity games are determined, and who wins is decidable.

A nice proof of Santocanale goes along the hypothenuse of the above triangle (but the target is a logic of fixed points).
A (partial) game is
- an oriented graph \(G = (G_0, G_1) \)
- the nodes have a polarity (\(\epsilon : G_0 \to \{P, O, N\} \), if \(\epsilon(x) = N \), then \(x \) is terminal)
If \(\epsilon^{-1}(N) = \emptyset \), the game is called total.
Parity automata and fixpoints 2/8

One also gives a set W_P of infinite winning paths for P (W_O is its complement).

Winning strategy for P (resp. O) = strategy all of whose infinite paths $\in W_P$ (resp. $\in W_O$). Winning position = belongs to a winning strategy.
Parity automata and fixpoints 3/8

Given \(X \subseteq \varepsilon^{-1}(N) \), given \(S(x) \subseteq G_0 \) and \(OP^x \in \{\land, \lor\} \) for all \(x \in X \), define the games

\[\mu_S \cdot G[X] \] (short for \(\mu_{S,OP} \cdot G[X] \)) , \(\nu_S \cdot G[X] \):

- add \(x \rightarrow g \) for all \(x \in X, g \in S(x) \),
- change polarity of \(x \in X \) to \(P \) (resp. \(O \)) if \(OP^x = \lor \) (resp. \(OP^x = \land \)).
The two games differ only in the definition of winning:

- $\mu_S.G[X]$: the winning paths of P are those infinite paths in the new graph which eventually are winning for P in the old.
- $\nu_S.G[X]$: (dual) the ... of O in the new graph which eventually ... for O in the old.
Parity automata and fixpoints 5/8

$G[X \cap A]$ defined by changing the polarity of $x \in X$ to P (resp. O) if $x \not\in A$ (resp. $x \in A$).

Lemma 1. If all games $G[X \cap A]$ are determined, then $\mu_S.G[X]$ (resp. $\nu_S.G[X]$) is determined and its set of winning positions is obtained as a least (resp. greatest) fixed point of a monotonous operator.
A parity game is a (total) game in which the nodes also have a colour \((p : G_0 \rightarrow \{1, \ldots, n\})\) and the colours have a parity \((\chi : \{1, \ldots, n\} \rightarrow \{\text{P}, \text{O}\})\).

\(W_P\) consists of those paths such that if \(m\) is the maximum colour visited infinitely often along the path, then \(\chi(m) = \text{P}\).
Lemma 2. Each parity game G can be written as $Q_{S_n} \cdots Q_{S_1} G_0[X_1] \cdots [X_n]$ where
- X_i is the set of nodes of colour i,
- $S_i(x)$ is the set of successors of x in G,
- $OP^x = \lor$ (resp. $OP^x = \land$) if x has polarity P (resp. O),
- $Q_{S_i} = \mu$ (resp. $Q_{S_i} = \nu$) if $\chi(i) = P$ (resp. $\chi(i) = O$).
Parity automata and fixpoints 8/8

Determinacy of parity games follows from Lemmas 2 and 1.
Proof of lemmas 1 and 2 (hints) 1/3

\[WP_P[G] =_{def} \{ g \in G_0 | \exists \text{ a winning strategy for } P \text{ containing } g \} \]

Lemma A: \(WP_P[G] \cap WP_O[G] = \emptyset \).

Lemma B: A path \(\gamma \) that visits \(X \) infinitely often is winning in \(\mu_S.G[X] \).

Lemma C: A path that is eventually winning in \(G[X] \) is winning in \(\nu_S.G[X] \).
Proof of lemmas 1 and 2 (hints) 2/3

\[F_P(A) = \text{def} \{ g \in G_0 \mid (\epsilon g = P \Rightarrow \exists g' (g \rightarrow g' \text{ and } g' \in A)) \text{ and } (\epsilon g = O \Rightarrow \forall g' (g \rightarrow g' \Rightarrow g' \in A) \} \]

When a play reaches \(F_P(A) \), P can force the play to go into \(A \).

The operator of Lemma 1 is \(A \mapsto WP_P[G[X \cap F_P(A)]] \).
A glimpse of the proof of Lemma 1. If \(Z \) is a postfixpoint, i.e., \(Z \subseteq WP_P[G[X \cap F_P(Z)] \), then construct the following strategy: play according to \(G[X \cap F_P(Z)] \), until eventually reaching \(X \cap F_P(Z) \), then force the play to come to \(Z \), and continue to play according to \(G[X \cap F_P(Z)] \), etc…
The goal is to make semantics akin to syntax and to model computation as interaction between

\[\left\{ \begin{array}{l}
\text{a system} \\
\text{a program} \\
P
\end{array} \right\} \quad \text{and} \quad \left\{ \begin{array}{l}
\text{its environment} \\
\text{its context} \\
O
\end{array} \right\} \]
while keeping a suitable level of mathematical abstraction (categories), and hence the possibility to use powerful reasoning tools.

Abramsky-Jagadeesan-Malacaria, Hyland-Ong (1993)
PRECURSORS

- Dialogue games of Lorenzen, Lorenz, Felscher (1960)
- Sequential algorithms of Berry and Curien (1978) (like M. Jourdain, we did not know that we were talking about games and strategies!)