An approach to innocent strategies as graphs

P.-L. Curien (CNRS-Paris 7)

Cl. Faggian (Padova → CNRS-Paris 7)

Current trends in concurrency theory, LIX, November 2006

Denotational semantics

 \approx (game semantics / ludics)

Syntax

"the best of both worlds"

proofs \rightarrow (tree) strategies \downarrow

proof nets \rightarrow graph strategies

Ludics 1/6

ludics = focalized, untyped version of MALL
sequent calculus.

(polarized, focalized) MALL sequent calculus proofs → **designs**

(MALL = Multiplicative-Additive Linear Logic)

Ludics 2/6

$$\frac{\vdash P_{1}, \Gamma_{1} \vdash P_{2}, \Gamma_{1}}{\vdash P_{1} \& P_{2}, \Gamma_{1} \vdash N, \Gamma_{2}} \\
\vdash (P_{1} \& P_{2}) \otimes N, \Gamma_{1}, \Gamma_{2}$$

 \downarrow

additive rule (immediate conflict)
$$(\xi 1, \{1\})^ (\xi 1, \{2\})^+$$
 $(\xi, \{1, 2\})^+$

Ludics 3/6

- Formulas organized by alternating clusters of positive (\otimes, \oplus) (resp. negative (\otimes, \oplus)) formulas
- Each cluster becomes an address (cf. type bool₂ \rightarrow bool₁ \rightarrow bool₆ in game semantics)

Ludics 4/6

- Logical rules expressed in terms of **actions** = (ξ, I) (I finite set of relative immediate subaddresses of ξ)
- We say that (ξ, I) generates ξi $(i \in I)$
- A negative rule involving & gives rise to actions $(\xi, I_1), \ldots, (\xi, I_n)$ on the *same* address

Ludics 5/6

Looks exotic? Just (sorts of) Böhm trees:

- negative $\xi \to \lambda x_1 \dots x_i \dots x_n.P$
- ullet positive $\xi i o x_i M_1 \dots M_p$ where x_i is bound higher up at a negative node of address ξ

Ludics 6/6

Full syntax for Girard's designs (Curien 2001):

$$M ::= \{J = \lambda \{x_j : j \in J\}.P_J : J \in \mathcal{P}_f(\omega)\}$$

 $P ::= (x \cdot I)\{M_i : i \in I\} \mid \Omega \mid \maltese$

L-nets 1/6

An L-net (Faggian/Maurel) $\mathfrak D$ is given by:

- An interface $\vdash \Lambda$ (positive) or $\xi \vdash \Lambda$ (negative).
- A set A of nodes (or events) which are labelled by polarized actions (notation $k = (\xi, I)$)
- A structure on A of directed acyclic bipartite graph (if $k \leftarrow k'$, the two nodes have opposite polarity) which satisfies (for all k):

L-nets 2/6

- *Views.* All the addresses used in $k^{\downarrow} = \{k', k' \stackrel{+}{\leftarrow} k\}$ are distinct.
- Parents. If $k = (\sigma, I)$, then either $\sigma \in$ interface (with same polarity), or it has been generated by (the action of) a $c \stackrel{+}{\leftarrow} k$ (of opposite polarity). Moreover, if k is negative, and $b \leftarrow k$, then b = c (innocence!)
- *Positivity.* $(k \text{ maximal w.r.t.} \overset{+}{\leftarrow}) \Rightarrow (k \text{ positive})$

L-nets 3/6

- Sibling. Two nodes in an additive pair have distinct labels (in the example above, $\{1\} \neq \{2\}$).
- Additives. If $k_1=(\xi,K_1)$, $k_2=(\xi,K_2)$, $\exists w_1,w_2$ in the same additive rule such that $w_1 \stackrel{+}{\leftarrow} k_1$, and $w_2 \stackrel{+}{\leftarrow} k_2$.

("two events on the same address are in conflict")

(So far = L-nets, one more condition for L_S -nets)

L-nets 4/6

Fact. For each pair of distinct nodes k, k' of an Lnet \mathfrak{D} , the sets of actions of k^{\downarrow} and k'^{\downarrow} are different. \rightarrow L-nets as sets of (positive) views (= L-nets with a maximal element, and whose nodes are actions). Very useful for *superpositions* as mere unions. event structures presented as configuration structures)

L-nets 5/6

A *switching edge* of a negative rule R has its target is in R.

A *switching path* uses at most one switching edge for each negative rule.

• *Cycles*. For all non-empty union C of switching cycles, there is an additive rule W not intersecting C, and a pair $w_1, w_2 \in W$ such that for some nodes $c_1, c_2 \in C$, $w_1 \stackrel{+}{\leftarrow} c_1$, and $w_2 \stackrel{+}{\leftarrow} c_2$.

L-nets 6/6

The condition *Cycles* is an anologue of Hughes and Van Glabbeek's *toggling* condition.

It is the key to sequentialization:

every L_S -net has a splitting conclusion

A gradient of sequentiality 1/5

• *L-forests*. Maximally sequential L-nets are *forests* (Girard's designs with *mix*).

• parallel L-nets. Minimally sequential L-nets = our notion of multiplicative-additive (untyped, focalized) proof-nets

A gradient of sequentiality 2/5

Algebraic presentation of parallel L-nets:

$$\mathfrak{D} := \mathfrak{D}^{+} \mid \mathfrak{D}_{\sigma}^{-}
\mathfrak{D}^{+} := \mathfrak{B}\mathfrak{E}^{+}
\mathfrak{E}^{+} := k^{+} \mid \cup (\xi, I)^{+} \circ \mathfrak{D}_{\xi_{i}}^{-}
\mathfrak{D}_{\sigma}^{-} := \cup_{add} (\sigma, J)^{-} \circ \mathfrak{D}^{+}$$

A gradient of sequentiality 3/5

- Rooting. $x \circ \mathfrak{D}^+$: the node x is added, and only edges enforced by condition Parents are added.
- Boxing. $x \cdot \mathfrak{D}^+$: the node x is added below all the conclusions of \mathfrak{D} .
- Additive union. $\cup_{add} \mathfrak{D}_I$: selective union (only the views which are common to all \mathfrak{D}_I 's are shared)

(and associated destructors)

A gradient of sequentiality 4/5

Algebraic presentation of L-forests:

$$\mathfrak{D} := \mathfrak{D}^{+} \mid \mathfrak{D}_{\sigma}^{-}
\mathfrak{D}^{+} := \mathfrak{G}^{+}
\mathfrak{E}^{+} := k^{+} \mid \cup (\xi, I)^{+} \circ \mathfrak{D}_{\xi_{i}}^{-}
\mathfrak{D}_{\sigma}^{-} := \cup (\sigma, J)^{-} \mathfrak{D}^{+}$$

A gradient of sequentiality 5/5

- Every L_S -net can be (non-deterministically) **sequentialized** to an L-forest.
- Every L-forest (more generally, every L_S net) with leaves decorated by sets of actions ("axioms") can be **desequentialized**to a parallel L-net.

The two procedures can be applied so as to be **inverse** to each other.

Further work

- Characterization of minimal sequentiality and of the induced equational theory on L-forests
- sequentialization/desequentialization à la carte:
 Di Giambernardino-Faggian (multiplicative)
- What kind of proof nets do we get when restoring types?

A wider picture

Aim: to link proof theory, game semantics, and concurrency theory.

L-nets \rightarrow (typed) event structures L-net normalisation (Faggian-Maurel) \rightarrow parallel composition (+ synchronization) of (typed) event structures (Faggian-Piccolo) (cf. Varacca-Yoshida) Operations on L-nets \leftrightarrow operations on event structures.