Fundamenta Informaticae 19 (1993) 5185 51
IOS Press

SUBSTITUTION UP TO ISOMORPHISM

P-L. CURIEN
LIENS (CNRS — Ecole Normale Supérieure), LIENS, 45 rue d'Ulm, 75230 Paris Cedex 05, e-mail
curien@dmiens.fr

1 Introduction

The aim of this article is two fold. First we offer a pictorial description of the
categorical semantics of dependent types, the essence of which was known since the
mid seventies, after the works of Cartmell [Cart] along a computer science line, and of
Seely [Se] along a categorical logic line. These early ideas have been revisited by
several authors, including Ehrhard [Ehr], Jacobs [Jac], Lamarche [Lam], Obtulowicz
[Ob], Pavlovic [Pav], Streicher [Stre], and Taylor-Hyland-Pitts [HyPi, Tay]. The goals
were to accommodate these semantics with domain theory on one hand, and
Grothendieck fibrations on the other hand, and to lift them to semantics of the calculus
of constructions of Coquand-Huet. We follow here Seely's semantics in locally
cartesian closed categories.

The exposition is biased towards a second aim, which is to solve a difficulty arising
from a mismatch between syntax and semantics: in locally cartesian closed categories,
substitution in types is modelled by pullbacks (more generally pseudo-functors), that
is, only up to isomorphism, unless split fibrational hypotheses are imposed. Many
semantics, like those based on families of sets, or of domains, as described by Dybjer
[Dyb], and Palmgren and Stoltenberg-Hansen [PalmStol], do satisfy such hypotheses,
but not all semantics do satisfy them, and in particular not the general description of the
interpretation in an arbitrary locally cartesian closed category. In the general case, we
have to show that the isomorphisms between types arising from substitution are
coherent in a sense familiar to category theorists. Due to this coherence problem at the
level of types, we are lead to:

- switch to a syntax where substitutions are explicitly present (in traditional
syntaxes substitution is a meta-operation, defined by induction);

- include type equality judgements in this modified syntax: we consider here only
equalities describing the stepwise performance of substitution.

These changes introduce a new "flaw", In the first-order A-calculus, typing proofs
are unique. This is not true anymore when type equality judgements are added: there are

52 P.-L. Curien / Substitution up to Isomorphism

now different proofs that a given term has a given type. This happens because there is a
rule which says that if a term M has type O, and if O is equal to O', then M has also
type O, so that at any stage in a proof of well-typing of a term M, one may intersperce
type equality judgements. Thus coherence arises not only at the level of types, but also
at the level of terms.

We already investigated coherence problems in a different setting (a system with
polymorphism and type inclusion, joint work with G. Ghelli) [CuGhe]. As in [CuGhe]
we attack this problem with tools of rewriting theory. We exhibit equivalences between
typing proofs which are valid in any locally cartesian closed category (and, we believe,
in more general models like relatively locally cartesian closed categories [HyPi], or D-
categories [Ehr]), and are complete in the sense that the following, informally stated
coherence properties hold:

- any two proofs of the same type equality are provably equal,

- any two proofs establishing that a given term is well-typed derive provably equal
types for this term,

- any two proofs deriving the same type for the same term are provably equal.

To our knowledge, the work presented here is the first solution to this problem,
which, until very recently, had not even been clearly identified, mainly due to emphasis
on interesting mathematical models rather than on syntactic issues.

Prerequisites are the notion of locally cartesian closed category, whose definition is
recalled in Section 2, and of a calculus of dependent types (a first source and agreeable
reference is [Mar]). Syntax is given when needed in the text. We assume some
experience of categorical logic (including the quantifiers-as-adjoints paradigm: the
source reference [Law] is a nice reading). We also refer to the survey paper [Cur2],
where an effort is made to suggest the categorical structures from suitable presentations
of syntax. In particular the reader may find there (but also in [Curl], and in the source
paper [Brui]) an account of De Bruijn's nameless notation, which is also adopted here,
and which we now briefly recall.

De Bruijn's notational convention consists in replacing variable occurrences by a
natural number recording their place in the environment, added to their binding depth,
as illustrated by the following example: in the environment {t=..., z=...}, the terms t
and Ax.(hy.y)z become 1 and A.(A.1)3, respectively. In order to find z's binder one
has to "pass” over Ax and the top t of the environment, viewed as a stack. This
operational flavor has been exploited in the Categorical Abstract Machine [CouCurMau]
(see also [ACCL] for more recent work on machine-oriented syntax).

In Section 2, we give a pictorial account of the interpretation of the syntax of the
calculus of first-order dependent types in locally cartesian closed categories. In Section
3, we raise the mismatch problem quoted in the abstract, and prove our coherence
results. We conclude in Section 4.

P.-L. Curien / Substitution up to fsomorphism 53

2 Interpreting dependent types in locally cartesian closed categories:

We recall successively the notion of locally cartesian closed category (Section 2.1),
and the syntax of first-order A-calculus with dependent types (that is, the kernel of
Martin-L6f type theory, without identity types and without universes) (Section 2.2).We
then turn to a name-free syntax (Section 2.3), which is more appropriate to describe the
interpretation. Finally, we give a pictorial account of the semantics of this calculus in
locally cartesian closed categories (Section 2.4).

ally cartesi ri

Let C be a category, and A be an object of C. The slice C/A is the category whose
objects are the arrows f:B—=A with codomain A, and whose homsets (C/A)E,)
consist of the arrows h such that goh =f.

Definition 1: A locally cartesian closed category (LCCC for short) is a category C
which has a terminal object, and is such that all slices C/A are cartesian closed.

In particular a LCCC is cartesian closed, noticing that C and C/1 are equivalent
categories. The LCCC's admit a characterization by adjunctions, extending the
characterization of categories with pullbacks.

Proposition 2: A category C is locally cartesian closed iff it has a terminal object, and
for any k: A—>B the functor Yk: C/A — C/B defined by (Zk)(f) = kof admits two
successive right adjoints, written k*, [Tk, thatis:

- ¥k — k* —Jlk.
Proof: See [Fre].

We actually make use of this second definition,

Notation: We often write ofk] for k*o, and Yk.f for (Fk)(f) (and similarly for [T).

A feature which is crucially used in the sequel is the pseudo-functorial character of
the pullback. This can be explained as follows. For each pair of composable arrows t
and s, there exists a natural is0 Y : (set)* — t*e s* (L for short), and those isos are
coherent in the sense that the transformation between two paths connecting the same
points in any commuting diagram, obtained by pasting those elementary isos, is
independent of the decomposition of the pasting. This is made clear by the following
example picture, which contains the essence of this coherence property. The picture
shows the two ways to fill the space between the path k k' k" and the path

k'"'=(k"ok")ek..

54 P.-L. Curien / Substitution up to Isomorphism

Figure 1

The two decompositions induce an equality of natural transformations: in the following
equation, we use * to denote the vertical composition of natural transformations:

" Wik * Wik = KWy e ¢ Y
The two equated transformations are from k'"*o k™o k* to k™*.

It is well known that the satisfaction of this equation is sufficent to ensure that all
pastings are coherent 2.

Why are pullbacks only pseudo-functorial? The point is that pullback diagrams
compose, but chosen pullbacks do not in general. The isomorphism 1 can be
constructed in two ways:

1) By a direct, "pointwise" argument, as illustrated on Figure 2, where the two
inner squares and the outer rhombus are the chosen pullback diagrams of sand 0, t
and o[s], and st and O, respectively. One first constructs the mediating arrow ' of
(set)' and teO[set] (not shown on the picture), and then the mediating arrow \, (§ for
short) of ' and oOfset].

Figure 2

(5ot}

Y

a[50t]
afsil als] a

Y

2) By making use of the adjunctions Yk — k* and of the obvious (but special)
property that X(sot) = Xs o Xt .The two inverse natural transformations obtained by this
more abstract argument are given on Figures 3 and 4:

ZThe coherence of pseudo-functors can be reduced to the coherence in bicategories (which is the same
as coherence of monoidal categories) [MacLaPar).

P.-L. Curien / Substitution up to Isomorphism 55

Figure 3
domain
m
Lzt

g t* Z Is (5et)®

2 codomain
E
Figure 4
ul
b s 1
(5ot) E(sal) g* (o

This way of representing natural transformations (more generally 2-cells) is known
as pasting. It has been proved to be mathematically well defined only recently [Pow].
A pasting is a labelled planar graph (with additional properties, see [Pow]): points are
categories (0-cells), arcs are functors (one-cells) and (bounded) regions are natural
transformations (2-cells). In the pictorial representation of pastings adopted in Figures
3 and 4, the vertical lines are irrelevant, and the unlabelled horizontal lines are identity
functors. The domain and the codomain of a natural transformation are retrieved by
reading its upper and lower boundary. The limit between the upper and lower boundary
is given by the leftmost and rightmost vertical lines of the boundary, respectively. We
have represented the upper and lower boundaries of 1 explicitly in Figure 3.

In Annex A.1 we give a pictorial evidence that these transformations are inverse. In
Annex A.2 we prove the coherence condition displayed on Figure 1. The technique
used is pasting rewriting: it has been conceived, and used in mathematical practice for at
least twenty years, by the algebraists of the University of Santiago de Compostela. The
rewritten pastings are called "Rodeja carpets” after the name of their initiator.
Independently, another, dual notation is also since long in use among theoretical
physicists working intensively with tensorial calculus. These dual pastings are called
"Penrose diagrams", after their initiator. Lafont suggested that Penrose diagrams are
more practical than Rodeja carpets (see Annex A.2). The theoretical study of the
geometry of Penrose diagrams has been the subject of recent interest ([Bur, Laf,
JoyStrel, JoyStre2]).

56 P.-f.. Curien / Substitution up to Isomorphism

Remark: Pseudo-functoriality arises also for the identities: in the category Set of sets
and functions, with the usual way of choosing pullbacks (take {(x,y)l s(x)=0(y)}, we
get that ofid] is not id. So one should also consider canonical isos between ofid] and
id, and assume as a second coherence condition that the isos k*cid*+=(id-k)* (=k*) and
k*oid*«>idok* (=k*) coincide. In the present paper we assume though, for simplicity,
that id* is id, which can be done by choice. This choice is safe, since it is then clear that
the iso id*ok*<=>(idok)* is the identity, by the uniqueness of mediating arrows. Thus,
when choosing id* as id, we may freely forget about the second ccherence condition.
Actually we assume more widely, still by choice, that 1* is E{L_]} for any iso v (this is
used in the proof of theorem 8, see Annex B.4).

Remark: When restricting attention to special classes of pullbacks, functoriality of
pullbacks can be obtained. This happens in some models of dependent types, based on
the idea of families of sets. We refer to [Dyb, PalmStol], and also to [Cur2] for details,
and content ourselves here with the following hint. We restrict, in Set, the functors k*:
Set/B — Set/A to arrows o which are first projection functions, that is, the domain of
O is a subset of a cartesian product BxC, and o is the (restriction of) the first projection
function. The pullback of k and o can then be chosen, not as

{(x,(y,z))| kix)=y and (y,z) is in the domain of o},
but more simply as

{(x,z)l (k(x),z) is in the domain of o}.
For this choice, o[set] and ofs][t] coincide.

The adjunctions Yk — k*, together with the pseudo-functoriality of *, determine
for each commuting square a natural transformation (Zo[s])es'* — s*o(Z0), as shown
on Figure 5:

Figure 5
n
Io o* §'* Zofs]
s* of sj*
E

Figure 5 is based on the right inner pullback square of Figure 2. (At this stage we only
use that it is a commuting diagram.) A more traditional way of describing this natural
transformation is _
(Zolsles™) 1) » ((Zofs]) L (Z0)) » (e (s*Z0)). _
This construction works in more general indexed categories than the indexed
category of slices of a category with pullbacks. In the particular case where * is
pullback, there is a more direct way of describing this natural transformation, and

P.-L. Curien / Substitution up to Isomorphism 57

moreover it is iso. One may start from the general form above, and open the middle
"black box" rectangle, which consists of the composition of a P! with codomain
(0es’)*, and of a \y with domain (se0[s])*. After two ne-cancellations of the kind
described in Annex A.1, we arrive at

Zoals] s M

5

To show that this transformation is iso, we go down one level of abstraction. We
picture its pointwise inverse below. The picture is just an a-conversion of Figure 2.
The component at T of the natural transformation s*o(Zg) — (Z0[5])e5"™ is exactly the
canonical \: (0-T)* — T*e0* (but now it is in the slice over the domain of s, instead
of being over the domain of T). The right inner square is a pullback by assumption. The
left inner square and the outer rhombus are pullbacks by construction.

Zar)s]
Zofs]xfs]

yr

1:1 sli ﬂE 5"

O-T=L0,T

The property that the transformation (Za[s])es* — s¥*o(Z0) is iso is known as
Beck-Chevalley condition. The notion is important for categorical logic, since it allows
to interpret substitution across quantifiers. But it also appears in other geometric or
topological applications of category theory. There exist more abstract versions of this
condition [Gui]. The Beck-Chevalley condition can also be expressed in a synthetic
way, using the notion of fibered adjunction [Jac].

Symmetrically, the right adjoints to pullbacks yield canonical transformations
s*o(I1a) — (I1o[s])es'*.

Lemma 3: The canonical transformations (Z0[s])es™* — s*o(Z0) are iso iff the

canonical transformations s*=(Ilo) — (Ilo[s])=s"* are iso.
Proof: See Annex A.3.

5 T i - P il Bt mmdam b Aanlanloe srith damandant fimae Wa nracant a nnre firck.

58 P.-L. Curien / Substitution up to Isomorphism

Figure 6

il
Mo §* ofs]* ITofs]

o* ol

d |

order A-calculus with dependent types. That may seem a rather frustrating calculus,
because without some dependent constants, no true dependency arises (as was formally
shown in [MeyRein]). But the syntax is prepared to accept such constants. The typical
example from computer science is list(n), the type of lists of length at most n, a type
depending on the type nat of natural numbers. The main conceptual step is independent
of the specific choice of those constants. Dependent types, unlike simple types, have to
be proved well-formed. One first defines a syntax of raw (or pre-well-formed) types
and terms, given by

o:=K|[[x0.01¥x:0.0 (k base type)
M = x | Ax:o.M | MM | (M,M) | fst(M) | snd(M) .

Dependency arises when a dependent constant K can be formed from terms M (cf.
list(n) above, or the equality type I(M,N) of Martin-Lif).

The typing rules are as follows. A context C is a sequence of assertions of the form
x:0. We say that x is defined in C if x:0 occurs in C, for some o We denote by C(x)
the first such o, starting from the right. There are three kinds of judgements:

C context, C+ otype,and C+ M:o.

Context formation rules
& context

ChF otype (x not defined in C)

C, x:0 context

- Type formation rules
[Const]

(for true dependency one would have an inference: CH- Mj:01,..., CF Mj:0, entail
C F x(My,....M,) type)
(1l (and symmetrically [¥]) -

C,x:0 F Ttype

C F [[x:oxtype

P.-L. Curien / Substitution up to Isomorphism 59

Term formation rules

[Var]
Ccontext (C(x) defined)
C F x:C(x)
[Abs]
C,xo F Mx
C F oM [[x:o1
[App]
CF M]Jxox CF Nwo
C + MN: t[N/x]
[Pair]
CF Mo CF NaM/Ak]
C F MN): ¥ xiox
[fst]
CF M:3xox
C +fstM): o
[snd]
C - M:¥x:ot
C F snd(M): T[M/x]
2.3 Name-free syntax Next we turmn to a name-free syntax, which is well-suited to the

description of the interpretation. Also, as quoted in the introduction, we pay particular
attention to substitution, which is modelled in general only up to isomorphism. So we
include an explicit syntax of substitutions, as already undertaken in [ACCL). We refer
to [ACCL] for an operational explanation of the notation and of the operations. But the
reader can get a "graphical” insight from the pictures which follow.

Types: o:z=xI]Jool Fo.o! ofs]
Terms: M:=11hoM I MM | (M M) | fst(M) | snd(M) | M[s]
Substitutions: su=idl {1 Mslses

The contexts are now just sequences of types. There are four kinds of judgements:
C context, CF otype,CFH M:g,and CF s:C.
Context formation rules
& context

Ck otype

C,0 context

60 P.-L. Curien / Substitution up to Isomorphism

Type formation rules

[Const]

K type
(I (and symmetrically [¥])

C,o F Ttype

C + [loxtype
[0Clos]

CksC CF otype

C + ofs] type
Term formation rules
[Var]

C + otype

C.o F l:o[1]
[Abs]

Co - Mz

C F AoM: [Jox
[Appl

CkF MJJox CF No
C F MN: 7[N.id]

[Pair]
CF Mo CF NM.id]
C F (MN): Jox
| fst]
C + M:Yox
C FfstM): o
[snd]
CHF MYox
C FsndM): <[fst(M).id]
[MClos] |

CEl CFMp
C FM]s]: ofs]
(As a hint for the "mutation" of ¢ in Var, notice that in the hypothesis o has its De

Bruijn indices refering to the sequence C, whereas o[1] in the conclusion refers to the
larger context C,0; see the rules MClos and 1 below.)

P.-L, Curien / Substitution up to Isomorphism a6l

Substitution formation rules
[id]
C context
€ Hid:
(1]
C F oupe
Co F1:C
[Cons]
CFsC CFotype C F M: ofs]
CHMs: Co
[Comp]
C'ks€ €Fgl
C = gog: C"
2.4 Semantics in LCCC's We turn to a "pictorial” interpretation of the calculus just

defined in a locally cartesian closed category. A context is mapped to a sequence of
consecutive arrows, the last one going into the (chosen) terminal object 1. A type is
interpreted likewise, but setting a "marker” just after the first arrow of this sequence,
the rest of the sequence being the meaning of the context with respect to which the type
is well-formed.

The basic semantic ingredient here is "type-as-(projection) arrow": think of list(n)
as represented by the first projection (n,1)>>n on the infinite sum {(n,l) | I€list(n)}.
Alternatively one may think of the interpretation of C |- O type as a meta (or global)
sum "ZC.0" (to be contrasted to the “local” sums, say £0.T with C,0 - T type).

Judgements C - s: C' are mapped to (commuting) triangles:

Finally judgements C - M:0 are mapped to kites, which we define to be figures
like the one below (where T is the identity):

