
Opis: Reliable Distributed Systems in OCaml

Pierre-Évariste Dagand

ENS Cachan-Bretagne, France

pierre-evariste.dagand@ens-cachan.org

Dejan Kostić

EPFL, Switzerland

dejan.kostic@epfl.ch

Viktor Kuncak

EPFL, Switzerland

viktor.kuncak@epfl.ch

Abstract

Concurrency and distribution pose algorithmic and imple-
mentation challenges in developing reliable distributed sys-
tems, making the field an excellent testbed for evaluat-
ing programming language and verification paradigms. Sev-
eral specialized domain-specific languages and extensions of
memory-unsafe languages were proposed to aid distributed
system development. We present an alternative to these
approaches, showing that modern, higher-order, strongly
typed, memory safe languages provide an excellent vehicle
for developing and debugging distributed systems.

We present Opis, a functional-reactive approach for de-
veloping distributed systems in Objective Caml. An Opis
protocol description consists of a reactive function (called
event function) describing the behavior of a distributed sys-
tem node. The event functions in Opis are built from pure
functions as building blocks, composed using the Arrow com-
binators. Such architecture aids reasoning about event func-
tions both informally and using interactive theorem provers.
For example, it facilitates simple termination arguments.

Given a protocol description, a developer can use higher-
order library functions of Opis to 1) deploy the distributed
system, 2) run the distributed system in a network simula-
tor with full-replay capabilities, 3) apply explicit-state model
checking to the distributed system, detecting undesirable be-
haviors, and 4) do performance analysis on the system. We
describe the design and implementation of Opis, and present
our experience in using Opis to develop peer-to-peer overlay
protocols, including the Chord distributed hash table and
the Cyclon random gossip protocol. We found that using
Opis results in high programmer productivity and leads to
easily composable protocol descriptions. Opis tools were ef-
fective in helping identify and eliminate correctness and per-
formance problems during distributed system development.

Categories and Subject Descriptors D.3.2 [Program-
ming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages; D.2.4 [Software Engi-
neering]: Software/Program Verification

General Terms Design, Reliability, Verification

Keywords Arrows, Distributed Systems, Functional Pro-
gramming, Model-checking

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’09, January 24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

1. Introduction

Concurrent and distributed systems play an increasingly im-
portant role in the infrastructure of modern society. En-
suring reliability of such systems is difficult because they
combine a number of challenges in design, algorithms, and
implementation. The assumption behind this paper is that
programming languages, models, and tools are key generic
mechanisms that can greatly help in developing concurrent
and distributed systems, making them more widespread and
more reliable.

Among several models of concurrency, message passing
has been successful in theory and practice of distributed
systems [33]. For example, the Singularity operating system
design based on message passing proved reliable and suffi-
ciently efficient [21]; software based on Erlang scales to in-
dustrial systems with large numbers of distributed processes
[1].

In this paper we explore message passing in the context
of distributed systems deployed over wide-area networks. In
such systems, message passing naturally describes the un-
derlying physical constraints, where network communication
delays and failures unavoidably affect system performance.
We draw the examples of our paper from peer-to-peer dis-
tributed systems, in which each participant acts both as a
client and as a server. This symmetry in principle offers ex-
treme scalability and has been applied to peer-systems with
thousands of nodes. To manage the complexity of this task,
a peer-to-peer system often builds a logical network over
the physical one: this is called an overlay. Although sim-
ple in principle, building and maintaining an overlay is a
complex and error-prone task. In a real environment, peers
continuously enter and leave the network, and communicate
through asynchronous, unreliable channels. Consequently,
even a seemingly innocent mistake in these systems can lead
to dramatic and difficult to reproduce errors.

Until recently, many peer-to-peer applications were built
essentially from scratch, using general-purpose programming
languages. However, the complexity involved in recent sys-
tems has grown to a point where low-level details, such as
manipulating network sockets or dealing with timers, bur-
den the development effort. A recent advance is the use of
domain-specific languages such as P2 [31] and Mace [22] to
enable the same description to be used for simulation and de-
ployment. Moreover, tools such as MaceMC help the devel-
oper find subtle semantic errors through explicit-state model
checking of code. We believe that approaches that incorpo-
rate advanced analysis techniques are essential for building
reliable distributed systems of the complexity that matches
future requirements. Our paper presents Opis, a new system
that comes with a number of advanced analysis tools. Unlike
systems such as Mace that are based on C++, Opis uses a
strongly typed language, Objective Caml (OCaml), as the

Figure 1. Opis programming model

implementation language for distributed systems. We next
highlight key aspects of the Opis approach.

1.1 Modern Programming Language Platform

We argue that a modern tool for distributed system devel-
opment should, first of all, benefit from memory safety, type
safety, modularity, and parametrization that have already
proved effective in sequential programs. The implementation
language of choice in Opis is OCaml, a popular language that
offers type safety and good performance, and has an encour-
aging history of use in distributed applications [16, 43]. Our
current implementation of Opis takes the form of a library.
The library contains both combinators for developing Opis
applications and tools for deploying and analyzing such ap-
plications.

1.2 Layered Programming Model

Opis supports a programming model in which distributed
systems are built in three layers (Figure 1):

1. pure functions in OCaml are used to describe main steps
of computation

2. Arrow combinators [20] are used to compose such steps
into message handlers and introduce encapsulated local
state

3. a set of higher-order launchers enables such message han-
dlers to be deployed as a distributed system (exhibiting
the usual non-determinism), simulated, debugged, model
checked, or analyzed for performance properties.

Note that each subsequent level builds on the previous one,
and captures increasingly more complex semantic domain:
the first step starts with pure functions, the second one
incorporates a disciplined form of local state, while the final
one incorporates non-determinism of the real environment.

1.3 Comprehensive Programmer’s Toolkit

In addition to the use of Arrow combinators for distributed
systems, the main contributions of Opis are the simulator,
debugger, model checker and performance debugger. To-
gether with OCaml code generation facilities in Coq [3] and
Isabelle [34] theorem provers, this enables a wide range of
verification and analysis tools to be applied to Opis systems.

We have found the design of Opis to lead to high pro-
ductivity, both when developing distributed applications in
Opis, and when developing Opis infrastructure itself.

When developing applications in Opis, strong typing and
pattern-matching of OCaml supported type-safe horizontal
(stack of protocols) and vertical (post-processing of proto-

cols outputs) composition of protocols, and enabled defining
highly parametrized protocols.

When developing Opis infrastructure, the combinator
approach allowed us to cleanly reuse existing infrastructure;
the use of higher-order functions made it possible to deploy
and analyze the application using different tools; whereas
the use of pure functions and state encapsulation made
backtracking in the model checker efficient.

1.4 Contributions

We summarize the contributions of this paper as follows:

• We introduce a paradigm for developing distributed sys-
tems on top of OCaml. We use functional-reactive pro-
gramming approach to naturally separate specifications
of 1) pure function-building blocks, 2) functions encapsu-
lating local states, and 3) the (implicit) non-determinism
present in the network. To our knowledge, this is the first
time functional-reactive programming has been applied
to the domain of distributed systems.

• We present tools that we built to make the development
of programs in this approach easier: simulator, debugger,
model checker, and performance analyzer.

• We describe our experience in using Opis to develop two
non-trivial overlay applications: a sophisticated gossip
protocol, and a distributed hash table.

The rest of this paper focuses on illustrating different
aspects of Opis through a detailed example of developing
an overlay protocol that combines Cyclon [41] and Vicinity
[42]. We then describe the combinators of Opis in detail, and
describe Opis simulator, debugger, model checker, and per-
formance analyzer. We further elaborate on our experience
with Opis by describing the results of developing the Chord
[40] distributed hash table in Opis.1

2. Opis Overview through an Example

In this section we show how we can use Opis to implement
two protocols for peer-to-peer networks: Cyclon [41], a ran-
dom gossip protocol, and Vicinity [42], a semantic-aware gos-
sip protocol. We first show how to develop a parametrized
gossip protocol in Opis. We then implement both Cyclon
and Vicinity by instantiating this parametrized description
with protocol-specific functions.

Moverover, we illustrate type safe composition of proto-
cols in Opis by composing these two protocol implementa-
tions into a combined protocol that we call ’Cyclonity’. This
combined protocol [42] has proved to be more efficient for
searching and shown to have close to optimal convergence,
faster than both Cyclon and Vicinity by themselves.

2.1 Parametrized Gossip Protocol in Opis

We start by describing a generic gossip protocol, which
specifies the structure of gossip protocols in general. Our
specification has the form of an OCaml module signature.
Based on this signature, we define a functor that instantiates
any particular gossip specification into a complete protocol
implementation. (In general, an OCaml functor [25] is a
higher-order module that takes a module as an argument
and defines a new module.)

1 Additional information, including the full source code for Opis,
the case studies, and formal Isabelle proofs are available from
http://perso.eleves.bretagne.ens-cachan.fr/~dagand/opis/

(a) Gossip Protocol: gossip (b) Gossip Maintenance: maintenance

(c) View maintenance: maintain my view (d) Gossip Reaction: reaction

Figure 4. Generic Gossip Protocol Diagrams

module type GOSSIP SPECIFICATION =
sig

(∗ (a) ∗)
module View : sig type t

val empty : t end
(∗ (b) ∗)
type event
type my node info
val update my view : ((event ∗ View.t), View.t) event function
val update my node : ((event ∗ my node info), my node info) event function

(∗ (c) ∗)
type state = (my node info ∗ View.t ∗ event)

(∗ (d) ∗)
type net output
type timer output
val send view : (state , net output) event function
val do exchange view : (state , net output) event function
val contact bootstrap : (state , net output) event function
val init request view exchange : (state , timer output) event function
val init open port : (state , net output) event function

(∗ (e) ∗)
type output
val network output : (net output, output) event function
val timer output : (timer output , output) event function

end

Figure 2. Gossip-protocol signature

2.1.1 Specifying a Gossip Protocol

Gossip protocols are based on the “world is small” observa-
tion. To find information stored in the network, this obser-
vation suggests that it suffices to know a small number of
node’s neighbors (peers) [23]. Each node in a gossip proto-
col maintains a view data structure storing the information
about its neighbors.

Every version of the gossip protocol has its own view data
structure and its own implementation of view maintenance
operations. To formalize the notion of a gossip protocol, we

module Gossip (Spec: GOSSIP SPECIFICATION) =struct
let dup2 = arr (fun x → (x,x))
let maintain my view = dloop Spec.View.empty

(Spec.update my view >>> dup2)
...

end

Figure 3. Generic Gossip Protocol Code

therefore define the minimal signature that a view module
should satisfy (Fig. 2(a)). We only require an abstract type
for the view data structure and its initial, empty value.

Each node in a gossip protocol updates its view accord-
ing to the information it receives. Given the view data
structure, the protocol developer specifies the operation
(update my view) to update the view based on the previ-
ous view and on the current input event. Furthermore, the
developer specifies the operation (update my node) to store
information about the node itself, such as its IP address
(Fig. 2(b)). The overall state of the node (Fig. 2(c)) is there-
fore a tuple containing node-specific information, the neigh-
bors view and the input event.

Finally, each node reacts to events, taking into account
its current state. The reaction depends on the specific pro-
tocol and is parametrized by five event functions (Fig. 2(d)).
Some of these functions target the Network subsystem, us-
ing the type net output, whereas some of them target the
Timer subsystem, using the type timer output. To send them
through the output wire, we need a unique output type and
the corresponding injection functions network output and
timer output (Fig. 2(e)).

2.1.2 From Specification to Event Function

To create an event function from gossip protocol specifica-
tion, we simply wire the different components of the signa-
ture. Therefore, we define a functor working on any gossip-
protocol specification (Fig. 3).

Figure 4(a) shows a high-level view of a gossip event
function: the first task is to maintain the state of the peer,
then based on this state, the peer reacts to the event. The
maintenance part stores information about the peer, such as
its IP address, and keeps its neighbor view up to date, as
presented in Figure 4(b).

View maintenance in turn consists of enclosing
maintain my view provided by the specification into a feed-
back loop, where the initial view is View.empty. To give an
overview of a typical Opis code, Figure 3 shows this feedback
loop; its meaning becomes clear in Section 3.1.

However, this data-flow is best represented in a graph-
ical form, without loss of information, as shown in Fig-
ure 4(c). We adopt this graphical form in the rest of the
paper. We define the maintain my node function similarly
to maintain my view, using Spec.update my node and dloop.

The reactive part is more complex and is summarized in
Figure 4(d).

2.2 Instantiating the Cyclon Protocol

The Cyclon protocol aims at building a random, strongly
connected graph between peers. To achieve this, peers pop-
ulate their neighbor view through periodical exchanges with
their neighbors. First, a node randomly chooses one of its
peers. Second, it selects a subset of its neighbor view, ex-
cluding the destination peer. Finally, the destination peer
receives this view, updates its own view and acknowledges
the exchange by answering with a subset of its own, previous
view.

Our Cyclon implementation contains a view data struc-
ture that grows up to a bounded number of neighbors. Given
this data structure, it is straightforward to define functions
that satisfy the signature of Figure 2, producing a concise
implementation of Cyclon.

2.3 Instantiating the Vicinity Protocol

Whereas the random graph eases statistical analysis of aver-
age case performance, it might poorly behave in a situation
where the queries are not randomly distributed. In a file-
sharing system, for instance, users are most likely to share
the same kind of files, based on their interest. This interest
is measured by a semantic value. Aggregating peers accord-
ing to their habits gives more relevant and faster results: it
is therefore relevant to cluster the semantically close nodes
together.

Vicinity is a gossip protocol that aggregates peers based
on their semantic value. The view has been designed to take
this semantic value into account and its operations has been
modified to make the view converge to the semantically clos-
est node possible. Then, the events have been extended to
carry the semantic values of nodes, to be able to, efficiently,
fill the view. The overall design rules remain the same but
we manipulate this semantic value, and it is again straight-
forward to instantiate the generic specification of Figure 2.

2.4 Type-Safely Composing Cyclon and Vicinity

It has been shown [42] that Vicinity does not converge to the
optimal overlay. Even worse, Vicinity can break the overlay
into isolated partitions, therefore weakening its resilience
to failures. The solution to this problem is for the Cyclon
overlay to regularly feed the Vicinity overlay with some
random nodes: in a sense, we compose them to strengthen
Vicinity.

Although the idea of composing protocols is not new [42],
in a global state, handler-based system, this can lead to
many subtle bugs. First, we have to ensure that handlers
of both systems are independent: if handlers interfere, this
can lead to performance or even behavioral bugs. Second,
relying on global, mutable states increases the programming
effort: although both systems worked perfectly in isolation,
once composed they may badly interact during their manip-
ulation of the shared, mutable data structures. Therefore,
the behavior of the composed system cannot be deduced
from the behavior of each system taken in isolation.

In our design, there is no such hidden communication
channels: we reuse the Cyclon and Vicinity implementa-
tions developed above, and compose them by pre-processing
the general input messages (g-input) into protocol-specific
ones. Therefore, we are able to run both systems in isola-
tion, by separating Cyclon and Vicinity-specific events. In
the resulting system Vicinity benefits from Cyclon activ-

ity: while pre-processing Cyclon events, we will also route
them through Vicinity that will then be able to enrich its
own view with new, potentially interesting peers (Fig. 5).
Figure 14(a) shows the improved efficiency of the resulting
implementation.

Figure 5. Composition of Cyclon and Vicinity: Cyclonity

2.5 Testing in the Large using the Opis Simulator

After type checking our code (and eliminating many errors
to start with), we would next like to test our implementation.
For example, in Vicinity we are concerned with the conver-
gence of each peer toward its semantically closest neighbors:
starting from any initial configuration, the nodes should pro-
gressively organize themselves in clusters of similar interest.

Therefore, we execute Vicinity in Opis network simula-
tor and, informally, check that each peer strictly converges
toward a closest semantic neighborhood. A key invariant of
the semantic view is that the semantic view should always
be sorted by semantic order, maximizing the likelihood that
neighbors of a node contain the most relevant information.

Our first implementation of Vicinity contained a logical
error that broke this invariant. Consequently, our buggy
implementation of Vicinity was not able to converge to
reasonable semantic value: this behavior appears clearly in
Figure 14(b), which was drawn from the trace produced by
Opis simulator.

Whereas the simulator indicates the issue, the contain-
ment of state imposed by the combinators helps us identify
that the problem is caused by update my view. The next
challenge is to find out which event breaks the invariant.
We use the Opis debugger for this purpose.

2.6 Testing in the Small using the Opis Debugger

To identify the precise nature of the problem , we would like
to manipulate single events as well as inspect the state of
each peer. We are also interested in being able to go back-
wards in time, to revert a debugging decision and explore
other options.

We can accomplish this by compiling Vicinity with Opis
debugger support. We then simulate the execution of the
complete network for 2 rounds. Every peer is initialized and
ready to process network events. Hence, we check the value
of the view of a peer in Figure 6(a). This view appears cor-
rectly sorted: the list of peers (second item, the IP addresses)
is ordered by increasing number of semantic value (the num-
ber after each address). The first item corresponds to a vec-
tor in the semantic space: for example, it can represent the
list of files shared by this peer.

However, if we play the first network event, we reach the
state shown in Figure 6(b). After checking the new view we
discover that it is no longer sorted. In maintain my view, we
just have to look at the code guarded by this network event:
the merge function that merges two semantic views. Because
merge is a pure function, we can easily analyze it and find
the bug that caused the problem.

(a) > show peer 4 state my_view
State :
[0, 0, 2, 6, 8, | 10.0.0.0:0.4 ; 10.0.0.5:0.6]

(b) > step peer 4 event n0
> show peer 4 state my_view
State :
[0, 0, 2, 6, 8,

| 10.0.0.5:0.6 ; 10.0.0.1:0.2 ; 10.0.0.0:0.4]

(c) > backstep
> show peer 4 state my_view
State :
[0, 0, 2, 6, 8, | 10.0.0.0:0.4 ; 10.0.0.5:0.6]

Figure 6. Debugging session

As an illustration, note that we could still play the second
network event at this point: we simply go backward in time
(Fig. 6(c)) and arrive exactly at the previous state.

2.7 Finding Errors using the Opis Model Checker

One of the essential Cyclon requirements is that it builds
a strongly connected graph among peers. We use the Opis
model-checker to test the following property: either there
exists a peer with an empty view, or the graph given by the
views of all nodes is strongly connected. The first part of the
property captures the initialization stage, where nodes build
their view. The second part states that the overlay will not
be fragmented into several independent overlays.

Based on this property we have model-checked our im-
plementation of Cyclon for a network of four peers, each
maintaining a view containing one neighbor. There is a rea-
son to expect that maintaining the global connectivity with
only one neighbor is more difficult than with several neigh-
bors: as soon as this unique link is wrong, the property will
be violated.

After running the Opis model checker on our first imple-
mentation, in 0.01 seconds we obtain the output shown in
Figure 7. The output points to a subtle bug in the view man-
agement of our implementation. The intention is to ensure
the strong connectivity through the exchange of views, but,
in our implementation, we also chose to insert the sender of
any message in the view. Therefore, peer 1 considers peer 2
as a neighbor after the first message. Then, peer 2 inserts
peer 1 in its view. Later, peer 3 contacts peer 0 that inserts
peer 3 in its view, and answers to peer 3 that considers peer
0 as a neighbor. Finally, we end up with two disjoint graphs
respectively composed by peers (1, 2) and (0, 3).

Avoiding the insertion of message senders solved this
problem: the view is only populated by the view exchanges,
as prescribed by the protocol. After this correction, we can
run the model checker, which, in 0.5 seconds, explores the
complete state-space. This provides a fairly high confidence
that Cyclon ensures the strong-connectivity of the overlay.

[] Setup the network... Done.
Stack [3] : Host 3 <- Network_in: UDP_in(10.0.0.0:1000,

My_view_is (10.0.0.0 , [10.0.0.3]))
Stack [2] : Host 0 <- Network_in: UDP_in(10.0.0.3:1000,

Join (10.0.0.3))
Stack [1] : Host 2 <- Network_in: UDP_in(10.0.0.1:1000,

My_view_is (10.0.0.1 , [10.0.0.2]))
Stack [0] : Host 1 <- Network_in: UDP_in(10.0.0.2:1000,

Join (10.0.0.2))
Safety broken
Number of explored states: 5

Figure 7. Cyclon Model-checking

2.8 Formal Proofs of Event Function Properties

The fact that core Opis functionality is expressed using pure
functions enables us to use theorem provers to prove proper-
ties of such functions that hold for all executions. As a simple
illustration of this capability, we have developed and verified
the Cyclon view data structure using the Isabelle interactive
theorem prover. Figure 8 illustrates how straightforward it
is to prove in Isabelle that the size of the view is bounded.
The figure defines the pure function merge for updating the
view, and then shows that its execution always returns (as
the resulting view) a list of size bounded by the parameter n
of the protocol. The actual proof is performed automatically
by the Isabelle simplifier. Such boundedness properties are
important to ensure good event function performance and
(along with the garbage collector) absence of certain mem-
ory leaks. Note that even a language with type safety and
garbage collection could contain a ’semantic memory leak’
where views grow arbitrarily with the size of the system.
The OCaml code generated by Isabelle can be integrated
naturally with the manually developed code.

Proving termination. A specialized use of interactive
provers and their code generation facility is ensuring ter-
mination of Opis event functions. Termination of a protocol
depends on the ’building blocks’, pure functions given as
arguments to the ’arr’ combinators. We derive the overall
termination proofs from two facts. The first is the property
of Arrow combinators used to execute Opis systems: given
an event function input, the computation of the output will
execute each building block a finite number of times. The sec-
ond is the fact that Isabelle always proves the termination
of definitions of total functions, so writing a function defini-
tion in Isabelle ensures its termination. We wrote all building
blocks of Cyclon in Isabelle and exported the code to OCaml.
The Isabelle and the generated OCaml code were syntacti-
cally almost identical and the termination was proved auto-
matically by Isabelle. This ensured that the execution of a
reactive function of a Cyclon node on any single event ter-
minates, and can be used as a starting point for establishing
stronger functional correctness properties.

theory Bounded list imports Main begin
constdefs

merge :: ”nat => ’a :: linorder list => ’a list => ’a list ”
”merge n xs ys ≡ take n (sort (xs @ ys))”
insert :: ”nat => ’a :: linorder => ’a list => ’a list ”
”insert n x xs ≡ take n (insort x xs)”
empty :: ”’ a :: linorder list ”
”empty ≡ []”

theorem merge bounded size:
”length (merge n xs ys) ≤ n”

apply(simp only : merge def, simp) done

theorem insert bounded size :
”length (insert n x xs) ≤ n”

apply(simp only : insert def , simp) done

export code ”merge” ”insert ” ”empty” in ”OCaml” file ”bounded list .ml”
end

Figure 8. Isabelle implementation of a bounded list

2.9 Performance Debugging

In addition to verifying correctness of the system using sim-
ulator, debugger, model checker, and theorem prover, Opis
also supports profiling and performance debugging by indi-
cating the performance of node’s reactive functions. The per-
formance of reactive functions, along with the knowledge of

(a) first version

function name time total # executions time average time std. deviation complexity estimate
update my view 1.09 21048 0.00005210 0.00006837 O(n^2)
post treatment 0.18 105240 0.00000172 0.00000661 O(n)

to network 0.13 84192 0.00000165 0.00000464 O(n)

(b) w/ precomputation

function name time total # executions time average time std. deviation complexity estimate
update my view 0.48 21048 0.00002314 0.00003012 O(n)
post treatment 0.18 105240 0.00000172 0.00000637 O(n)

to network 0.13 84192 0.00000165 0.00000388 O(n)

Figure 9. Output of Opis performance debugger on selected functions of Vicinity protocol (times are in seconds). The
debugger correctly classified the initial version of update my view as a quadratic function in terms of time complexity.

high-level protocol behavior, determines the efficiency of the
overall protocol. By leveraging the Arrow abstraction, Opis
profiler indicates the performance of components of nodes
reactive functions both in terms of 1) the concrete average
of running time, and in terms of 2) an empirical estimate
of function’s computational complexity. Large concrete run-
ning time along with asymptotically high complexity suggest
functions that may require algorithmic improvements.

After we applied Opis profiler to our first implementa-
tion of Vicinity, we obtained the results sketched in Fig-
ure 9(a). Realizing that the update my view function ac-
counts for most of the processing time, we examined this
function in detail and found that the semantic values (used
to sort the list of neighbors) were being recomputed unnec-
essarily. By pre-computing these values we arrived at a more
efficient implementation which led to the improved results in
Figure 9(b). Note that the analyzer automatically computes
the expressions O(n) and O(n2), and correctly detects the
asymptotic improvement in the running time.

Summary of the Example. Overall, the total develop-
ment time for Cyclonity (including the generic gossip proto-
col) was 13 hours, and resulted in 775 lines of code. We be-
lieve that the programming language, programming model,
and a palette of analysis tools were essential in making the
development of a non-trivial overlay protocol in Opis this
effective.

3. Opis Design

Our goal when designing Opis was to produce a system
in which: i) the programmer can informally and formally
reason about the code, ii) the type system catches a large
number of errors, and iii) the programmer is given a range
of tools for analysis and debugging of code functionality and
performance. The rest of this section shows how Opis meets
these goals.

3.1 Arrows for Composable Event Functions

Many of the benefits of Opis are a result of our decision
to express event functions using the concept of Arrows
[20, 35, 36]. Arrows are a generalization of Monads and
abstract the notion of computation taking inputs of a given
type and producing outputs of another type. We represent
an event function (an instance of Arrow) graphically as in
Figure 10(a), and denote it af.

The event function type is abstract; to manipulate values
of type event function we use Arrow combinators. We use
a notation inspired by [35] to represent the combinators.
The first, essential, combinator is arr, which takes a pure
function and turns it into an event function. Figure 10(b)
shows the arr signature and graphical representation. We
next define the composition combinator (Figure 10(c)) that
lets us compose computations. To allow for multiple inputs,

we define the combinator first (Figure 10(d)). To enable
choices to be made, we define the sum type either :

type (α,β) either = Left of α | Right of β

We use either to express conditionals: the choice combinator
(Figure 10(e)) applies the first computation if the input is
tagged Left and applies the second computation otherwise.
Then, n-ary choices can be implemented by a cascade of
binary choice combinators.

The combinators so far are restricted to memory-less
computations. To encode computations with memory we
define the loop combinator (Figure 10(f)) that feeds an
output back to the input of the event function. Then, we
define the delay combinator (Figure 10(g)) that, given an
initial value always outputs the value of the previous input,
thus remembering the current input. Together, loop and
delay let us express memories. We use this construct to
encapsulate protocol state.

To permit generation of a sequence of events based on
a single input, we define the mconcat combinator in Fig-
ure 10(h): the list of outputs generated by a computation will
be transformed, at the wire level, in a sequence of impulse-
events. The event functions that follow will successively pro-
cess these events, individually. The mappend combinator
(Figure 10(i)) is a special case of mconcat : for one single in-
put event, mconcat processes it through two event functions
and transfers the results at the wire level, in two successive
events with no particular order.

3.2 Deployment and Analysis using Launchers

Opis aims to provide to the programmer a complete set of
tools to develop, simulate, debug, model-check and deploy
an application. To achieve this goal, Opis uses a set of
launchers. A launcher is a function satisfying the signature

val launcher : (in, out) event_function -> ()

The in and out types are described in Section 4.2. Once we
have built an event function of this type, we are able to
deploy it transparently on any launcher.

The role of a launcher is to provide the event function
with events and to execute its outputs: it acts as an inter-
face to the world. Our definition of a launcher is sufficiently
large to encompass many approaches to deploy and analyze
event functions. We next describe the current set of launch-
ers available in Opis; additional launchers could easily be
incorporated.

3.2.1 Runtime Launcher

First of all, Opis provides a runtime launcher that interprets
the event function in real execution. The network, timer
and user inputs are directly provided to the event function
whereas its outputs are interpreted in terms of network ac-
tions (opening a connection, sending a message, etc.), timer
commands (setting up a new timer, disabling a previous

type (α,β) event function val arr : (α→ β) → (α,β) event function

val (>>>) : (α,β) event function →

(β,γ) event function →

(α,γ) event function

(a) Representation of an event function (b) The arr combinator (c) The >>> combinator

val first : (α,β) event function →

(α∗γ,β∗γ) event function

val (+++) : (α,β) event function→

(γ,δ) event function →

((α,γ) either ,(β,δ) either) event function

val loop : ((α∗γ),(β∗γ)) event function→

(α,β) event function

(d) The first combinator (e) The +++ combinator (f) The loop combinator

val delay : α→ (α,α) event function
val mconcat : (α,β list) event function →

(α,β) event function

val (&&|) : (α,β) event function →

(α,β) event function →

(α,β) event function

(g) The delay combinator (h) The mconcat combinator (i) The mappend combinator

Figure 10. The Arrow Combinators

timer, etc.), or user interactions. Using this launcher, we
can deploy any event function on real, live systems. Section 5
shows that the deployed systems have good performance.

3.2.2 Simulator Launcher

Although the use of a safe programming language and pro-
gramming model in Opis eases the development and elimi-
nates a class of errors, a number of other issues may remain
in the distributed system after compilation. These include
logical errors, protocol misinterpretation, and emergent be-
haviors arising in systems with large number of nodes. The
use of a software debugger, such as ocamldebug, is not ef-
fective at that point: bugs might appear only after a large
number of interactions among peers that are hard to re-
produce in a standard software debugger. This is why our
approach to initial testing is to use the Opis simulator. The
simulator can realistically and efficiently simulate large dis-
tributed systems on a single machine, exposing a sample
of message interleavings. In our experience, Opis simulator
substantially speeds up the edit-compile-test loop.

3.2.3 Debugging Launcher

To pinpoint the precise source of identified defects, we need
a more fine-grained tool than the simulator. For this purpose
we use the debugger launcher. Our replay-debugger is built
on top of a modified simulator and allows the programmer
to: i) show the state of the whole network, ii) inspect the
events pending for some peers, iii) inspect the states main-
tained by some peers, iv) take forward steps, either at the
entire network-level or only at a subset of its peers, and v)
take backward steps and rollback previous actions. The de-
bugger benefits from our definition of event function and its
suitability for backtracking algorithms.

3.2.4 Model Checking Launcher

Due to concurrency in the distributed system, the sample of
system behaviors exposed by the simulator or the debugger
is limited. To obtain higher confidence in the correctness of
implementation and find subtle bugs, we include a model
checking launcher in Opis. The model checker can efficiently
explore the specified finite portion of the application state
space, considering different non-deterministic choices and

checking the given property in the explored states. Our
current implementation supports checks of local and system-
wide safety properties and supports partial-order reduction
for node-local properties.

3.3 Using Formally Proved Code

The fact that the event functions in Opis must be built
from pure functions provides well-known benefits of purely
functional programming. This includes informal reasoning
(knowing that computations are deterministic, using equa-
tional reasoning). Moreover, given the simplicity of seman-
tics of pure functions, we can develop and verify the critical
functions of a protocol in a theorem prover such as Coq or
Isabelle. We can then use code generation facilities of these
provers to generate executable OCaml code that is called
directly from within event functions of the Opis protocol im-
plementation. Such proof-assisted programming has already
proved its feasibility with large scale projects such as compil-
ers [26]. Verifying distributed systems with theorem provers
also has a long and fruitful history, as in the formalization
of the Ensemble system [24, 17].

Unlike these complete formalization systems, Opis pro-
vides the developer with a pay as you go approach where
the programmer focuses on the critical functions and proves
their correctness. Because the Arrow combinators are fixed
and their algebraic properties can be proved once and for
all, most of the work is on reasoning about protocol-specific
pure functions for which interactive provers are quite effec-
tive [34].

3.4 Performance Analysis Support

Opis also provides support for performance analysis, which
we found very useful in practice. Although the use of a
model-checker and a theorem prover offers guarantees about
the correctness of an implementation, it does not address
the performance-related issues (at least not with the usual
embedding of pure functions into higher-order logic). Pro-
filing tools such ocamlprof are too fine-grained to expose
any meaningful information in our context: instead of work-
ing at the OCaml-function level we are operating at the
event-function level. Therefore, given an event function, we
are interested in the pure functions that consume most of

the processing time or that are biggest memory consumers.
Thanks to the Arrow combinators, we easily retrieve three
fundamental metrics while executing a pure-function build-
ing block: 1) the size of its input, and 2) its processing time,
and 3) the size of the computed output. Our profiler uses
this information to help the developer find the performance
bottlenecks. Specifically, the profiler tries to match the data
sets to logarithmic, linear, quadratic, and cubic functions,
and reports the computational complexity that fits the data
best. The programmer can then use this information to iden-
tify unexpected behaviors. This form of function profiling
and characterization was made possible thanks to state en-
capsulation using Arrow combinators, and would be more
difficult to obtain in a system where functions can access
any global data.

4. Implementation Highlights

We next highlight some aspects of Opis implementation and
substantiate the claim that Opis approach is not only easy
to use but also easy to implement and extend.

4.1 The Event Function Library

Our implementation of Arrow combinators is based on
OCaml Objects, which is in contrast to the existing imple-
mentation of reactive, arrow-based systems in call-by-need
functional languages [29, 19]. The use of objects is moti-
vated by the need to be able to execute, debug, simulate,
model-check, or profile an event function without modifica-
tion. Hence, objects allow us to, transparently, overload the
Arrow combinators to support all these possible interpreta-
tions.

We define an event function as an object providing a
call method, used internally to execute the event function,
and a copy method, used to clone the state of an event
function. The raison d’être of copy comes from the side-
effectful definition of the loop combinator below. Being able
to clone an event function allows us to regain referential
transparency when needed, such as during model-checking
for instance. The signature of this object is the following:

class type [α,β] event function =
object

method call : α→ β
method copy : (α,β) event function

end

To build an event function out of a pure function, we
simply define an object that is built with the given function.
A call is translated into this function and the copy simply
duplicates the object:

class [α,β] event function (f : α→ β) =
object (self)

method call = f
method copy = self

end

The remaining combinators follow almost the same de-
sign rule, the only difference being the computation in the
call method. Therefore, we simply describe the compose com-
binator. This combinator accepts two event functions af and
ag, which are both event function objects. The call method
applies the composition of both functions by first computing
af of x, then computing ag of the previous result. The copy
method recursively copies both sub-objects and returns a
fresh, duplicated object:

let (>>>) af ag : (α,β) event function =
object

val af : (α,γ) event function = af
val ag : (γ,β) event function = ag
method call x = ag#call (af#call x)
method copy = {< af = af#copy; ag = ag#copy >}

end

Implementing a loop combinator in a call-by-value language
is challenging: the result of a computation should already
be defined as an input to this very same computation.
Moreover, loop is, by definition, not total and, the developer
would always need to verify that the loop calls a delay on
its feedback wire. To remove this burden and simplify the
implementation, we only provide a dloop combinator, which
takes an initial state value and is total. To leverage standard
laws for reasoning about Arrows [35] we define dloop by

dloop x af ≡ loop (second (delay x) >>> af)

Our actual implementation of dloop is the following:

let dloop init rf : (’b ,’ c) event function =
object

val mutable state = init
val rf : (’ a∗’b ,’ a∗’c) event function = rf
method call x =

let state ’, y = rf#call (state , x) in
state ← state ’; y

method copy = {< rf = rf#copy >}
end

4.2 The Launcher Architecture

We next elaborate the in and out types mentioned in Sec-
tion 3.2. The in type can be either a Network event, a Timer
event or a User event. The out type that can be a command
destined for the Network, the Timer system, or the User.
Hence the following definitions:

type in = NetIn of networkInput
| UserIn of userInput
| TimerIn of timerInput

type out = NetworkOut of networkOutput
| UserOut of userOutput
| TimerOut of timerOutput
| DoNothing

Network events convey a typed payload that can be
transported using either TCP (quasi-reliable channel) or
UDP (unreliable channel), leading to the following definition
of networkInput and networkOutput:

type networkInput =
| NetReceive of (peerAddr ∗ portNumber ∗transport ∗ payload)
| Sent of (peerAddr ∗ portNumber ∗transport ∗ payload)
| SendFailed of (peerAddr ∗ portNumber ∗transport ∗ payload)
| ListeningOn of (portNumber ∗transport)
| ConnectionClosed of (portNumber ∗transport)

type networkOutput =
| Send of (peerAddr ∗ portNumber ∗transport ∗ payload)
| ListenOn of (portNumber ∗transport)
| CloseConnection of (portNumber ∗transport)
| NetworkDoNothing

Note that the payload of network messages is typed. This
ensures that the communication channels used by our system
are typed as well. Therefore, the type system guarantees that
network events will not generate run-time errors, especially
during marshaling and unmarshaling.

Timers are either periodic (occur every t seconds) or
unique (occur once), so type timerType = Periodic | Unique.
A timer is defined by the following record:

type timer = { id : id ; clock : time; delay : time;
timerType : timerType; command : timerCommand }

where id identifies the timer, to be able to cancel it later;
clock is the absolute time at which the timer must be fired,
delay is used when re-scheduling a periodic timer, the clock
being set to the current absolute time plus the delay; and
command is transmitted to the event function when the
timer fires. A timerInput and timerOutput are defined by:

type timerInput = TimeOut of timer
| TimerReady of timer | TimerKilled of timer

type timerOutput = LaunchTimer of timer | KillTimer of id
| TimerDoNothing

Timers are set up or canceled using LaunchTimer
and KillTimer. These commands are acknowledged by
TimerReady and TimerKilled. When a timer times out, it
raises a TimeOut event.

4.2.1 Runtime Implementation

Opis provides an interface to the networked world using the
Runtime launcher, that keeps track of open network sock-
ets as well as of pending timers. In complex overlays, the
number of open connections and pending timers can be arbi-
trarily large. However, the user interface would not tolerate
slow-down or freeze while the launcher does its bookkeep-
ing. Therefore, the runtime relies heavily on threads, based
on the Fran model [10]. We run user interface, network in-
teractions and timers isolated in threads of their own. The
Event module of OCaml [37] ensures linearizability of these
concurrent executions.

4.2.2 Model Checking with Encapsulated State

Several properties of Opis make it a platform of choice for
efficient model-checking techniques. First, clear containment
of states, imposed by the combinators, helps efficiently define
and compute the state of an event function. Second, given
that Opis is purely functional and is written in a functional
language, backtracking is efficient and simple to implement.
Finally, because the event functions are first-class citizens
in the host language, we can easily manipulate them in the
model checking launcher.

The properties of Opis enabled us to developed an ab-
straction on top of the network that lets us manipulate a
complete network of peers as an automaton. Thus, we can
efficiently compute the signature corresponding to a unique
network state. Second, given a network, we can compute all
activated transitions and decide to take any of them. Us-
ing this abstraction, an implementation of depth-first safety
checking is possible using standard algorithms [18].

The expressiveness offered by the automaton abstraction
also allowed us to easily implement more advanced model-
checking techniques, such as partial-order reduction (POR)
[13, 11]. By restricting the exploration to dependent tran-
sitions and by removing many irrelevant interleavings of
events, POR was able to avoid the exponential blowup dur-
ing exhaustive search in some protocols we developed (see
Section 5.2.4).

Opis model checker also explores possible firings of
timers, by maintaining the notion of ’current time’. At every
model-checking step, it either 1) executes the earliest timer
event in the set of pending timers, or 2) does not fire any
timer. This approach enabled us, for example, to explore the
complete state-space of Vicinity (Section 2).

4.3 Performance Analyzer Implementation

Opis performance analyzer identifies performance issues in
reactive functions by collecting information about running
times of pure-function building blocks in an Opis system,

as well as the sizes of their inputs. The analyzer then
identifies functions with largest average running times and
displays them to the user. Moreover, the analyzer estimates
function complexity by examining the measured input sizes
and the corresponding running time for the invocations of
these functions. To estimate the asymptotic complexity, the
analyzer considers a set of common mathematical functions
including log, linear, quadratic, and exponential. For each
function it computes the sum-of-squares error and displays
to the user the function with the least error.

5. Evaluation

Building on the overview of Section 2, we next evaluate Opis
in terms of programmer productivity, efficiency of developed
systems, and efficiency of some of the analysis tools in Opis.

5.1 Scope of Use and Programmer Productivity

Peer-to-peer overlays are roughly divided in two families:
the structured ones, embodied by Chord [40], and the un-
structured ones, embodied by Cyclon (the subject of our
example in Section 2). To demonstrate that Opis is not re-
stricted to unstructured, highly-reactive systems, we have
implemented the Chord protocol. Our implementation of
Chord highlights the correctness points as well as the con-
ciseness of the Arrow-based formulation: whereas P2 relies
on 47 logic rules and Mace implementation is expressed in
320 statements, our implementation is built upon 30 event
functions, with an event function being composed of 10 lines
of code on average.

The map of our Chord event function is shown in Fig-
ure 11. To improve legibility, we do not draw the body of the
React event function. This function is a mappend on a set of
functions that each react to a specific event, while ignoring
the others. This can be viewed as a form of event-matching.

These two implementations show that Opis can easily
express both categories of overlays: structured and unstruc-
tured. Moreover, we have tried to quantify the expressive-
ness offered by Opis in Figure 12. The number of lines of
code corresponds to the arrow-ized code as well as the data
structures needed by the protocol. In comparison, the Opis
toolkit itself is implemented in 5’000 lines of code.

Protocol LOC # Event functions Developer time

Ping-pong 134 12 2 hours
Generic Gossip 54 4 1 hour

Cyclon 265 13 5 hours
Vicinity 365 13 6 hours

Cyclonity 91 4 + 13 + 13 1 hour
Chord 812 30 2 days

Figure 12. Expressiveness measures

5.2 Experimental Results

We next present additional experience that shows the effec-
tiveness of Opis in developing distributed applications.

5.2.1 Event Functions Performance

For satisfactory performance, we must ensure that the per-
formance overhead of this design remains low. To measure
it, we instrumented our simulator to measure event func-
tion execution time. We measure the most complex event
function, the one in Chord.

The results are shown Figure 13(a). In this experiment,
the overlay is composed of 1000 nodes, with one node joining

Figure 11. The Chord event function

every round. The first step corresponds to the Join phase,
when a lot of messages are sent through the network, while
the following steps correspond to the processing time under
normal load. Given the latencies encountered in wide area
networks (tens, even hundreds of milliseconds), we consider
this processing speed to be sufficiently fast.

5.2.2 Gossip Protocol Performance

One of the most important features of semantic-aware gossip
protocols is convergence speed toward semantically closest
peers. We therefore use the Opis simulator to examine aver-
age node semantic value in Vicinity and Cyclonity (combi-
nation of Vicinity and Cyclon) protocols we highlighted in
our example (Section 2). The average semantic value is the
average ratio of identical files between a node and its neigh-
borhood, and it captures the ability of the protocol to bring
peers with similar interests closer. This property translates
into higher query success rate and lower network overhead
for future searches.

We see in Figure 14(a) that Cyclonity exhibits superior
performance relative to standalone Vicinity. Figure 14(b)
depicts the difficulty our implementation of Vicinity had
before a bug fix. In these simulations, each node owned 8
files, randomly chosen among a total of 16 possible files.

5.2.3 Chord Performance

Finally, we demonstrate that using Opis to implement over-
lays does not reduce their performance in real, live deploy-
ment. We show that in a realistic setting, Opis Chord must
behave no worse than its previously developed imperative
counterparts.

We have deployed our Chord implementation on the
ModelNet network emulator. ModelNet allows us to realisti-
cally emulate 1000 hosts that are running live code over an
Internet-like INET [7] topology. The ModelNet emulator we
used is composed of 5 dual-core Intel Xeon 5140 at 2.33GHz,
with one machine acting as a ModelNet core. Each machine
is provisioned with 2 GB of RAM and runs GNU/Linux
2.6.17. These machines are linked with a full-rate gigabit
Ethernet switch.

We have focused our experiment on the convergence
speed of finger tables. Therefore, we are able to compare
Opis Chord with the previously published performance re-
sults for both MIT lsd (a hand-tuned C++ implementation)
and MACEDON Chord (a highly-optimized implementation
in the MACEDON [38] overlay programming language) that
were also obtained using ModelNet over a 1000-participant
INET topology. Figure 13(b) shows the convergence speed
for the three implementations, running live on 1000 hosts.

During the bootstrapping phase of the experiment,
Opis Chord exhibits good performance. This highlights the
highly-reactive behavior of our overlay. However, over time,
the number of correct finger entries in Opis Chord grows
more slowly than Macedon or LSD Chord. We attribute this
to the fact that our implementation has not been optimized
for fast convergence speed on long term, but for quickly re-
acting to dynamic network conditions.

To conclude, we believe that the results offered by our
Chord implementation are fully satisfactory. While mainly
targeting simplicity and reliability, our implementation is
able to compete with highly optimized code. Moreover,
the overhead of the Arrow abstraction is negligible while
all its benefits are validated: ease of development, ease of
debugging, efficiency, and a greater trust in the code.

5.2.4 Model-Checker Efficiency

To measure the efficiency of our model-checker, we have used
it to explore the complete state-space of a simple Ping-
pong protocol. The ping-pong setup consists of n peers
which periodically send a ping message to a central peer.
The central peer responds with a pong to every ping. The
execution terminates when all peers have sent 5 pings that
have all been answered. This application exhibits a lot of
interleaving and, in this sense, is representative of most
distributed systems.

Although simple, this system allows us to compare the
exhaustive search strategy with the partial-order one for
relatively large number of peers. Figure 15(a) shows the
number of explored states. Figure 15(b) shows the duration
of the model-checking using Opis model checker. Note that
we use the log scale for measuring model checking behavior.
The results in the presence of partial-order reduction are
promising and the technique appears essential for this class
of distributed systems. Note that the size of the state space
is kept relatively small for a software system, which is thanks
to the fact that node behavior is given by large-granularity,
deterministic reactive functions.

Overall, we have found Opis model checker to be a very
effective tool for finding subtle errors arising due to the
asynchronous nature of distributed systems.

6. Related Work

The first reactive systems have been built using synchronous
data-flow languages such as Signal [12], Lustre [15], or Es-
terel [2]. These languages are used to design human-machine
interfaces as well as communication protocols, and have a
long and successful history in the domain of safety-critical
systems.

 0.001

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500 3000 3500 4000

P
ro

ce
ss

in
g

tim
e

(m
s.

)

Round

Processing Speed

(a) Opis Chord event function is efficient

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

A
ve

ra
ge

 n
o.

 c
or

re
ct

 fi
ng

er
s

Time (seconds)

Convergence toward correct finger tables

Opis Chord
Macedon

MIT lsd

(b) Convergence of fingers: Opis Chord matches native and
MACEDON Chord (live)

Figure 13. Chord performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

A
ve

ra
ge

 s
em

an
tic

 v
al

ue
 o

f t
he

 v
ie

w

Time (cycles)

Cyclonity (Vicinity + Cyclon)
Vicinity (alone)

(a) Cyclonity peer has more neighbors with common files than
in Vicinity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

A
ve

ra
ge

 s
em

an
tic

 v
al

ue
 o

f t
he

 v
ie

w

Time (cycles)

Corrected Vicinity
Buggy Vicinity

(b) Buggy Vicinity has a narrow view

Figure 14. Semantic convergence (simulation)

The introduction of reactive programming into functional
programming gave birth to many libraries such as Fudget [6]
for graphical user interface. This concept has also been ap-
plied to robot programming with tools like Frob [14]. Finally,
all these implementations have inspired Yampa [8], which in-
tends to be their ’arrow-ized’ generalization. Like Opis, these
systems are not dedicated programming languages but em-
bedded into a host functional language.

One of the recent overlay programming and deployment
efforts is P2 [31]. In P2, the programmer uses the Over-
Log declarative language to specify the protocol in abstract
terms, without referring to low-level details such as network
messages. Nevertheless, thanks to the abstractions provided
by Opis, we believe that reasoning about Opis code is no
more difficult than reasoning about P2 OverLog statements.
Moreover, working at that level of abstraction of OverLog
implies performance compromises that make P2 effective pri-
marily for prototyping. In contrast, Opis semantics preserves
enough of the physical constraints of a distributed system
to enable the developer to hand-tune the protocol.

MACEDON [38] / Mace [22] framework is based on finite-
state machines that builds a domain specific language on top

of C++. Mace (a reimplementation of MACEDON) lever-
ages the object-oriented features of C++ to manage finite-
state machines through interfaces, while exporting standard
handlers. Mace achieves very good performance and pro-
vides an intuitive approach to overlay programming. Model-
checking techniques have been directly applied to Mace code,
and Mace model checker found liveness bugs in several over-
lays. The handler-based design and the“code once, run many
ways” philosophy has also been adopted by the WiDS [28]
system. One advantage of Opis relative to these efforts is
memory and type safety, and its basis is the embedding of
Opis into OCaml. Mace and WiDS both have additional
drawbacks: hidden data-flow and unobservable user data
structures. Another Opis advantage comes from the abstrac-
tion offered by Arrows, which allowed us to implement a
superior performance debugging tool.

Another successful handler-based system is Ensemble [30]
that builds distributed systems by stacking simpler protocols
together. Whereas Opis allows to compose systems both ver-
tically (stacking) and horizontally (post-processing), Ensem-
ble demonstrated that OCaml can be used for distributed
systems programming.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 4 6 8 10

st

at
es

peers

Ping benchmark (states)

Without Partial-Order
With Partial-Order

(a) Total number of explored states.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10

T
im

e
(s

ec
on

ds
)

peers

Ping benchmark (time)

Without Partial-Order
With Partial-Order

(b) Total model-checking time

Figure 15. The illustration of partial-order reduction on the Ping-Pong benchmark.

While one could be concerned about the efficiency of
OCaml for network programming, Melange [32] already
proved that OCaml can be even faster than hand-written,
C implementations of complex protocols. Opis can be nat-
urally connected to Melange and thereby benefit from this
speed up.

Acute [39] is a programming language for distributed
computing that supports migration of executable code. In
contrast, Opis uses Arrow combinators to advances tech-
niques for implementing reliable large-scale distributed sys-
tems such as transport services.

Erlang [1] demonstrates the suitability of strict, func-
tional programming concepts for programming concurrent
and distributed systems. Erlang uses the Actor model to
build asynchronous message-passing systems. Erlang uses
strong dynamic typing discipline, allowing users to send ar-
bitrary values over the channels. In contrast to Erlang, the
data flow of events in Opis is explicit, which clearly identi-
fies the path taken by any given event. We are not aware of
a comprehensive set of tools (that include theorem provers
and performance analyzers) that provide the benefits of Opis
to Erlang programmers.

The implementation of a TCP stack in Standard ML [4]
has shown that network programming is, first, possible in
a high-level language and, second, that it enhances safety.
This is thanks to functors for modularity and a strong type-
system that catches many errors. The Eel library [9] extends
the event-driven programming model with a set of tools to
ease the task of reading, writing and verifying handler-based
code. By working on imperative, side-effectful languages, eel
has to resort to complex analysis techniques whereas Opis
completely avoids some of this effort.

Recent work [27] demonstrates that efficient, lightweight
network interfaces can be written in functional languages.
The Network interface of Opis could easily benefit from these
performance-related efforts, because its implementation is
orthogonal to the event processing part.

The Flux [5] system defines a data-flow oriented language
to compose C/C++ components into networked application.
Whereas Flux features a type-checker as well as a simulator,
the use of C/C++ makes the implementation of debugging
or model-checking tools more difficult. Opis is able to do
performance prediction and it benefits from the widely used,
well-tested OCaml type-checker.

The Singularity project [21] has also addressed the prob-
lem of safely implementing message-passing based systems.
It introduces the concept of exchangeable types that cap-
ture values transmitted through communication channels. In
Opis, network channels must be typeable by OCaml type-
system, providing similar benefits. Opis does not support
Singularity’s channel contracts. Instead, Opis provides the
ability to apply an explicit-state model checker to the entire
distributed system, which is less scalable yet more precise
approach.

7. Conclusion

We have presented Opis, an approach for developing dis-
tributed systems in OCaml. Opis supports a programming
model for distributed systems where node behavior is given
by event functions built from simple pure functions using
arrow combinators. The development based on combinator
library means that Opis benefits from the type safety and
memory safety of OCaml, along with the well-understood
composition mechanisms such as higher-order functions and
parametrized module system.

Opis complements this solid programming language base
with a number of tools (implemented as higher-order
’launcher’ functions) for analyzing the systems to uncover
emergent semantic and performance behaviors. Specifically,
given node behavior description, Opis launchers enable the
developer to deploy, simulate, debug, model check, and an-
alyze performance of the distributed system.

Using the Opis toolkit, we have developed an advanced
gossip overlay protocol and a distributed hash table. Com-
positionality allowed us to factor out common portions of
protocols, reducing the development time and code base size.
We found the OCaml type checker to prevent a large number
of errors, and found Opis tools extremely useful in uncover-
ing subtle semantic and performance problems. Our experi-
ence with generating code from Isabelle was also encourag-
ing. The total development time was short compared to our
experience with related systems, the system description was
very compact, and the resulting systems have good perfor-
mance. This suggests that Opis is a promising and flexible
approach for reliable distributed system development.

8. Acknowledgements

We would like to thank Zheng Li, Oleg Kiselyov, and Jacques
Garrigue for their valuable help to devise an efficient and
sound implementation of the event function type in OCaml.
We are also deeply in debt to Conal Elliott, who gave
us sound advices and whose work on functional-reactive
systems inspired ours. We thank anonymous referees for
useful comments.

References

[1] J. Armstrong. Making reliable distributed systems in the
presence of software errors. PhD thesis, The Royal Institute
of Technology, Stockholm, 2003.

[2] G. Berry. The Foundations of Esterel. MIT Press, 2000.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development–Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[4] E. Biagioni. A structured TCP in standard ML. SIGCOMM
Comput. Commun. Rev., 24(4):36–45, 1994.

[5] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and
M. D. Corner. Flux: a language for programming high-
performance servers. In USENIX ATC, page 13, 2006.

[6] M. Carlsson and T. Hallgren. FUDGETS - A graphical user
interface in a lazy functional language. In FPCA, 1993.

[7] H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Towards Capturing Representative AS-Level
Internet Topologies. In SIGMETRICS, June 2002.

[8] A. Courtney, H. Nilsson, and J. Peterson. The Yampa
arcade. In Haskell Workshop, 2003.

[9] R. Cunningham and E. Kohler. Making events less slippery
with eel. In HOTOS, page 3, 2005.

[10] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP, 1997.

[11] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In POPL, 2005.

[12] T. Gautier, P. L. Guernic, and L. Besnard. SIGNAL: A
declarative language for synchronous programming of real-
time systems. In FPCA, 1987.

[13] P. Godefroid and P. Wolper. A partial approach to model
checking. In LICS, 1991.

[14] G. Hager and J. Peterson. Frob: A transformational
approach to the design of robot software. In ISRR, 1999.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, 79(9), 1991.

[16] M. Hayden. Distributed communication in ml. J. Funct.
Program., 10(1), 2000.

[17] J. Hickey, N. Lynch, and R. van Renesse. Specifications and
proofs for Ensemble layers. In TACAS, 1999.

[18] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295, 1997.

[19] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
robots, and functional reactive programming. In Advanced
Functional Programming, volume 2638 of LNCS, 2002.

[20] J. Hughes. Generalising monads to arrows. Science of
Computer Programming, 37, 2000.

[21] G. C. Hunt and J. R. Larus. Singularity: rethinking the
software stack. Op. Sys. Review, 41(2):37–49, 2007.

[22] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M.
Vahdat. Mace: language support for building distributed
systems. In PLDI, 2007.

[23] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. In STOC, 2000.

[24] C. Kreitz, M. Hayden, and J. Hickey. A proof environment
for the development of group communication systems. In
CADE-15, 1998.

[25] X. Leroy. A modular module system. J. Funct. Program.,
10(3), 2000.

[26] X. Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In POPL,
2006.

[27] P. Li and S. Zdancewic. Combining events and threads
for scalable network services implementation and evalua-
tion of monadic, application-level concurrency primitives.
SIGPLAN Not., 42(6):189–199, June 2007.

[28] S. Lin, A. Pan, Z. Zhang, R. Guo, and Z. Guo. WiDS: an
integrated toolkit for distributed system development. In
HOTOS, 2005.

[29] H. Liu and P. Hudak. Plugging a space leak with an arrow.
Electron. Notes Theor. Comput. Sci., 193:29–45, 2007.

[30] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden,
K. Birman, and R. Constable. Building reliable, high-
performance communication systems from components. In
SOSP, 1999.

[31] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative overlays.
SIGOPS Oper. Syst. Rev., 39(5), 2005.

[32] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and
R. Sohan. Melange: creating a ”functional” internet. SIGOPS
Oper. Syst. Rev., 41(3), 2007.

[33] R. Milner. A Calculus of Communicating Systems. Springer,
1980.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer-Verlag, 2002.

[35] R. Paterson. A new notation for arrows. In ICFP, 2001.

[36] R. Paterson. The Fun of Programming. Palgrave, 2003.

[37] J. H. Reppy. Higher–Order Concurrency. Technical Report
TR92-1852, Cornell Univ, Ithaca, NY, 1992.

[38] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat.
MACEDON: methodology for automatically creating,
evaluating, and designing overlay networks. In NSDI, 2004.

[39] P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli,
M. Allen-Williams, P. Habouzit, and V. Vafeiadis. Acute:
high-level programming language design for distributed
computation. In ICFP ’05. ACM, 2005.

[40] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer to Peer Lookup Service
for Internet Applications. In SIGCOMM, 2001.

[41] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays.
Journal of Network and Systems Management, 13, 2005.

[42] S. Voulgaris and M. van Steen. Epidemic-style management
of semantic overlays for content-based searching. In EuroPar,
2005.

[43] MLDonkey, the p2p client for Linux/Unix/Windows.
http://mldonkey.sourceforge.net/.

