
Certified and Optimizing Bit Slicing Compiler

Pierre-Évariste Dagand
pierre-evariste.dagand@lip6.fr

Cnrs – Inria Paris – Lip6

Abstract

This internship offers to design, implement and prove the correctness of a bit slicing
compiler. It will take place in theWhisper team of Inria Paris – LIP6, located at University
Paris 6, and will be supervised by Pierre-Évariste Dagand (Cnrs).

It is common knowledge that a modern computer manipulates 64-bit registers. Most pro-
grammers therefore have a deeply ingrained conception of the “atom of computation” being
a 64-bit value, which could represent a number or a pointer for example. Software bit slic-
ing [Pornin, 2001], also called SIMD within a register (SWAR) [Fisher, 2003], is a programming
trick by which a 64-bit register is treated by the programmer as 64 1-bit registers. As a re-
sult, bitwise operations – for example, the logical negation of a 64-bit register – behave as
a SIMD (“single instruction, multiple data”) instruction on 64 1-bit registers: we can exploit
bit-level parallelism and therefore increase the throughput of some algorithms. This technique
is particularly exploited in cryptography for its improved throughput on some cryptographic
primitives [Biham, 1997, Canright, 2005, Azad, 2007] but also for its resistance against timing-
attack [Käsper and Schwabe, 2009].

Internship objectives: Writing algorithms in a bit-sliced form is a tedious and error-prone
task: in C or in assembly, programmers must implement their bit-level algorithms by ma-
nipulating 64 such bits at a time, thus obscuring their initial intent and losing the benefit of
automated optimizations.

Following an original proposition by X. Leroy, a first step will be to design and implement a
programming language for describing bit sliced algorithms. Due to the inherent bit-level nature
of this formalism, we shall reuse concepts and techniques exploited by hardware description
languages, such as the synchronous dataflow formalism [Biernacki et al., 2008].

For a student interested in advanced compilation techniques, the next step would be to
generate optimized code, efficiency being usuallymeasured in terms of gate count [Kwan, 2000].
To this end, one could both use standard techniques of Boolean evaluation [Knuth, 2005] while
taking advantage of architecture-specific instructions, such as the Streaming SIMD Extensions
(SSE) on Intel machines.

For a student interested in verification techniques, the next step would be to specify the
semantics of the description language and prove the correctness of the compiler in the Coq
proof assistant [Pierce et al., 2014, Gonthier et al., 2015]. This workwill build upon the ssrbits
library [Blot et al., 2016] developed at LIP6.

Beyond this work at the interface between software and hardware, there is also an oppor-
tunity to gain in abstraction by presenting some bit sliced algorithms directly in the world of
finite fields [Albrecht, 2012, Lidl and Niederreiter, 1994]. Supporting this abstraction with a
high-level language and an optimizing compiler could be pursued as part of a PhD project.

Student’s profile: We are looking for a student interested in micro-architectural questions,
language design and compilation techniques. The compiler will be implemented in OCaml or
Coq. Acquaintance with an interactive theorem prover (Coq, or Isabelle) is welcome. Nonethe-
less, a motivated student with a strong background in functional programming (OCaml, or
Haskell) could certainly learn to use Coq along the way. This work is funded by the Émer-
gence(s) program of the City of Paris, thanks to which we can offer a stipend (“gratification”)
for the duration of the internship.

pierre-evariste.dagand@lip6.fr

References

M. R. Albrecht. The m4rie library for dense linear algebra over small fields with even char-
acteristic. In International Symposium on Symbolic and Algebraic Computation, ISSAC ’12,
pages 28–34, 2012. doi:10.1145/2442829.2442838.

V. Azad. Fast AES decryption. Master’s thesis, University of California, 2007. URL http:
//hdl.handle.net/10211.9/1224.

D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed modular code generation
for synchronous data-flow languages. In Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES ’08, pages 121–130, 2008. doi:10.1145/1375657.1375674.

E. Biham. A fast new DES implementation in software. In Fast Software Encryption, FSE’97,
pages 260–272, 1997. doi:10.1007/BFb0052352.

A. Blot, P. Dagand, and J. Lawall. From sets to bits in coq. In Functional and Logic Programming,
FLOPS’16, pages 12–28, 2016. doi:10.1007/978-3-319-29604-3_2. URL https://github.
com/ejgallego/ssrbit.

D. Canright. A very compact S-box for AES. In International Conference on Cryptographic
Hardware and Embedded Systems, CHES’05, pages 441–455, 2005. doi:10.1007/11545262_32.

R. J. Fisher. General-purpose Simd Within a Register: Parallel Processing on Consumer Micropro-
cessors. PhD thesis, West Lafayette, IN, USA, 2003. AAI3108343.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for the Coq system.
Research Report RR-6455, Inria Saclay Ile de France, 2015. URL https://hal.inria.fr/
inria-00258384.

E. Käsper and P. Schwabe. Faster and timing-attack resistant aes-gcm. In Cryptographic Hard-
ware and Embedded Systems, CHES’09, pages 1–17, 2009. doi:10.1007/978-3-642-04138-9_1.

D. E. Knuth. The Art of Computer Programming, Volume 4. Addison-Wesley Professional, 2005.
ISBN 0201853949.

M. Kwan. Reducing the gate count of bitslice des. Cryptology ePrint Archive, Report 2000/051,
2000. URL http://eprint.iacr.org/2000/051.

R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge uni-
versity press, 1994.

B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Software Foundations. Electronic textbook, 2014. URL http://www.cis.upenn.edu/
~bcpierce/sf.

T. Pornin. Implantation et optimisation des primitives cryptographiques. PhD thesis, École Nor-
male Supérieure, 2001. URL http://www.bolet.org/~pornin/2001-phd-pornin.pdf.

http://dx.doi.org/10.1145/2442829.2442838
http://hdl.handle.net/10211.9/1224
http://hdl.handle.net/10211.9/1224
http://dx.doi.org/10.1145/1375657.1375674
http://dx.doi.org/10.1007/BFb0052352
http://dx.doi.org/10.1007/978-3-319-29604-3_2
https://github.com/ejgallego/ssrbit
https://github.com/ejgallego/ssrbit
http://dx.doi.org/10.1007/11545262_32
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
http://dx.doi.org/10.1007/978-3-642-04138-9_1
http://eprint.iacr.org/2000/051
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.bolet.org/~pornin/2001-phd-pornin.pdf

