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Abstract

This internship offers to design, implement and prove the correctness of a bit slicing
compiler. It will take place in theWhisper team of Inria Paris – LIP6, located at University
Paris 6, and will be supervised by Pierre-Évariste Dagand (Cnrs).

It is common knowledge that a modern computer manipulates 64-bit registers. Most pro-
grammers therefore have a deeply ingrained conception of the “atom of computation” being
a 64-bit value, which could represent a number or a pointer for example. Software bit slic-
ing [Pornin, 2001], also called SIMD within a register (SWAR) [Fisher, 2003], is a programming
trick by which a 64-bit register is treated by the programmer as 64 1-bit registers. As a re-
sult, bitwise operations – for example, the logical negation of a 64-bit register – behave as
a SIMD (“single instruction, multiple data”) instruction on 64 1-bit registers: we can exploit
bit-level parallelism and therefore increase the throughput of some algorithms. This technique
is particularly exploited in cryptography for its improved throughput on some cryptographic
primitives [Biham, 1997, Canright, 2005, Azad, 2007] but also for its resistance against timing-
attack [Käsper and Schwabe, 2009].

Internship objectives: Writing algorithms in a bit-sliced form is a tedious and error-prone
task: in C or in assembly, programmers must implement their bit-level algorithms by ma-
nipulating 64 such bits at a time, thus obscuring their initial intent and losing the benefit of
automated optimizations.

Following an original proposition by X. Leroy, a first step will be to design and implement a
programming language for describing bit sliced algorithms. Due to the inherent bit-level nature
of this formalism, we shall reuse concepts and techniques exploited by hardware description
languages, such as the synchronous dataflow formalism [Biernacki et al., 2008].

For a student interested in advanced compilation techniques, the next step would be to
generate optimized code, efficiency being usuallymeasured in terms of gate count [Kwan, 2000].
To this end, one could both use standard techniques of Boolean evaluation [Knuth, 2005] while
taking advantage of architecture-specific instructions, such as the Streaming SIMD Extensions
(SSE) on Intel machines.

For a student interested in verification techniques, the next step would be to specify the
semantics of the description language and prove the correctness of the compiler in the Coq
proof assistant [Pierce et al., 2014, Gonthier et al., 2015]. This workwill build upon the ssrbits
library [Blot et al., 2016] developed at LIP6.

Beyond this work at the interface between software and hardware, there is also an oppor-
tunity to gain in abstraction by presenting some bit sliced algorithms directly in the world of
finite fields [Albrecht, 2012, Lidl and Niederreiter, 1994]. Supporting this abstraction with a
high-level language and an optimizing compiler could be pursued as part of a PhD project.

Student’s profile: We are looking for a student interested in micro-architectural questions,
language design and compilation techniques. The compiler will be implemented in OCaml or
Coq. Acquaintance with an interactive theorem prover (Coq, or Isabelle) is welcome. Nonethe-
less, a motivated student with a strong background in functional programming (OCaml, or
Haskell) could certainly learn to use Coq along the way. This work is funded by the Émer-
gence(s) program of the City of Paris, thanks to which we can offer a stipend ( “gratification”)
for the duration of the internship.
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