
A Formal Semantics of SIMD Instruction Sets

Pierre-Evariste Dagand

Do you know what the intrinsics

__m128i _mm_ternarylogic_epi64 (__m128i a, __m128i b, __m128i c, int imm8)

does on a CPU supporting the AVX512 instruction set? Intel1 describe it as a

Bitwise ternary logic that provides the capability to implement any
three-operand binary function; the specific binary function is
specified by value in imm8. For each bit in each packed 64-bit
integer, the corresponding bit from src, a, and b are used to form a 3
bit index into imm8, and the value at that bit in imm8 is written to
the corresponding bit in dst using writemask k at 64-bit granularity
(64-bit elements are copied from src when the corresponding mask bit
is not set).

and then kindly provides the following pseudo-code

FOR j := 0 to 1
i := j*64
IF k[j]

FOR h := 0 to 63
index[2:0] := (src[i+h] << 2) OR (a[i+h] << 1) OR b[i+h]
dst[i+h] := imm8[index[2:0]]

ENDFOR
ELSE

dst[i+63:i] := src[i+63:i]
FI

ENDFOR
dst[MAX:128] := 0

If you ever have written formal specifications and machine-checked models, you
are likely to feel disappointed by the above specification. For instance, from
the above description, do you think that it would be possible, given a 128-bits
register, to use this instruction to perform a logical or on the first 64 bits of
the register and a logical and on the last 64 bits of the register in a single
instruction?

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX_512&text=
tern&expand=5834,5836

1

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX_512&text=tern&expand=5834,5836
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX_512&text=tern&expand=5834,5836


As part of the Usuba2 project, we produce efficient cryptographical code, ex-
ploiting various SIMD (Single Instruction, Multiple Data) instruction sets such
as SSE, AVX, AVX2 or AVX512 on Intel platforms. Aside from producing high-
performance code, Usuba also aims at being a trustworthy compiler: we would
like to prove that the generated code follows the semantics prescribed by the
input program. Sadly, in most cases, we can barely make sense of the informal
specification provided by Intel: it takes several minutes of intense concentration
to check that an instruction does what its name suggest, leaving us at a loss for
the most intimidating instructions such as _mm512_maskz_4dpwssd_epi32.

Currently, Usuba relies on a C compiler (which can be any of GCC, Clang or
ICC) to produce vectorized code from a C program using the Intel intrinsics3.
This means that the C compiler is part of our trusted computing base. As a
result, it becomes nearly impossible to prove the correctness of Usuba down to
assembly: we are stuck hoping that the C compiler is correct.

To address these issues, we would like to add a Jasmin4 back-end to Usuba.
Jasmin is a portable assembly language that has been proved correct in Coq.
Jasmin would allow us to obtain an end-to-end correctness proof, from Usuba
down to vectorized assembly. However, to date, Jasmin only supports a subset
of the SSE instruction set.

This project offers to:

• give a Coq semantics to a significant subset of the SSE and AVX instruction
sets, using as many generic programming tricks as possible to keep the
model as concise as possible;

• develop an automated testing infrastructure, allowing us to exercise the
formal semantics against the actual implementations of the instruction set;

• extend the Jasmin language with the instructions supported by our model,
updating its correctness proof in the process.

2https://github.com/DadaIsCrazy/usuba
3https://software.intel.com/sites/landingpage/IntrinsicsGuide
4https://github.com/jasmin-lang

2

https://github.com/DadaIsCrazy/usuba
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://github.com/jasmin-lang

