Logic synthesis for software circuits

Pierre-Evariste Dagand (dagand@irif.fr)

I am looking for a function

int sbox3(int x)

such that

sbox3(0) =8 sbox3(4) = 3
sbox3(1) =6 sbox3(5) = 12
sbox3(2) =7 sbox3(6) = 10
sbox3(3) =9 sbox3(7) = 15
sbox3(8) = 13 sbox3(12) =0
sbox3(9) =1 sbox3(13) = 11
sbox3(10) = 14 sbox3(14) =5
sbox3(11) = 4 sbox3(15) = 2

with the added constraint that this function is forbidden to read from main
memory. Typically, x would be a secret (e.g., a cryptographic key) and an access
to memory depending on the value of x would reveal sensitive information that
can be used by an attacker to retrieve the secret.

To side-step this issue, cryptographers usually resort to writing what is essentially
a combinational circuit: the function sbox3 is implemented by a branch-free,
memory-less sequence of logical operations (and, or, xor, negation) that imple-
ments the truth table given above.

This project aims at implementing a brute-force search algorithm producing
the most efficient implementation of such a truth table, for a given computer
architecture & instruction set (eg., supporting various SIMD instruction sets)
and at a predictable compute budget. While doing this, we will fortunately be
standing on the shoulders of giants:

o “Speeding up Serpent”, Dag Arne Osvik (AES Candidate Conference 2000)
 “Optimizing bitslice DES S-box expressions™, OpenWall/John the Ripper

Thttps://openwall.info/wiki/sbox-opt /des

https://openwall.info/wiki/sbox-opt/des

