
Screaming fast symmetric cryptography:
purely functional & typed with class

Pierre-Evariste Dagand (dagand@irif.fr)

Usuba1 is a high-level domain-specific programming language to write high-
throughput and constant-time cryptographic primitives, generating low-level C
code based on a generalization of bitslicing. The Usuba compiler targets both
high-end, superscalar Intel machines as well as low-end, embedded devices (such
as Arm Cortex).

Whilst Usuba has demonstrated significant performance benefits on high-end
processors, its performance profile on embedded devices has received limited
attention. So far, we have focused solely on a single ARM Nucleo STM32F401RE
development board.

Besides, the Usuba programming language is currently specified through a pen-
and-paper dynamic and static semantics. Moreover, the internal representation
of the compiler, dubbed usuba0, does not fully exploit the equational theory
offered by a purely functional language.

This internship aims at addressing either (or both!) of these limitations.

Targeting embedded systems
One line of research would aim at extending the usubac compiler with op-
timization passes specifically designed for embedded platforms of the ARM
Cortex family. Our goal is to deliver performance on par with hand-tuned
implementations on this platform.

A concrete starting point for this endeavor is the seminal work of Schawbe et
al.2 that describes the process of optimizing a cryptographic primitive –in this
case, AES– for an embedded ARM Cortex M platform. We wish to implement
this proposal as part of a dedicated usubac back-end, with the intent of closing
the performance gap between usuba-generated and hand-tuned cryptographic
implementations. As part of this process, we intend to provide a synthetic bench-
mark of the Usuba implementation of the lightweight cryptographic primitives

1https://usubalang.github.io/usuba/
2https://doi.org/10.1007/978-3-319-69453-5_10

1

https://usubalang.github.io/usuba/
https://doi.org/10.1007/978-3-319-69453-5_10


proposed to the NIST LWC competition, following Renner et al.3 and expanding
upon our earlier benchmark4 (which was focused on masked implementations).

Our current testing workbench consists in

• a Skiva softcore processor deployed on the main FPGA (Cyclone IV
EP4CE115) of an Altera DE2-115 board (the processor is clocked at
50 MHz and has access to 128 kB of RAM);

• a STM32F030 discovery kit featuring a 48Mhz ARM Cortex-M0 (8kB of
SRAM, 64 kB of flash memory)

• a STM32G031 discovery kit featuring a 64MHz ARM Cortex-M0+ (8kB
of SRAM, 32 kB of flash memory)

• a STM32L100 discovery kit featuring a 32MHz ARM Cortex-M3 (16kB of
SRAM, 256kB of flash memory)

• a STM32F407 discovery kit featuring a 168MHz ARM Cortex-M4 (192 kB
of SRAM, 1 MB flash memory)

• a STM32F756 Nucleo featuring a 216MHz ARM Cortex-M7 (320kB of
SRAM, 1 MB of flash memory)

• a Raspberry Pi 3 (model A+) featuring a 1.4GHz ARM Cortex-A53 (512MB
of RAM)

• a Raspberry Pi 4 (model B) featuring a 1.5GHz ARM Cortex-A72 (2GB
of RAM)

• a BeagleBone Black (rev C) featuring a 1GHz ARM Cortex-A8 (512MB of
RAM)

Because of our initial interest in higher-order masking, we have been focused on
the ARM platform for which one can easily find a configuration with enough
flash memory to hold the compiled code. If experiments with the Cortex-M0 are
encouraging, we would certainly foray into the world of 8-bit microcontrollers,
such as the Atmel AVR family, and 16-bit microcontrollers, such as the MSP430
family.

Delivering high performance on embedded devices calls for dispensing with
existing C compilers and directly producing machine code. This issue has long
been recognized by the cryptographic community. Jasmin5 is such a “high-level”
assembly language, offering a mechanized semantics and a machine-checked
assembler for x86 and ARM architectures. Crossing the gap between Usuba
and Jasmin boils down to implementing a register allocator, Jasmin already
supporting all the other Usuba features. Such an effort to adapt a register
allocator tailored for bitsliced code will be an opportunity to improve the quality
and predictability of usubac optimizations across-the-board: the brittleness of
the general-purpose register allocators provided by C compilers has led us to
rely on ad-hoc, unnatural code patterns to coerce certain allocation strategies,
sometimes at the expense of other optimization opportunities.

3https://doi.org/10.1007/978-3-030-61078-4_28
4https://usubalang.github.io/usuba/assets/documents/tornado-eurocrypt20.pdf
5https://hal.archives-ouvertes.fr/hal-01649140

2

https://doi.org/10.1007/978-3-030-61078-4_28
https://usubalang.github.io/usuba/assets/documents/tornado-eurocrypt20.pdf
https://hal.archives-ouvertes.fr/hal-01649140


Developing a general-purpose register allocator is no small feat. Here, we are
hoping to take advantage of the simplicity of the source language (little to no
control-flow, essentially straight-line code) to benefit from a combined instruction
scheduling / register allocation scheme. Encouraging results on ciphers have
been reported in the literature.

Trustworthy Usuba
Another line of research would aim at developing a mechanized dynamic and
static semantics for Usuba in the Coq theorem prover. This work would be
put to the test by proving the correctness of the usubac compiler front-end,
which performs a syntactic reduction down to usuba0, the compiler internal
representation that amounts to combinational circuits.

Once we have obtained usuba0 code, the compiler back-end is responsible for
aggressively optimizing these circuits through source-to-source transformations.
We plan to refine this internal language, adapting ideas and techniques from
Equality Saturation6 to streamline the implementation of optimizations. To
ensure the correctness of the back-end, we will rely on translation validation
to ensure post facto that the meaning of a given program has been preserved
throughout the pipeline. We will extensively exploit the fact that usuba0 maps
straightforwardly to SMT formulae, where the verification problem reduces to
(combinational) circuit equivalence checking.

In the process and to show-case this approach, we wish to implement a generic
fixslicing7 optimization pass. Fixslicing is a whole-cipher transformation that
aims at removing the linear layer of Substitution-bitPermutation-Network (SbPN)
ciphers (such as GIFT and Present) and, beyond, to AES-like designs (such as
AES itself or Skinny). In those ciphers, the linear layer operates a representation
change over the matricial state of the cipher at run-time (which, for example,
represents 30% of the execution time on AES). Fixslicing –when possible– turns
this run-time operation into a compile-time code transformation by specializing
the subsequent code to work over a non-standard representation of the matricial
state. As it turns out in the case of AES, this representation converges back to
the identity after 4 rounds. As a consequence, a round needs only be specialized
into 4 distinct implementations operating over 4 non-standard layouts, thus
limiting the code size blowup to a factor 4. Identifying a suitable data layout
and synthesizing the corresponding specialized rounds calls for highly non-trivial
heuristics, which would represent a formidable challenge to prove correct. Instead,
we intend to lean on the translation validation framework to check a posteriori
that the semantic of an individual round is preserved when specialized to operate
over a non-standard representation.

6https://rosstate.org/publications/eqsat/
7https://doi.org/10.46586/tches.v2021.i1.402-425

3

https://rosstate.org/publications/eqsat/
https://doi.org/10.46586/tches.v2021.i1.402-425


References:

• https://usubalang.github.io/usuba/
• Darius Mercadier, Pierre-Evariste Dagand. Usuba: High-Throughput and

Constant-Time Ciphers, by Construction8. PLDI 2019.
• Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,

Raphaël Wintersdorff. Tornado: Automatic Generation of Probing-Secure
Masked Bitsliced Implementations9. EUROCRYPT 2020.

• Peter Schwabe, Ko Stoffelen. All the AES You Need on Cortex-M3 and
M410. SAC 2016.

• José Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
Pierre-Yves Strub. Jasmin: High-Assurance and High-Speed Cryptogra-
phy11. CCS 2017.

• Ross Tate. Equality saturation12

• Alexandre Adomnicai and Thomas Peyrin.Fixslicing AES-like Ciphers New
bitsliced AES speed records on ARM-Cortex M and RISC-V13

8https://usubalang.github.io/usuba/assets/documents/usuba-pldi19.pdf
9https://usubalang.github.io/usuba/assets/documents/tornado-eurocrypt20.pdf

10https://doi.org/10.1007/978-3-319-69453-5_10
11https://hal.archives-ouvertes.fr/hal-01649140
12https://rosstate.org/publications/eqsat/
13https://doi.org/10.46586/tches.v2021.i1.402-425

4

https://usubalang.github.io/usuba/assets/documents/usuba-pldi19.pdf
https://usubalang.github.io/usuba/assets/documents/tornado-eurocrypt20.pdf
https://doi.org/10.1007/978-3-319-69453-5_10
https://hal.archives-ouvertes.fr/hal-01649140
https://rosstate.org/publications/eqsat/
https://doi.org/10.46586/tches.v2021.i1.402-425

	Targeting embedded systems
	Trustworthy Usuba

