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Abstract

Functional programmers from all horizons strive to use, and sometimes abuse, their favorite type
system in order to capture the invariants of their programs. A widely-used tool in that trade consists
in defining finely-indexed datatypes. Operationally, these types classify the programmer’s data, fol-
lowing the ML tradition. Logically, these types enforce the program invariants in a novel manner.
This new programming pattern, by which one programs over inductive definitions to account for
some invariants, lead to the development of a theory of ornaments (McBride, 2011).

However, ornaments originate as a dependently-typed object and may thus appear rather daunting
to a functional programmer of the non-dependent kind. This article aims at presenting ornaments
from first-principles and, in particular, to declutter their presentation from syntactic considerations.
To do so, we shall give a sufficiently abstract model of indexed datatypes by means of many-sorted
signatures. In this process, we formalize our intuition that an indexed datatype is the combination of
a data-structure and a data-logic.

Over this abstraction of datatypes, we shall recast the definition of ornaments, effectively giving
a model of ornaments. Benefiting both from the operational and abstract nature of many-sorted
signatures, ornaments should appear applicable and, one hopes, of interest beyond the type-theoretic
circles, case in point being languages with generalized abstract datatypes or refinement types.

1 Introduction

In modern programming languages, datatypes are more than mere data-structures. With the
advent of indexed datatypes in mainstream languages (Cheney & Hinze, 2003; Sheard &
Linger, 2007; Freeman & Pfenning, 1991; Swamy et al., 2011), programmers have gained
the ability to precisely capture the logical invariants of their programs. A typical example
of a definition combining structure and logic is the datatype of finite sets

data Fin (n :Nat) : SET where

Fin 0 ∋
Fin (suc n) ∋ f0

| fsuc (k :Fin n)

that, in effect, represents a number between 0 and n−1. As a data-structure, a finite set is
nothing but a (unary) number. As a data-logic, it captures the invariant that this number is
bounded by n. Another example is the datatype of vectors

data Vec [A : SET](n :Nat) : SET where

VecA 0 ∋ nil

VecA (suc n) ∋ cons (a :A)(vs :VecAn)
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that represents lists of a fixed length n. Structurally, vectors are nothing but lists. However,
logically, we have a static guarantee on their length. Using this logical information, we can
for example write a type-safe lookup function for vectors:

vlookup (m :Fin n) (vs :VecAn) : A
vlookup f0 (cons a xs) 7→ a
vlookup (fsuc n) (cons a xs) 7→ vlookup n xs

Using finely indexed datatypes, the programmer is thus able to express her invariants,
relying on the type checker to enforce them. By following this approach, one gets a step
closer to correct-by-construction software. In our vlookup example above, we are able to
sidestep the logically meaningless case where the index is beyond the end of the list. In a
non-indexed setting, we have to handle these cases at run-time:

lookup (m :Nat) (xs :ListA) : MaybeA
lookup m nil 7→ nothing

lookup 0 (cons a xs) 7→ just a
lookup (suc n) (cons a xs) 7→ lookup n xs

Indexed datatypes exist in many forms. Originally, they were studied in (dependent)
type theory under the name of inductive families (Dybjer, 1994). They are at the heart of
proof assistants such as Coq (Coq development team, 2015), and programming languages
such as Agda (Norell, 2007) or Idris (Brady, 2013). The examples we gave above use the
full-power of dependent types, using a stylized syntax.

Inductive families have percolated in the ML family under the guise of Generalized
Algebraic Datatypes (GADTs). Initially implemented in Omega (Sheard & Linger, 2007),
GADTs are now a basic convenience of Haskell (Schrijvers et al., 2009) and OCaml
(Pottier & Régis-Gianas, 2006). For example, the type of finite sets is defined as follows in
the dialect of Haskell supported by GHC:

{-# LANGUAGE GADTs, DataKinds, KindSignatures #-}
data Nat where

Ze :: Nat

Suc :: Nat -> Nat

data Fin :: Nat -> * where

FZe :: Fin (Suc n)

FSuc :: Fin n -> Fin (Suc n)

Refinement types are another form of indexing, which serves as the basis of languages
such as RefinementML (Freeman & Pfenning, 1991) or F⋆ (Swamy et al., 2011). A re-
finement type consists of a bare datatype paired with a refinement predicate that asserts a
(logical) property of the underlying type. In F⋆, the type of finite sets is thus expressed as
a natural number k that is less than the index n:

type fin (n:nat) = k:nat{k < n}
let fze : n:nat -> fin (n + 1) = fun _ -> 0

let fsuc : n:nat -> fin n -> fin (n+1) = fun _ k -> k + 1
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While initially developed in dependent type theory, the concept of ornament makes
sense in these settings too. For ornaments to be widely applicable, we want to cast them
in a single abstract framework, absorbing this diversity once and for all. As it turns out,
the model of indexed datatypes as least fixpoint of many-sorted signatures (Petersson &
Synek, 1989; Morris et al., 2009; Gambino & Kock, 2013). fits perfectly our purposes.
In type theoretic circles, it is known as indexed containers (Morris & Altenkirch, 2009;
Abbott, 2003), or containers for short. In categorical circles, it is known as polynomial
functors (Gambino & Hyland, 2004; Gambino & Kock, 2013) over locally Cartesian-
closed categories (LCCC). Polynomial functors are known to be equivalent to containers
(Gambino & Kock, 2013).

In this setting, we understand an indexed datatype as the fixpoint of a signature. The op-
erations of the signature and their respective arities correspond to the datatype constructors.
The sorts of the signature correspond to the indices of the datatype. The typing captures the
indexing discipline of the datatype. For example, finite sets are understood as the fixpoint
of a signature with two operations corresponding, respectively, to the zero constructor and
the successor constructor. The former takes no argument, its arity is thus 0, while the latter
takes one recursive arguments, its arity is therefore 1. This signature is indexed by the
sort of natural numbers, so as to ensure that the number of constructors is bounded: this is
enforced by the typing discipline. We come back to the nuts and bolts of this definition in
Example 2.5.

By working with many-sorted signatures, we can reason about indexed datatypes in the
abstract, extensionally. This formalism materializes the intuition that indexed datatypes are
a combination of a data-structure and of a data-logic. The choice of data-structure is forced
upon us by dynamic, computational considerations: it is dictated by the run-time behavior
we expect from the programs operating over the structure. For example, it corresponds
to the difference between a list and a tree: the linear structure of the former allows for
fast insertions of elements, while the branching structure of the latter allows for efficient
searches. The world of ML datatypes is essentially a world of data-structures.

The choice of data-logic is governed by static, logical considerations: we enforce the
invariants of our programs by expressing them at the level of types. By accepting our
program, the type checker guarantees that every potential execution follows the data-logic.
For example, this corresponds to the difference between a natural number and a finite set.
At run-time, a finite set is nothing but a natural number. The logical information has no
impact on the run-time behavior. However, finite sets – bounded natural numbers – provide
more information to the type checker. This extra-information can then be used to enforce
our program’s invariant, as we did for the vlookup function.

For a given data-structure, we can combine it with various data-logics. Indeed, a data-
logic captures an invariant suited for a specific use-case. We are likely to enforce multiple
invariants over a single data-structure. For example, starting from binary trees, we might
be interested in representing well-formed red-black trees (Guibas & Sedgewick, 1978) or
well-formed AVL trees (Adelson-Velskii & Landis, 1962). Structurally, both are nothing
but binary trees. Logically, however, they enforce incompatible invariants. Ornaments are
a device that allows the programmer to graft data-logics over data-structures. Thanks to
their rich algebra, ornaments enable precise invariants to be expressed, while preserving
the structural ties that relate a datatype to its ornamented self.
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We shall therefore present ornaments through the angle of data-logic engineering. We
will see that, intrinsically, ornaments are simply structure-preserving transformations of
datatypes. We shall illustrate how, using ornaments, the programmer can put his finger on
a particular data-structure and engineer data-logics enforcing domain-specific invariants.

Relation with previous presentations: McBride (2011) has originally introduced orna-
ments in type theory, over a specific universe of inductive families. This seminal paper was
focused on an operational account of ornaments, thus the emphasis on a syntactic approach
through the use of universes. This approach was adapted to other universes by various
authors, including Ko and Gibbons (2011) and the present author (Dagand & McBride,
2012). A purely categorical approach was also taken by the present author (Dagand &
McBride, 2013). The objective was to provide a categorical semantics to ornaments. This
was achieved by relating ornaments to specific morphisms – the Cartesian morphisms –
in the category of polynomial functors (Gambino & Kock, 2013). Being categorical, this
work was focused on extensional properties of ornaments, and is thus far removed from
the programmer’s concerns.

This article aims at establishing a middle-ground between these two presentations. On
the one hand, we take a step in abstraction compared to the universe-based approach.
Working over signatures allows us to get past the syntactic details and focus on the essence
of ornaments. On the other hand, this model is concrete enough to appeal to a programmer’s
intuition, allowing us to rely on the computational meaning of various transformations on
datatypes. Throughout this article, we shall focus on the concepts, leaving aside the proofs
(in particular, of adequacy of our model). The interested reader will find these results in
the more abstract setting (Dagand & McBride, 2013).

This article is a first-principles approach to ornaments. We shall motivate and formalize
ornaments through the duality of data-structure and data-logic. Striving for generality, we
first free ourselves from the syntactic peculiarities of datatypes, without sacrificing the
computational aspects. In this framework, we then delineate what ornaments are, formally
and in the abstract. Our contributions are the following:

• We recall a model of indexed datatypes based on many-sorted signatures (Section 2),
expressed in the language of extensional type theory. We provide a wealth of ex-
amples to develop our understanding of datatypes in terms of operation, arity, and
sorts. While not novel, this model is a key step toward a more abstract treatment
of indexed datatypes and operations on them (such as ornaments). In particular, it
provides a unifying framework in which to express the many forms of indexing,
such as GADTs, refinement types, and indexed families.

• We then formally pin down the essence of ornaments in terms of structure-preserving
transformations of signatures (Section 3). We shall see that an ornament is simply
a device that lets us explain how to enrich a data-structure with a given data-logic.
We come to grips with this intuition in two steps. First, we present a naive model
of ornaments, mimicking the original definition of ornaments (McBride, 2011) on
signatures. However, this first model is not mathematically pleasing: it focuses exclu-
sively on transforming signatures, leaving aside the specific invariant governing the
transformation. We refine it into a second model – expressed in terms of Cartesian
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morphism of signatures. Aside from obtaining a more elegant definition, we shall
see that ornaments are in fact a surprisingly simple notion. Coincidentally, it also
corresponds to a widely-studied object in category theory.

• Having established a deep connection between ornaments and Cartesian morphisms,
the algebraic properties of Cartesian morphisms turn into potential software artifacts.
We shall hint at a few examples of such a calculus of datastructures (Section 4).
This illustrates some of the categorical structure of Cartesian morphisms in terms
of constructions on ornaments (e.g., composition). We also cast McBride’s original
constructions in terms of operations in our calculus (e.g., the ornamental algebra).

Formal framework: The models presented in this article are developed in extensional
type theory (Martin-Löf, 1984; Constable, 1986). This formal framework offers a compro-
mise between an intensional type theory – used by McBride in his original presentation of
ornaments (McBride, 2011) – that forces a laboriously syntactic presentation; and category
theory – used by the present author in his categorical treatment of ornaments (Dagand &
McBride, 2013) – that glances over the computational meaning of ornaments.

By working in extensional type theory, we can manipulate inductive definitions as a
programming object and treat ornaments as computational artifacts. At the same time, by
working extensionally over signatures, we gain access to an unrestricted, abstract structure
without too much syntactic noise.

The syntax of our type theory is conventional. We denote by SET the type of all (small)
types and SET1 the type of all SET-types (we shall not need the full hierarchy of types).
Π-types are written with a dependent arrow (x :A)→B, Σ-types with a dependent product
(x : A)×B, for A,B : SET where x may occur freely in B. When x does not occur freely in
B, the Π-type degenerates into a simply-typed function space, written A→B, while the Σ-
type degenerates into a product type, written A×B. We require our type theory to contain
an empty type, written 0, a unit type, written 1, a sum type, written A+B, for A,B : SET.
The (only) inhabitant of the unit type is ∗, the injections into the sum type are injl and
injr, while products are inhabited by pairs (a,b). We rely on an intuitive pattern-matching
notation to represent the eliminators. We write π0 p (respectively, π1 p) to compute the first
(respectively, second) projection of a pair p.

As in ML, unbound variables in type definitions are universally quantified. For example,
we do not explicitly quantify over n :Nat or A : SET in the definition of vector lookup:

vlookup (m :Fin n) (vs :VecAn) : A

While this dramatically reduces the burden of quantifiers, this does not cover all the cases
where one would want to declare an argument as implicit. Case in point are higher-order
type signatures. To indicate that an argument is implicit, we use the quantifier ∀x.(. . .) –
or its annotated variant ∀x :T .(. . .) – as follows:

example ( f :∀n.VecAn→1) (xs :VecAk) (ys :VecAl) : f xs = f ys

This stylized syntax allows us to focus on the key aspects of our type-theoretic construc-
tions. This notation aims at striking a balance between formalism and readability. For a
fully formal and mechanized presentation, we refer the reader to the accompanying Agda
development, which is available on the author’s website.
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2 Indexed datatypes = Data-structure + Data-logic

The aim of this section is to provide the reader with the tools to understand indexed
datatypes in terms of structure and logic. To this end, we are going to present a model
of indexed datatypes for which these two components are clearly visible. Besides, we shall
illustrate our model with concrete examples, shedding a more structural/logical light on
them. We have been careful to adopt a model which is extensional enough to allow abstract
reasoning, freeing us from any unnecessary syntactic details.

Let us recall the definition of many-sorted signatures in type theory, using a terminology
inspired from universal algebra. A signature is parameterized over a set I : SET of sorts, to
account for the “many-sorted” nature of the signature. A signature consists of:

• a family of operations, one set for each sort:

Op : I→SET

• a family of arities, one set for each operation:

Ar :Op i→SET

• a typing discipline, assigning a sort to each arity of each operation:

Ty :Ar op→ I

Altogether, the triple of (Op,Ar,Ty) defines a signature. For conciseness, we organize
these triples in a record-like structure of signatures indexed by a given set of sorts:

Sig (I : SET) : SET1

Sig I 7→


Op: I→SET

Ar :Op i→SET

Ty :Ar op→ I

To visually distinguish these components, we write the triple (Op,Ar,Ty) as Op�TyAr.
The idea that datatypes can be understood as least fixpoint of signatures goes as far back

as Goguen (1975) in a simply-typed (i.e., mono-sorted) setting. In the indexed setting, we
merely had to move to many-sorted signatures (Petersson & Synek, 1989), such as the ones
described above. Doing so, we model the index of the datatype by a sort: a datatype indexed
by I is described by a signature in Sig I. The constructors and their non-recursive arguments
are modeled by the family of operations. The recursive arguments of a constructor are
modeled by the arity of the signature. Finally, the indexing discipline is modeled by the
typing discipline of the signature.

2.1 Example (Signature: vectors). From the inductive definition of vectors

data Vec [A : SET](n :Nat) : SET where

VecA 0 ∋ nil

VecA (suc n) ∋ cons (a :A)(vs :VecAn)

we can read off its signature as follows. The set of sorts is Nat, i.e. the sorts are the naturals.
The signature of vectors, which we call ΣVec, is therefore an element of Sig Nat.
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At sort 0, there is a single operation, nil. At sort suc n, there is an A-indexed family of
operations, cons a:

OpVec (n :Nat) : SET

OpVec 0 7→ 1
OpVec (suc n) 7→ A

Since nil takes no argument, its arity is 0. The operations cons a take one argument, thus
having arity 1:

ArVec (n :Nat) (op :OpVec n) : SET

ArVec 0 ∗ 7→ 0
ArVec (suc n) a 7→ 1

Being of arity null, the typing of nil is trivial. The typing of cons states that the recursive
argument of a suc n-indexed constructor is n, i.e. a vector of length suc n has a tail of length
n:

TyVec (n :Nat) (op :OpVec n) (ar :ArVec n ar) : Nat

TyVec (suc n) a ∗ 7→ n

We have thus specified the signature of ΣVec ≜ OpVec �TyVecArVec.
△

Many-sorted signatures offer a convenient, minimalistic language for describing induc-
tive families. To build the inductive object, we take the least fixpoint of the (strictly-
positive) functor they describe. As it turns out, signatures have a rather straightforward
functorial interpretation. Provided a family X : I→SET, a signature taken at a given sort i
interprets to a choice (i.e., a Σ-type) of an operation op :Op i, followed by a product (i.e., a
Π-type) of arity ar :Ar op of the family X taken at sort Ty ar:J(Σ :Sig I)K (X : I→SET) : I→SETJOp�TyArK X 7→ λi.(op :Op i)×((ar :Ar op)→X (Ty ar))

The resulting endofunctor on I→SET is strictly-positive. It is in fact a polynomial
functor built from a sum over op :Op i of monomials X exponentiated by Ar op.

2.2 Remark. Our notion of signature is very similar to the indexed containers of Altenkirch
and Morris (2009). The only difference stands in our treatment of arities and typing.
Altenkirch and Morris (2009) write a single “arity and typing” function

Ar′ :Op i→ I→SET

while we chose to separate the two, writing:{
Ar :Op i→SET

Ty :Ar op→ I

These two definition styles are in fact equivalent: the interpretation of either style yields
isomorphic functors. Indeed, for I : SET, we have that I→SET ∼= (X : SET)×(X → I): we
can therefore translate the signatures themselves from one style to the other.

Our style enforces a clear separation between structure (dictated by Ar) and logic (dic-
tated by Ty): this is a key ingredient in our treatment of structurally-equivalent (but logically-
incompatible) datatypes.

♢
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Given a signature, we have given its functorial interpretation. Being strictly-positive,
the interpreted functor admits a least fixpoint (Smyth & Plotkin, 1977). We can therefore
safely define a least fixpoint operator

µ (Σ :Sig I) : I→SET

µ Σ 7→ JΣK (µ Σ)

with the confidence that this set is well-formed. In fact, it admits an initial algebra seman-
tics (and, by extension, an induction principle):

L(α :∀ i.JΣKX i→X i)M : µ Σ i→X i

In order to get acquainted with signatures, let us consider the signature of some common
datatypes. We leave it to the reader to check that taking their least fixpoint yields the
expected datatypes.

2.3 Example (Signature: natural numbers). Natural numbers are defined as:

data Nat : SET where

Nat ∋ 0

| suc (n :Nat)

To describe this datatype, we only need mono-sorted signatures: we therefore work in
Sig 1, the class of signatures indexed by the set with a single inhabitant. Natural numbers
offer only two operations, 0 or suc:

OpNat (∗ :1) : SET

OpNat ∗ 7→ 1+1

The arity of the operation 0 is null, while the arity of the operation suc is one:

ArNat (op :OpNat ∗) : SET

ArNat (injl ∗) 7→ 0
ArNat (injr ∗) 7→ 1

Because the index is trivial, so is the typing:

TyNat (ar :ArNat op) : 1
TyNat ar 7→ ∗

Altogether, we have defined the signature ΣNat ≜ OpNat �TyNatArNat. To check that we
have indeed described the signature functor of natural numbers, we can simply interpret
(by J− K) the signature ΣNat: we obtain a functor isomorphic to the expected X 7→ 1+X .

△

2.4 Example (Signature: lists). The datatype of lists, specified by

data List [A : SET] : SET where

ListA ∋ nil

| cons (a :A)(as :ListA)

is strongly similar to the datatype of natural numbers. In fact, seen as a signature, the only
difference stands in the definition of operations: a list offers either an operation nil (related
to the 0 of natural numbers), or an A-indexed family of cons a operations (which can be
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projected down to the operation suc of natural numbers). We obtain the following definition
of operations:

OpList (∗ :1) : SET

OpList ∗ 7→ 1+A
The remaining part of the signature – arity and typing – need only be updated to thread an
a:A instead of ∗:1. Aside from that, the signatures are identical: we leave it to the reader to
give the signature ΣList :Sig 1 in full. In particular, the arities of both signatures are morally
equivalent: as we shall see later, this witnesses an ornament.

△

2.5 Example (Signature: finite sets). Beside lists, finite sets are another example of linearly-
structured datatype. Let us recall their specification:

data Fin (n :Nat) : SET where

Fin 0 ∋
Fin (suc n) ∋ f0

| fsuc (k :Fin n)

The signature ΣFin of finite sets thus belongs to Sig Nat. Interestingly, at sort 0, no
operation is available: there is no set of size zero. At sort suc n, there are two operations, a
new element f0 and the inclusion operation fsuc:

OpFin (n :Nat) : SET

OpFin 0 7→ 0
OpFin (suc n) 7→ 1+1

The arity of f0 is, unsurprisingly, 0. It is structurally related to the operation 0 of natural
numbers. The arity of fsuc is 1, relating it to the operation suc of natural numbers:

ArFin (n :Nat) (op :OpFin n) : SET

ArFin (suc n) (injl ∗) 7→ 0
ArFin (suc n) (injr ∗) 7→ 1

Finally, the typing follows our specification, stating that finite sets of size suc n include
finite sets of size n:

TyFin (n :Nat) (op :OpFin n) (ar :ArFin op) : Nat

TyFin (suc n) (injr ∗) ∗ 7→ n

Putting it all together, we have defined the signature ΣFin ≜OpFin �TyFinArFin. Note that
despite the variation in operations and typing, the arities of ΣFin are morally equivalent to
the arities of ΣNat, ΣList, or ΣVec: it is either 0 or 1. △

2.6 Example (Signature: binary tree). So far, the arities of our examples – vectors (Exam-
ple 2.1), natural numbers (Example 2.3), lists (Example 2.4), and finite sets (Example 2.5)
– were either 0 or 1. And indeed, these datatypes share the same linear structure.

Stepping away from linear structures, we now consider binary trees, specified by:

data Tree [A : SET] : SET where

Tree A ∋ leaf

| node (lb :Tree A)(a :A)(rb :Tree A)
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The family of operations (written OpTree) is essentially the same as OpList for lists: an
operation is either a leaf or an A-indexed family of node a operations. As for lists, the
indexing being trivial, the typing is trivial as well.

The structural difference between trees and, say, lists is revealed by the arities. If the
arity of leaf is null (and could thus be mapped to nil), the arity of the constructor node a is
2, i.e. 1+1:

ArTree (op :OpTree ∗) : SET

ArTree (injl ∗) 7→ 0
ArTree (injr a) 7→ 1+1

This makes the operation node a structurally incompatible with either nil (arity null)
or cons a (arity one). Incompatible arities account for structurally incompatible datatypes.
Again, we leave it to the reader to work out the full signature from these indications.

△

2.7 Remark (Variation on a theme). The above tree data-structure admits many data-logics.
In particular, its type can be indexed to account for various balancing strategies. One
example is the type of red-black trees (Example 2.8). Another example would be the type
of AVL trees. We leave it to the reader to work out the signature of their favorite brand
of balanced tree. Once again, these signatures will share a similar (binarily-branching)
structure, specified by their arity, while the operations and typing vary.

♢

2.8 Example (Signature: red-black tree). Red-black trees are indexed over an enumerated
type of colors

data Color : SET where

Color ∋ black

| red

and natural numbers, which counts the depth in terms of black nodes.
Red-black trees are built from black leaves (at depth 0), red nodes whose children are

necessarily black nodes of equal depth, and black nodes whose children can be of any color
as long as their depth is equal:

data RBT [A : SET](c :Color)(n :Nat) : SET where

RBT Ablack 0 ∋ leaf

RBT Ablack (suc n) ∋ nodeB (cl ,cr :Color)(lb :RBT A cl n)(a :A)(rb :RBT A cr n)
RBT A red (suc n) ∋ nodeR (lb :RBT Ablack (suc n))(a :A)(rb :RBT Ablack (suc n))

The corresponding signature is thus sorted by the product Color×Nat. The choice of
operations depends on the current color and depth:

• at depth zero, there is only one black leaf (and no red operation),

• at depth suc n, there is an A-indexed family of red nodes

• at depth suc n, there is an A-indexed family of black nodes for each possible pair of
children’s colors
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In terms of signature, this translates to:

OpRBT (cn :Color×Nat) : SET

OpRBT (red,0) 7→ 0
OpRBT (black,0) 7→ 1
OpRBT (red,suc n) 7→ A
OpRBT (black,suc n) 7→ Color×Color×A

As for the binary tree (Example 2.6), the leaf has arity 0 while the nodes (red or black)
have arity 2:

ArRBT (cn :Color×Nat) (op :OpRBT cn) : SET

ArRBT (black,0) ∗ 7→ 0
ArRBT (red,suc n) a 7→ 1+1
ArRBT (black,suc n) (cl ,(cr,a)) 7→ 1+1

Finally, the typing implements the balancing strategy by ensuring that children of red
nodes are black nodes (of same depth) while children of black nodes are of preceding
depth, following the color specified by the operation:

TyRBT (cn :Color×Nat) (op :OpRBT cn) (ar :ArRBT cn op) : Color×Nat

TyRBT (red,suc n) a p 7→ (black,suc n)
TyRBT (black,suc n) (cl ,(cr,a)) (injl ∗) 7→ (cl ,n)
TyRBT (black,suc n) (cl ,(cr,a)) (injr ∗) 7→ (cr,n)

△

Many-sorted signatures provide a uniform framework to study indexing, abstracting
over its many syntactic embodiment. In terms of expressive power, it models exactly the
inductive families of extensional type theory. Indeed, our presentation is derived from
the indexed variant of W-types (Martin-Löf, 1984) of Petersson and Synek (1989), using
insights from Abbott’s work on W-types (Abbott, 2003). GADTs can also be reduced to
inductive families (Hamana & Fiore, 2011). Similarly, Atkey et al. (2012) have given a
categorical model of (algebraic) refinement types, while the present author has further
related the categorical model with polynomial functors (Dagand & McBride, 2013).

Because of its expressive power, one might be tempted to use the above formalism of
signatures as a basis for implementation. While it certainly is a convenient mathematical
object to deal with, it makes for a rather ineffective object from an intensional standpoint.
The heart of the matter stands in its inherently extensional nature: to describe a first-order
object, such as natural numbers (Example 2.3), we had to resort to a higher-order encoding.
This representation is unfit for an intensional theory (Goguen & Luo, 1993; Dybjer, 1997).

3 Ornaments for domain-specific data-logics

Using the language of signatures, we shall now boil ornaments down to the notion of
“structure-preserving transformations of datatypes”. Our motivation is to express the log-
ical enrichment of datatypes by domain-specific logics, whilst enforcing the stability of
the underlying data-structure. In effect, we shall describe a meta-programming pattern by
which one can bake domain-specific invariants into datatypes.
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The crux of this section consists in pinpointing the informal concept of “structure” of
a datatype to the formal notion of arity of a signature. Indeed, the arity of a signature
corresponds exactly to the underlying data-structure of a datatype: it specifies its recursive
skeleton, which we intend to keep invariant. For instance, it distinguishes the data-structure
of ListA and Tree A: the former has arity 0 or 1, whilst the latter has arity 0 or 2. Both carry
the same payload (elements of type A), but under distinct structures.

Having the same recursive structures does not forbid having different operations: binary
trees (Example 2.6) and red-black trees (Example 2.8) share the same binarily-branching
structure, even if the latter has more constructors. Invariance of structure also supports
distinct typing disciplines: the datatype of lists (Example 2.4) and vectors (Example 2.1)
share the same linear structure, even if vectors guarantee a stronger invariant concerning
their length.

We will begin our study with a naive model (Section 3.1) constructed from the opera-
tional description of ornaments. This operational bias should help programmers come to
grips with the abstract framework of signatures. To get to the essence of ornaments, we
then refine this model to an equivalent but conceptually simpler presentation (Section 3.2)
centered around the idea of structural invariance.

3.1 A naive model of ornaments

Our first model attacks the problem through a constructive angle: from a signature, what
information can be inserted that preserves the original structure? Concretely, from a signa-
ture Σ = Op�TyAr indexed by a set I, we shall give the necessary ingredients to build an
(ornamented) signature1 Σ† =Op† �Ty†

Ar† indexed by a set I†, sharing the structure of Σ.
The first requirement arises from sorts: to express the fact that the I†-indices of Σ† refine

the I-indices of Σ, we require a (total) reindexing function

u : I†→ I

This function establishes a refinement in the sense that several indices i† :I† can be mapped
to the same index i : I: the I†-indexing is thus more discriminating than the I-indexing.

On operations, we allow the ornamented signature to extend the operation of Σ through

extend :(i† : I†)→Op (u i†)→SET

which lets us describe the extended operations

Op† (i† : I†) : SET

Op† i† 7→ (op :Op (u i†))×extend i† op

Having clearly separated the extension from the original operations, we then trivially
define the arity of the ornamented signature by

Ar† (op† :Op† i†) : SET

Ar† op† 7→ Ar (π0 op†)

1 To identify the ornamented signature as “decorated”, we mark its components with a superscript
−†. This is nothing but an informal, notational convention.
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guaranteeing, by construction, that Ar† is equal to Ar, i.e. we have:

∀op† :Op† i†.Ar (π0 op†) = Ar† op†

Finally, we can refine the sorts of the recursive arguments, provided that the refined sort
is related to the underlying sort through u. The refinement is given by a function

refine :(i† : I†)(e :extend i† op)→Ar op→ I†

which is subject to the coherence condition:

coh :∀i† : I†.∀e :extend i† op.∀ar :Ar op.u (refine i† e ar) = Ty ar

Remark that refine corresponds exactly to the typing discipline of the signature Σ†, i.e.

Ty† (i† : I†) (op† :Op† i†) (ar† :Ar† op†) : I†

Ty† i† (op,e) ar† 7→ refine i† e ar†

An ornament can thus be seen as the data of a refinement function u, an extension extend,
a typing refinement refine and its associated coherence condition coh:

COrn (Σ :Sig I) (u : I†→ I) : SET1

COrn (Op�TyAr)u 7→


extend:(i† : I†)→Op (u i†)→SET

refine :(i† : I†)(e :extend i† op)→Ar op→ I†

coh :∀i† : I†.∀e :extend i† op.∀ar :Ar op.
u (refine i† e ar) = Ty ar

As for signatures, we write the tuple (extend, refine,coh) with the more lightweight
notation extend�refine, leaving aside the computationally-irrelevant coherence proof coh.

In parallel, we have given their interpretation as an ornamented signature Σ†. Ornaments
thus interpret to signatures:

J(τ :COrn Op�TyAr)KCOrn : Sig I†Jextend�refineKCOrn 7→ (λi†.(op :Op (u i†))×extend i† op)�refine(λ(op,e).Ar op)

3.1 Example (Ornamenting natural numbers to lists). Let A : SET. The ornamentation of
natural numbers (Example 2.3) to describe lists (Example 2.4) is an example of a purely
extensive ornament: no refinement is introduced on the indices since they are both trivial.
We only extend the suc operation of natural numbers by asking for an inhabitant of A:

extendList (∗ :1) (op :OpNat ∗) : SET

extendList ∗ (injl ∗) 7→ 1
extendList ∗ (injr ∗) 7→ A

The typing discipline being the obvious one

refineList (∗ :1) (e :extendList ∗op) (ar :ArNat op) : 1
refineList ∗ e ar 7→ ∗

and the coherence condition trivial.
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We easily check that the signature thus described (after interpretation with J− KCOrn)
corresponds to the signature of lists, up to type isomorphisms:JJextendList�refineListKCOrnKX

= J(λ∗.(op :OpNat ∗)×extendList ∗op)�refineList(λ(op,e).ArNat op)KX
= λ∗.(op† :(op :OpNat ∗)×extendList ∗op)×((ar :ArNat (π0 op†))→X ∗)
= λ∗.(op† :(op :1+1)×extendList ∗op)×((ar :ArNat (π0 op†))→X ∗)
∼= λ∗.(op :1+A)×((ar :ArList op)→X ∗)
= λ∗.(op :OpList)×((ar :ArList op)→X ∗)

△

3.2 Example (Ornamenting natural numbers to finite sets). Natural numbers can also be
ornamented to finite sets (Example 2.5). This ornament both extends the operations of
natural numbers and refines their type to Nat.

The extension consists in enforcing that the input index n :Nat is strictly-positive

extendFin (n :Nat) (op :OpNat ∗) : SET

extendFin n op 7→ (n′ :Nat)×n = suc n′

since no operation is available at index 0.
In the case of the fsuc constructor, we must then specify the indexing discipline by

asking the recursive argument to have sort n− 1. Knowing that n = suc n′, we define the
sort by:

refineFin (n :Nat) (op :OpNat ∗) (e :extendFin n op) (ar :ArNat op) : Nat

refineFin n (injr ∗) (n′,q) ∗ 7→ n′

Again, we easily check that the signature thus described (after interpretation with J−KCOrn) corresponds to the signature of finite sets, up to type isomorphisms.
△

3.3 Example. Other examples include various ornamentations of binary trees, either spec-
ifying where data are stored in the structure (at the leaves, at the nodes, or both) but also
various balancing strategies (AVL, red-black, . . . ).

△

3.2 Ornaments as Cartesian morphisms

The model introduced in the previous Section suffers from a very operational bias: it
focuses on describing how to build an ornamented signature. The reason why an object
ornaments another is not yet clear. This bias leads to a definition focused on signatures,
rather than a particular (structural) relation between them.

We would like to formalize our intuition that a signature ornaments another if they share
a similar recursive structure. We are going to massage this initial model to account for such
an invariant. Doing so, we shall obtain an algebraic characterization of ornaments, more
natural and suited to abstract reasoning.

In Section 2, we gave an interpretation of signatures in terms of functors. One is then
tempted to look for a notion of morphism of signature accounting for the natural trans-
formations between these functors (Abbott, 2003; Morris, 2007). In our setting, we are
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interested in a more specific notion, where the arities of both signatures are equal. This
amounts to having a Cartesian morphism between the signatures (Abbott et al., 2005;
Gambino & Kock, 2013). Let us recall the definition of Cartesian morphisms and their
interpretation as Cartesian natural transformations.

3.4 Definition (Cartesian morphism of signature (Gambino & Kock, 2013)). Let Σ† ≜
Op† �Ty†

Ar† :Sig I† and Σ ≜ Op�TyAr :Sig I be two signatures, indexed respectively by
I† and I. Let u : I†→ I be the function mapping the indices of the former to the latter.

A Cartesian morphism from Σ† to Σ is given by a morphism on operations σ that
translates the Σ†-operations into Σ-operations

σ :Op† i†→Op (u i†)

together with a proof ρ , stating that the arities of both signatures are equal through σ

ρ :∀op† :Op† i†.Ar (σ op†) = Ar† op†

and a proof coh stating that the indexing of Σ† is coherent with respect to the indexing of
Σ through u:

coh :∀op† :Op† i†. ∀ar :Ar (σ op†).u (Ty† ar) = Ty ar

For conciseness, we write a Cartesian morphism (σ ,ρ,coh) simply as σ , thus eluding
the two proofs, whose computational content is void. The class of Cartesian morphisms

from Σ† to Σ along a reindexing u is written Σ†
u

=⇒c Σ.
▽

3.5 Definition (Interpretation of a Cartesian morphism). Following this intuition, the in-
terpretation of Cartesian morphism defines a natural transformation from JΣ†K (X ◦u) i† toJΣKX (u i†):

J(σ :Σ†
u

=⇒c Σ)K (xs :JΣ†K (X ◦u) i†) : JΣKX (u i†)JσK (op†,Xs
)
7→

(
σ op†,Xs

)
▽

3.6 Remark. The equality on arities and the coherence condition are implicitly used in the
definition of the interpretation to match up the type of the recursive arguments given by Xs.
Indeed, the argument Xs has type (ar† :Ar† op†)→(X ◦u)(Ty† ar†). By ρ , we can transport
its argument to Ar (σ op†) while, by coh, we can transport its result to X (Ty ar). We thus
obtain a function (ar :Ar (σ op†))→X (Tyar), mapping the Σ-arity to recursive arguments
in X .

♢
3.7 Remark (Inverse image construction). In type theory, a function f :A → B can be seen
as a predicate over B: the set A is then understood as a collection of properties of the
B-elements and the function f mapping the A-properties to the B-elements. The inverse
image f −1 : B→SET collects the A-properties associated to each B-elements. It can be
defined with an inductive family

data [ f :A→B]−1 (b :B) : SET where

f −1 (b= f a) ∋ inv (a :A)
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or, equivalently, with a Σ-type:

( f :A→B)−1 (b :B) : SET

f −1 b 7→ (a :A)× f a = b

Conversely, from a predicate P :B→SET, we can build a function π0 : (b :B)×P b→B.
These two transformations are inverse to each other: this is the type-theoretic incarnation
of the equivalence between the category SETB of predicates over B and the slice category
SET/B.

♢

3.8 Example (Cartesian morphism from natural numbers to lists). The equivalence be-
tween the naive model of ornaments and the Cartesian morphism is nothing but an instance
of that isomorphism. To gain some intuition on the transformation, let us consider the
ornament of natural numbers to lists (Example 3.1). For A : SET, we have specified its
extension as:

extendList (op :1+1) : SET

extendList (injl ∗) 7→ 1
extendList (injr ∗) 7→ A

In fact, extendList :1+1→SET can be understood as the inverse image of the (equiva-
lent) function

σList (op :1+A) : 1+1
σList (injl ∗) 7→ injl ∗
σList (injr a) 7→ injr ∗

that is:

extendList ∼= σList
−1

We are then left to check that the arity of natural numbers matches the arity of lists
through σList and that the typing (which is trivial) is coherent. We have defined a Cartesian
morphism from natural numbers to lists.

△

This construction generalizes to any ornament. Provided a Cartesian morphism (σ ,ρ,coh)
from Σ† to Σ, we obtain an ornament σ −1 �Ty†

by taking extend≜ σ −1, refine≜Ty†, and
coh ≜ coh. Conversely, provided an ornament extend�refine of a signature Σ, we obtain a
Cartesian morphism from Σ† ≜ Jextend�refineKCOrn to Σ by taking σ ≜ π0. The arity and
coherence of both signatures is respected, by construction.

Whilst the naive model of ornaments relies on an operational intuition of ornaments (as
“introducing more information”), the Cartesian model puts the emphasis on the structure-
preserving nature of the transformation, through the condition on arities ρ . The notion
of extension is carried by the morphism on operations σ , which describes how the extra-
information of the ornamented signature is lost by going to the target signature. The notion
of typing refinement is captured, as for the naive model, by the reindexing function u and
the coherence condition coh.

This presentation gives a simple criterion to decide whether a datatype is the ornament
of another: we must be able to relate their operations in such a way that their arity matches.
Hence, all the linear structures – such as List, Fin, Vec, etc.– can be seen as ornaments of



ZU064-05-FPR paper 15 December 2016 20:19

The Essence of Ornaments 17

natural numbers: operations of arity null can be mapped to the operation 0, while operations
of arity 1 can be mapped to the operation suc.

A non-example of ornament are lists and binary trees: we are unable to map the opera-
tions cons a (of arity 1) in the signature of lists to an operation of arity 1 in the signature of
binary trees. Conversely, there is no operation of arity 2 in the signature of lists to which
we could map the operation node a of the signature of binary trees.

Another non-example of ornament are AVL trees and red-black trees. While both signa-
tures share a binarily-branching structure, their indexing disciplines are incompatible: the
former is not a refinement of the latter, nor conversely.

Discussion: These two models of ornaments – naive or Cartesian – are complementary.
The naive model is subject to an operational bias: it is in fact at the heart of the original
presentation of ornaments by McBride (2011). In that original presentation, Cartesian mor-
phisms appear as a side-result of the construction of the ornamental algebra (Section 4), the
algebra projecting the ornamented type to its underlying type. As a result, this presentation
is better suited to give concrete examples. Conversely, the categorical model of Dagand
and McBride (2013) revolves around the Cartesian presentation, which is mathematically
more convenient but operationally imprecise. The equivalence between the universe-based
presentation of ornaments and the Cartesian one was formally established in this latter
paper.

4 A Calculus of Data-structure

By characterizing ornaments as structure-preserving transformations, the Cartesian pre-
sentation gives us a semantic criterion for identifying ornaments. Being expressed in terms
of morphisms, it also offers a compositional toolbox. It is in fact a genuine calculus of
data-structure that is open to us. To further stir up the reader’s curiosity, let us consider
a few concrete examples. We voluntarily adopt a descriptive approach, using our fresh
understanding of ornaments to identify ornamental patterns seen in the wild. For each
example we provide, one can easily belabor the definition of the Cartesian morphism
witnessing the existence of an ornament. We shall leave aside their generalization and
theoretical justification, which can be found elsewhere (Dagand & McBride, 2013) in a
categorical setting: finding a satisfactory prescriptive presentation of ornaments is still
subject of active research, a question to which we shall come back in Section 5.

Ornamental algebra: We can always recover the raw datatype underpinning an orna-
mented type. For example, the Cartesian morphism mapping lists to naturals (Example 3.8)
yields a natural transformation

JσListK :∀X .JΣListKX ∗→JΣNatKX ∗

that we can post-compose with the initial algebra of lists at Nat, thus obtaining the so-
called ornamental algebra

forgetσList : JΣListKNat∗→Nat

forgetσList 7→ µ ◦(JσListKNat)



ZU064-05-FPR paper 15 December 2016 20:19

18 Dagand

In effect, this algebra computes the length of a list, i.e. it forgets the extra data inserted
by the ornament.

Vertical and horizontal composition: Like the natural transformations they represent,
Cartesian morphisms support both vertical and horizontal composition. Vertical composi-
tion allows us to fuse two successive ornamentation of a datatype into a single one. For
example, full binary trees (i.e., binary trees storing data at the nodes and leaves)

data Full [A : SET] : SET where

Full A ∋ leaf (a :A)
| node (lb :Full A)(a :A)(rb :Full A)

are an ornament (through an extension) of node binary trees (i.e., binary trees storing data
at the nodes, as in Example 2.6) while perfect binary trees (i.e., trees for which all the
leaves have the same depth)

data Perfect [A : SET](n :Nat) : SET where

Perfect A 0 ∋ leaf (a :A)
Perfect A (suc n) ∋ node (lb :Perfect A n)(a :A)(rb :Perfect A n)

are an ornament (through a refinement of indices) of full binary trees. By vertical compo-
sition, we deduce that perfect binary trees ornament node binary trees.

Horizontal composition lets us combine two ornaments (and, thus, four signatures) into
a single one relating the composition of the underlying signatures. For example, we have
that vectors (Example 2.1) ornaments (through a refinement of indices) lists (Example 2.4)
by enforcing the length invariant. We also have that the the Nat-indexed functor F† ≜
Xn 7→ Xn×Xsuc n+Xsuc n×Xn ornaments the 1-indexed functor F ≜ X 7→ X ∗×X ∗. By
horizontal composition, we deduce that balanced binary trees

data BST [A : SET](n :Nat) : SET where

BST A 0 ∋ leaf

BST A (suc n) ∋ nodeL (lb :BST A (suc n))(a :A)(rb :BST A n)
BST A (suc n) ∋ nodeR (lb :BST A n)(a :A)(rb :BST A (suc n))

ornament node binary trees by noticing that the signature of BST amounts to the composi-
tion of the signature of vectors and the functor F† while the signature of Tree amounts to
the composition of the signature of lists and the functor F .

Pullback: Given two ornaments of the same signature, we can combine both ornamenta-
tions into a single signature. This amounts to taking the fibred product of the two Cartesian
morphisms. For example, bounded lists

data BList [A : SET](n :Nat) : SET where

BList A 0 ∋
BList A (suc n) ∋ nil

BList A (suc n) ∋ cons (a :A)(vs :BList A n)

ornament natural numbers by combining the ornamentation of natural numbers into lists
(Example 3.1) and the ornamentation of natural numbers into finite sets (Example 3.2). We
thus obtain a type of lists indexed by n :Nat and whose length is at most n (unlike vectors,
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whose length is precisely n). A typical use-case for bounded lists is the dependently-typed
filter on vectors, whose type would be VecAn→(A→2)→BList A n

Algebraic ornament: Provided a recursive function (presented as a catamorphism) over
an inductive type, the algebraic ornament indexes the datatype by the result of the function.
The canonical example of an algebraic ornament is due to McBride (2011): consider a
datatype of arithmetic expressions

data Expr : SET where

Expr ∋ const (n :Nat)
Expr ∋ add (d,e :Expr)

for which we have defined its denotation by means of a catamorphism

eval (e :Expr) : Nat

eval e 7→ Lαeval eM
αeval (xs :JΣExprKNat) : Nat

αeval (’const n) 7→ n
αeval (’add m n) 7→ m+n

where, by convention, we write ’constr the constructor of the signature functor correspond-
ing to the datatype constructor constr.

The algebraic ornament enables us to fuse the algebra of the catamorphism as a static
typing discipline for the datatype, thus yielding the type of expressions indexed by their
semantics:

data SemExpr (k :Nat) : SET where

SemExpr k ∋ const (n :Nat)(q :k = n)
SemExpr k ∋ add (m n :Nat)(d :SemExpr m)(e :SemExpr n)(q :k = m+n)

Algebraic ornaments are characterized by a coherence property, stating that the orna-
mented type represents exactly the elements of the base type whose denotation is given
by the index. For example, the coherence of algebraic ornaments establishes the following
isomorphism between Expr and SemExpr for any index k :Nat:

SemExpr k ∼= (e :Expr)×eval e = k

Relational ornament: The existence of catamorphisms arise from the fact that polyno-
mial functors admit an initial algebra in the category SET, where morphisms are total
functions. In fact, this result can be generalized to the category Rel, where morphisms
are binary relations (Fumex, 2012). As demonstrated by Ko and Gibbons (2013), this
observation translates into relational ornaments, by which one bakes recursively-defined
predicates into a typing discipline.

For example, we can recursively define the relation m<n through a catamorphism:

< (m :Nat) (n :Nat) : SET

< m n 7→ Lα<Mm n

α< (xs :JΣNatKNat) (n :Nat) : SET

α< ’0 n 7→ (k :Nat)×n = suc k
α< (’sucm) n 7→ n = suc m

Thanks to relational ornaments, we can integrate this relation as a typing discipline over
natural numbers: this is precisely defining the type of finite sets (Example 2.5), with the
added benefit that we obtain, through the coherence property, an isomorphism for any index
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n :Nat between the inductive family and a subset of the natural numbers

Fin n ∼= (m :Nat)×m<n

Ornaments being compositional, we can combine algebraic and relational ornaments
in a straightforward manner. For example, let us consider the type of well-sized stack
expressions (Chlipala, 2013)

data InstrIO (i :Nat)(o :Nat) : SET where

InstrIO i (suc i) ∋ CONST (k :Nat)
InstrIO (suc (suc i)) i ∋ PLUS

whose index i describes the expected input stack size while the index o describes the
resulting output stack size. We notice that the output index o can be recursively computed
from the input index and the constructors. Therefore, we can see InstrIO as the ornament
of the type

data InstrI (i :Nat) : SET where

InstrI i ∋ CONST (k :Nat)
InstrI (suc (suc i)) ∋ PLUS

by the algebra

size (c : InstrI i) : Nat

size c 7→ LαsizeM c

αsize (i :Nat) (c :JΣInstrIKNat) : Nat

αsize i (’CONST k) 7→ suc i
αsize (suc (suc i)) ’PLUS 7→ suc i

However, the type InstrI itself can be seen as the ornament of the non-indexed datatype

data Instr : SET where

Instr ∋ CONST (k :Nat)
| PLUS

by the relational algebra

valid (c : Instr) (i :Nat) : SET

valid c i 7→ LαvalidM c i

αvalid (c :JΣInstrIKNat) (i :Nat) : Nat

αvalid (’CONST k) i 7→ 1
αvalid ’PLUS 0 7→ 0
αvalid ’PLUS (suc 0) 7→ 0
αvalid ’PLUS (suc (suc i)) 7→ 1

which ensures that the input index for the PLUS constructor is necessarily of the form
suc (suc i). By composition of ornament, we deduce that the precisely-indexed InstrIO

type ornaments the non-indexed Instr datatype.

Reornament: Every ornament induces an ornamental algebra over the ornamented type
while every algebra induces an algebraic ornament. By combining both constructions, we
obtain the algebraic ornament by the ornamental algebra (McBride, 2011), or reornament
(Dagand & McBride, 2012) for short, which consists in an ornamented datatype indexed
by its underlying elements. The canonical example of reornament is the type of vectors
(Example 2.1), which can be seen as the algebraic ornament of lists (seen as ornament of
natural numbers, as in Example 3.1) by the ornamental algebra JσListK that computes the
length of a list.
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Interestingly, the ornament from which we compute the reornament can be obtained by
any of the compositional means available to us. For example, we observe that the inductive
comparison predicate

data (m :Nat)<(n :Nat) : SET where

m<(suc n) ∋ lt-z-s

m<(suc n) ∋ lt-s-s (q :m<n)
corresponds to the reornament of the type of finite sets Fin n, seen as a (relational) ornament
of Nat: the index m of the inductive predicate m<n corresponds precisely to the integer
underpinning the inhabitants of the type Fin n.

Reindexing: Ornaments can also solely refine the indexing strategy of an inductive family.
Given an inductive family indexed by a type I and a function refining its index (i.e., a func-
tion of type I†→ I), we obtain an inductive family indexed by I† through reindexing. For
example, we might be interested in the subset of arithmetic expressions whose denotation
is a strictly-positive number

data SemExpr+ (k :Nat∗) : SET where

SemExpr+ k ∋ const (n :Nat)(q : toNat k = n)
| add (m n :Nat∗)(d :SemExpr+ m)(e :SemExpr+ n)

(q : toNat k = toNat m+toNat n)

where toNat :Nat∗→Nat is the embedding function from the strictly-positive subset of
natural numbers to natural numbers. SemExpr+ is in fact merely a reindexing of the induc-
tive family SemExpr along the function toNat.

Derivative: Whilst we have focused our presentation on the combinatorics of ornaments,
some operations on datatypes also carry on to operations on ornaments. For example, the
derivative of a data-type – from which one obtains the Zipper (Huet, 1997) – behaves
functorially over ornaments (Dagand & McBride, 2013): if a datatype ornaments another,
then its derivative ornaments the derivative of the latter. For example, we have that red-
black trees (Example 2.8) ornament node binary trees (Example 2.6). We therefore deduce
that the derivative of red-black tree

data ∂RBT [A : SET][RBT :Color→SET] : SET where

∂RBTblack red ∋ ∂nodeRL (lb :RBTblack)(a :A)
∂RBTblack red ∋ ∂nodeRR (a :A)(rb :RBTblack)

∂RBT c black ∋ ∂nodeBL (lb :RBT c)(a :A)
∂RBT c black ∋ ∂nodeBR (a :A)(rb :RBT c)

ornaments the derivative of binary tree

data ∂Tree [A : SET][Tree : SET] : SET where

∂Tree ∋ ∂nodeL (lb :Tree)(a :A)
| ∂nodeR (a :A)(rb :Tree)

Numerical representations A mostly untapped source of ornaments is the realm of nu-
merical representations (Knuth, 1981): the work of Okasaki (1998) and Hinze (1998) sug-
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gests that numerical representations form an interesting class of ornaments, from which one
would build data-structures from numerical systems, taking advantage of their structural
ties to determine their algorithmic complexity. Ko (2014) gave an extensive treatment
of binomial heaps, which correspond to a binary representation system. To the best of
my knowledge, a systematic treatment of numerical representation through the lenses of
ornaments remains to be done.

5 Past, Present, and Future of Ornaments

The categorical presentation of Dagand and McBride (2013) generalizes the present article,
working in any locally Cartesian-closed category (Seely, 1983) and manipulating polyno-
mial functors (Gambino & Kock, 2013). It also carefully establishes several equivalences
between the type theoretic notions and their categorical models. For pedagogical purposes,
the present article is exclusively developed in type theory (which morally corresponds to
the internal language of a locally Cartesian-closed category). This allows us to bridge the
gap between an operational understanding of ornaments and their mathematical structure,
thus appealing to programmers. The purely categorical presentation (Dagand & McBride,
2013) provides the proofs which we have left out in this article. In particular, the adequacy
of our model of ornaments and the validity of their algebra are taken for granted here.

In effect, this article provides a middle-ground between the type theoretic presentation
of McBride (2011) and the categorical presentation of Dagand and McBride (2013). The
type theoretic presentation, further extended by Ko and Gibbons (2011) and Dagand and
McBride (2012), benefits from its intensionality: it is computationally effective. However,
its syntactic nature impedes conceptual clarity. Case in point: each of the aforementioned
articles start by introducing a customized universe of ornaments. Indeed, ornaments are
tightly coupled with the underlying universe of datatypes. Our more extensional presenta-
tion allows us to give a crisp definition of ornaments as structure-preserving transforma-
tions, independently of the actual presentation of datatypes.

Nonetheless, the importance of the type theoretic approach should not be underesti-
mated: its syntactic nature allows us to experiment with the challenge of offering ornaments
in a programming environment. In this context, much of the prescriptive treatment of
ornaments remain to be done. While we have observed many incarnations of the algebra of
ornaments in Section 4, we lack a high-level language to build these artifacts. Currently, we
are lead to directly (and tediously) manipulate signatures and their algebras. For instance,
we had to manually write algebras to obtain algebraic or relational ornaments, which would
hardly be acceptable in a user-friendly environment.

Ornaments also aspire to be a key component in the non-dependent programmer’s tool-
box. The work of William et al. (2014) puts ornaments in practice in the context of a
purely functional subset of the OCaml language, taking a pragmatic stance. It explores
various applications of ornaments, ranging from code transformation to semi-automated
refactoring. While pragmatism imposes several restrictions on how ornaments can be pre-
sented to the users, the theoretical framework developed in this article provides a blueprint
through which to study and compare the restrictions that arise in practice.

Moving upward on the dependency spectrum, ornaments would also be well-suited to
functional languages offering GADTs. Datatypes being meta-theoretical objects in those
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systems, this raises some interesting questions in terms of implementation: in line with the
work of William et al., a purely syntactic treatment would be necessary. Beyond datatypes,
programmers are also interested in transporting functions across ornaments: having imple-
mented the addition of natural numbers and presented lists as ornaments of numbers, one
would like to be able to “derive” the concatenation of lists from addition. If the theoretical
aspects have been partially treated from a semantic standpoint (Dagand & McBride, 2012),
a more syntactic (and practical) treatment is still in its infancy (Williams et al., 2014).

Overall, ornaments offer a controlled form of meta-programming over datatypes. Using
the algebra of ornaments, we can build and combine datatypes in a compositional manner.
The first promise of ornaments is thus to free the programmer from most of the burden of
defining domain-specific data-logics over general-purpose data-structures. In this context,
it makes sense to restrict ourselves to structure-preserving transformations: because they
preserve the recursive structure of datatypes, we can relate the functions defined recursively
over such datatypes. This observation is at the heart of numerical representations, in which
the complexity of, say, merging two data-structures boils down to the complexity of adding
two numbers in the corresponding numerical system. The second promise of ornaments is
that we can help programmers in adapting library-provided functions to account for their
domain-specific invariants while preserving their computational behavior.

Ornaments are still at an early stage of development: we have yet to fulfill the above
promises in a user-friendly environment while much of the applications and algebraic
structure of ornaments remain to be discovered and exploited.

6 Conclusion

In this article, we have distilled the essence of ornaments. To do so, we first gave a model of
indexed datatypes based on many-sorted signatures. Adopting a more semantic approach
allowed us to embrace the many forms of indexing, ranging from GADTs to inductive
families. In this framework, we have characterized ornaments as structure-preserving trans-
formations of datatypes.

The formalism of many-sorted signatures benefits from being a type theoretic object,
yet being sufficiently abstract for our purposes. By its roots in type theory, it is effective
and makes for an interesting experimental platform. Its abstract nature allows us to reason
extensionally, which was a key ingredient in obtaining a simple model of ornaments.

By relating ornaments to Cartesian morphisms, we have shed a new light on the previous
works in type theory. Our emphasis on the extensional property of ornaments – preserving
the recursive structure – gives a simple, easily verifiable criterion for ornaments. We can
for instance easily determine whether a datatype is the ornament of another. Because
Cartesian morphisms are a standard mathematical object, we also benefit from a large body
of mathematical results, which then translate to interesting computational artifacts.

Throughout this article, our objective has been to reach a wider audience, beyond type
theoretic or category theoretic circles. In the process, we have stripped the presentation
of ornaments from its type theoretic specificities. The language of many-sorted signatures
provides a lingua franca to model the indexed datatypes of a large variety of programming
languages. They would also guide the translation of the concepts of ornaments back to
these languages.
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