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Abstract—Ornaments aim at taming the multiplication of
special-purpose datatypes in dependently typed programming
languages. In type theory, purpose is logic. By presenting
datatypes as the combination of a structure and a logic, or-
naments relate these special-purpose datatypes through their
common structure. In the original presentation, the concept of
ornament was introduced concretely for an example universe of
inductive families in type theory, but it was clear that the notion
was more general. This paper digs out the abstract notion of
ornaments in the form of a categorical model. As a necessary first
step, we abstract the universe of datatypes using the theory of
polynomial functors. We are then able to characterise ornaments
as cartesian morphisms between polynomial functors. We thus
gain access to powerful mathematical tools that shall help us
understand and develop ornaments. We shall also illustrate
the adequacy of our model. Firstly, we rephrase the standard
ornamental constructions into our framework. Thanks to its
conciseness, we gain a deeper understanding of the structures
at play. Secondly, we develop new ornamental constructions, by
translating categorical structures into type theoretic artefacts.

Index Terms—Type theory, category theory, inductive families.

I. INTRODUCTION

The theory of inductive types is generally understood as
the study of initial algebras in some appropriate category. A
datatype definition is abstracted away as a signature functor
that admits a least fixpoint. This naturally leads to the study of
polynomial functors [1], a class of functors that all admit an
initial algebra. These functors have been discovered and stud-
ied under many guises. In type theory, they were introduced
by Martin-Löf under the name of well-founded trees [2]–[4],
or W-types for short. Containers [5] and their indexed coun-
terparts [6] generalise these definitions to a fibrational setting.
Polynomial functors [1], [7] are the category theorists’ take
on containers, working in a locally cartesian-closed category.

There is a significant gap between this unified theoretical
framework and the implementations of inductive types: in
systems such as Coq [8] or Agda [9], datatypes are purely
syntactic artefacts. A piece of software, the positivity checker,
is responsible for checking that the definition entered by the
user is valid, i.e. does not introduce a paradox. The power
of the positivity checker depends on the bravery of its im-
plementers: for instance, Coq’s positivity checker is allegedly
simple, therefore safer, but rather restrictive. On the other
hand, Agda’s positivity checker is more powerful, hence more
complex, but also less trusted. For example, the latter checks
the positivity of functions in datatype declarations, while
the former conservatively rejects them. The more powerful

the positivity checker, the harder it is to relate the datatype
definitions to some functorial model.

An alternative presentation of inductive types is through a
universe construction [2], [10], [11]. The idea is to reflect the
grammar of polynomial functors into type theory itself. Having
internalised inductive types, we can formally manipulate them
and, for example, create new datatypes from old. The notion of
ornament [12] is an illustration of this approach. Ornaments
arise from the realisation that inductive families can be un-
derstood as the integration of a data-structure together with
a data-logic. The structure captures the dynamic, operational
behavior expected from the datatype. It corresponds to, say,
the choice between a list or a binary tree, which is governed
by performance considerations. The logic, on the other hand,
dictates the static invariants of the datatype. For example,
by indexing lists by their length, thus obtaining vectors, we
integrate a logic of length with the data. We can then take
an m × n matrix to be a plainly rectangular m-vector of n-
vectors, rather than a list of lists together with a proof that
measuring each length yields the same result.

In dependent type theory, logic is purpose: when solving a
problem, we want to bake the problem’s invariants into the
datatype we manipulate. Doing so, our code is correct by
construction. The same data-structure will be used for different
purposes and will therefore integrate as many logics: we assist
to a multiplication of datatypes, each built upon the same
structure. This hinders any form of code reuse and makes
libraries next to pointless: every task requires us to duplicate
entire libraries for our special-purpose datatypes.

Ornaments tame this issue by organising datatypes along
their structure: given a datatype, an ornament gives an effective
recipe to extend – introducing more information – and refine
– providing a more precise indexing – the initial datatype. Ap-
plying that recipe gives birth to a new datatype that shares the
same structure as the original datatype. Hence, ornaments let
us evolve datatypes with some special-purpose logic without
severing the structural ties between them. In an earlier work
[13], we have shown how that information can be used to
regain code reuse.

The initial presentation of ornaments and its subsequent
incarnation [12], [13] are however very syntactic and tightly
coupled with their respective universe of datatypes. We are
concerned that their syntactic nature obscures the rather simple
intuition governing these definitions. In this paper, we give a
semantic account of ornaments, thus exhibiting the underlying
structure of the original definitions. To do so, we adopt a



categorical approach and study ornaments in the framework
of polynomial functors. Our contributions are the following:
• In Section III, we formalise the connection between a

universe-based presentation of datatypes and the theory
of polynomial functors. In particular, we prove that the
functors represented by our universe are equivalent to
polynomial functors. This key result lets us move seam-
lessly from our concrete presentation of datatypes to the
more abstract polynomial functors.

• In Section IV, we give a categorical presentation of
ornaments as cartesian morphisms of polynomial func-
tors. This equivalence sheds some light on the original
definition of ornaments. It also connects ornaments to a
mathematical object that has been widely studied: we can
at last organise our universe of datatypes and ornaments
on them into a category – in fact a framed bicategory [14]
– and start looking for categorical structures that would
translate into interesting type theoretic objects.

• In Section V, we investigate the categorical structure
of ornaments. The contribution here is twofold. On one
hand, we translate the original, type theoretic construc-
tions – such as the ornamental algebra and the algebraic
ornament – in categorical terms and uncover the building
blocks out of which they were carved out. On the
other hand, we interpret the mathematical properties of
ornaments into type theory – such as the pullback of
ornaments – to discover meaningful software artefacts.

Being at the interface between type theory and category the-
ory, this paper targets both communities. To the type theorist,
we offer a more semantic account of ornaments and use the
intuition thus gained to introduce new type theoretic construc-
tions. To the category theorist, we present a type theory, i.e. a
programming language, that offers an interesting playground
for categorical ideas. Our approach can be summarised as
categorically structured programming. For practical reasons,
we do not work on categorical objects directly: instead, we
materialise these concepts through universes, thus reifying
categorical notions through computational objects. Ornaments
are merely an instance of that interplay between a categorical
concept – cartesian morphism of polynomial functor – and
an effective, type theoretic presentation – the universe of
ornaments. To help bridge the gap between type theory and
category theory, we have striven to provide the type theorist
with concrete examples of the categorical notions and the
category theorist with the computational intuition behind the
type theoretic objects1.

II. CATEGORICAL TOOLKIT

In this section, we recall a few definitions and results from
category theory that will be used throughout this paper. None
of these results are new – most of them are folklore – we shall
therefore not dwell on the details. However, to help readers
not familiar with these tools, we shall give many examples,
thus providing an intuition for these concepts.

1Detailed definitions, proofs, and further examples are given in a companion
technical report and in an Agda model, available on the first author’s website.

A. Locally cartesian-closed categories

Locally cartesian-closed categories (LCCC) were introduced
by Seely [15] to give a categorical model of (extensional)
dependent type theory. A key idea of that presentation is the
use of adjunctions to model Π-types and Σ-types.

Definition 1 (Locally cartesian-closed category): A locally
cartesian-closed category is a category E that is pullback
complete and such that, for f : E(X,Y ), each base change
functor ∆f :E/Y → E/X , defined by pullback along f , has a
right adjoint Πf .

Throughout this paper, we work in a locally cartesian-closed
category E with a terminal object 1E and sums. By construc-
tion, the base change functor has a left adjoint Σf = f ◦ .
We therefore have the adjunctions Σf a ∆f a Πf

The internal language of E corresponds to an extensional
type theory denoted SET, up to bureaucracy [16]. It comprises
a unit type denoted 1, sums denoted A+B, Σ-types denoted
(a : A)×B, Π-types denoted (a : A)→B, and equality is
extensional. We chose to work in an extensional model for
simplicity. However, the constructions presented in this paper
have been implemented in Agda, an intensional type theory.

B. Polynomials and polynomial functors

Polynomials [1], [7] provide a categorical model for in-
ductive families [10] in a LCCC. Polynomials themselves
are small, diagrammatic objects that admit a rich categorical
structure. They are then interpreted as strong functors – the
polynomial functors – between slices of E . In this section, we
shall illustrate the categorical definitions with the correspond-
ing notion on (indexed) container [4], [6], [17], an incarnation
of polynomials in the internal language SET.

Definition 2 (Polynomial [1, §1.1]): A polynomial is the
data of 3 morphisms f :B → A, s :B → I , and t :A→ J in E .
Conventionally, a polynomial is diagrammatically represented
by I s←− B f−→ A

t−→ J .
Application 1 (Container): In type theory, it is more con-

venient to work with (proof relevant) predicates rather than
arrows. Hence, inverting the arrow t : A → J , we obtain a
predicate S :J → SET – called the shapes. Similarly, inverting
f :B → A, we obtain a predicate P :∀j. S j → SET – called
the positions. The indexing map s remains unchanged but,
following conventional notation, we rename it n – the next
index function. We obtain the following definition:S :J→ SET

P :S j→ SET
n :P sh→ I

Note that, to remove clutter, we (implicitly) universally quan-
tify unbound type variables, such as j in the definition of P
or sh in the definition of n. The data of S, P , and n is called
a container and is denoted S�nP . The class of containers
indexed by I and J is denoted IContI,J .

Remark 1 (Intuition): Polynomials, and more directly con-
tainers, can be understood as multi-sorted signatures. The
indices specify the sorts. The shapes at a given index specify
the set of symbols at that sort. The positions specify the arity



NatCont ,

SNat (∗ :1) : SET
SNat ∗ 7→ 1 + 1

PNat (sh :SNat ∗) : SET
PNat (injl ∗) 7→ 0
PNat (injr ∗) 7→ 1

nNat (pos :PNat sh) : 1
nNat pos 7→ ∗

(a) Natural number

ListContA ,

SList (∗ :1) : SET
SList ∗ 7→ 1 +A

PList (sh :SList ∗) : SET
PList (injl ∗) 7→ 0
PList (injr a) 7→ 1

nList (pos :PList sh) : 1
nList pos 7→ ∗

(b) List

VecContA ,

SVec (n :Nat) : SET
SVec 0 7→ 1
SVec (sucn) 7→ A

PVec (n :Nat) (sh :SVec n) : SET
PVec 0 ∗ 7→ 0
PVec (sucn) a 7→ 1

nVec (n :Nat) (sh :SVec n) (pos :PVec pos) : Nat
nVec (sucn) a ∗ 7→ n

(c) Vector

Fig. 1. Examples of containers

of each symbol. The next index function specifies, for each
symbol, the sort of its arguments.

Definition 3 (Polynomial functor [1, §1.4]): We interpret a
polynomial F : I

s←− B
f−→ A

t−→ J into a functor,
conventionally denoted PF , between slices of E with the
construction E/I

∆s−→ E/B
Πf−→ E/A

Σt−→ E/J .
A functor F is called polynomial if it is isomorphic to the

interpretation of a polynomial, i.e. there exists s, f , and t such
that F ∼= ΣtΠf∆s.

Application 2 (Interpretation of container): Unfolding this
definition in the internal language, we interpret a container
as, first, a choice (Σ-type) of shape ; then, for each (Π-type)
position, a variable X whose sort is given by the next index
n for that position:

J(C :IContI,J)KCont (X :I→ SET) : J→ SET
JS�nP KCont X 7→ λj. (sh :S j)× ((pos :P sh)→X (n pos))

hence justifying the name polynomial functor: a polynomial
interprets into an S-indexed sum of monomials X taken at
some exponent pos :P sh, or put informally:

JS�nP KCont {Xi | i ∈ I} 7→

 ∑
sh∈Sj

∏
pos∈P sh

Xn pos | j ∈ J


Example 1 (Container: natural number): Natural numbers

are described by the signature functor X 7→ 1 + X . The
corresponding container is given in Fig. 1a. There are two
shapes, one to represent the 0 case, the other to represent the
successor case, suc. For the positions, none is offered by the 0
shape, while the suc shape offers one. Note that the signature
functor is not indexed: the container is therefore indexed by
the unit set and the next index is trivial.

Example 2 (Container: list): The signature functor describ-
ing a list of parameter A is X 7→ 1 +A×X . The container is
presented Fig. 1b. Note the similarity with natural numbers.
There are 1 + A shapes, i.e. either the empty list nil or the
list constructor cons of some a :A. There are no subsequent
position for the nil shape, while one position is offered by the
cons shapes. Indices are trivial, for lists are not indexed.

Example 3 (Container: vector): To give an example of
an indexed datatype, we consider vectors, i.e. lists in-
dexed by their length. The signature functor of vec-
tors is given by {Xn | n ∈ Nat} 7→ {n = 0 | n ∈ Nat} +

{A×Xn−1 | n ∈ Nat∗} where the empty vector nil requires
the length n to be 0, while the vector constructor cons must
have a length n of at least one and takes its recursive argument
X at index n− 1. The container representing this signature is
given Fig. 1c. At index 0, only the nil shape is available while
index sucn offers a choice of a :A shapes. As for lists, the nil
shape has no subsequent position while the cons shapes offer
one. It is necessary to compute the next index (i.e. the length
of the tail) only when the input index is sucn, in which case
the next index is n.

We leave it to the reader to verify that the interpretation of
NatCont (Example 1), ListCont (Example 2), and VecCont
(Example 3) are indeed equivalent to the signature functors we
aimed at representing. With this exercise, one gains a better
intuition of the respective contribution of shapes, positions,
and the next index to the encoding of signature functors.

Polynomials admit a general notion of morphism repre-
senting exactly the strong natural transformations between
polynomial functors [1, §3.8]. Here, we are concerned with the
cartesian morphisms, representing only those natural transfor-
mations that are cartesian – i.e. for which the naturality square
forms a pullback.

Definition 4 (Cartesian morphism [1, §3.14]): A cartesian
morphism from F : I

s′←− B
f ′

−→ A
t′−→ J to G : K

s←−
D

f−→ C
t−→ L is uniquely represented by the diagram:

I B A J

K D C L

u vα

Where the α is pulled back along f , as conventionally indi-
cated by the right angle symbol.

Application 3 (Cartesian morphism of containers): In the
internal language, a cartesian morphism from S′�n′

P ′ to
S�nP framed by u and v corresponds to the triple:σ :S′ j→S (v j)

ρ :∀sh′ :S′ j. P (σ sh′) = P ′ sh′

q :∀sh′ :S′ j. ∀pos :P (σ sh′). u (n′ pos) = n pos

The diagrammatic morphism α translates into an operation
on shapes, denoted σ. The pullback condition translates into
a proof ρ that the source positions are indeed obtained by



Polynomial Container Obtained by
t :A→ J S :J→ SET Inverse image
f :B → A P :S j→ SET Inverse image
s :B → I n :P sh→ I Identity
α :A→ C σ :S′ j→S (v j) Identity

Fig. 2. Translation polynomial/container

pulling back the target positions along σ. As for the indices,
the coherence condition q captures the commutativity of the
left square. Commutativity of the right square is ensured by
construction, since we reindex S by v in the definition of σ.

A cartesian morphism is denoted σ�c, leaving implicit the
proof obligations. The hom-set of cartesian morphisms from
S′�n′

P ′ to S�nP is denoted S′�n′
P ′

u
=⇒c

v
S�nP . Because

polynomials and containers conventionally use different nota-
tions, we sum-up the equivalences in Fig. 2.

Example 4 (Cartesian morphism): We build a cartesian
morphism from ListContA (Example 2) to NatCont (Exam-
ple 1) by mapping shapes of ListContA to shapes of NatCont:

σ�c :ListContA
id

=⇒c

id
NatCont where

σ (shl :SList ∗) : SNat ∗
σ (injl ∗) 7→ injl ∗ – nil to 0
σ (injr a) 7→ injr ∗ – cons a to suc

We are then left to check that positions are isomorphic: this
is indeed true, since, in the nil/0 case, there is no position
while, in the cons/suc case, there is only one position. The
coherence condition is trivially satisfied, since both containers
are indexed by 1. We shall relate this natural transformation
to the function computing the length of a list in Example 9.

We have seen that polynomials interpret to (polynomial)
functors. Similarly, cartesian morphisms interpret to cartesian
natural transformations [1, §3.8]. The interpretation of polyno-
mials is therefore extended to morphisms in the obvious way,
thus defining a (full and faithful) functor from polynomials to
polynomial functors.

C. Framed bicategory

We have resisted the urge of defining a category of poly-
nomials and polynomial functors. Such a category can be
defined for a given pair of indices I and J , with objects being
polynomials indexed by I and J (Definition 2) and morphisms
(Definition 4) specialised to the case where u = id : I → I
and v = id :J → J .

From there, we are naturally lead to organise polynomials
and their indices in a 2-category. However, this fails to capture
the fact that indices have a life of their own: it makes sense
to have morphisms between differently indexed functors, i.e.
between different slices of E . Indeed, morphisms between
indices – the objects – induce 1-morphisms.

Following Gambino and Kock [1], we organise polynomials
and their functors into the framed bicategories PolycE and
PolyFuncE . To gain some intuition for framed bicategories, we
unfold its definition on PolycE .

Definition 5 (Framed bicategory [14]): A framed bicate-
gory is a double category

D0 D1 D1 ×D0
D1

L

U

R

�

for which the functor (L,R) :D1 → D0 × D0 is a bifibration.
Example 5 (Framed bicategory PolycE [1, §3.13]): The

framed bicategory PolycE is defined by:
• Objects: indices, i.e. objects of E
• Vertical arrows: index morphisms, i.e. morphisms of E
• Horizontal arrows: polynomial indexed by I and J ,

respectively left and right frames
• Squares: cartesian morphism of polynomial reindexed by
u and v, respectively left and right frames.

That is, we take D0 , E and D1 ,
⊎
I,J Poly

c
E(I, J) for

which we define:
• The identity functor U that maps an index to the identity

polynomial at that index ;
• The left frame L that projects the source index I ;
• The right frame R that projects the target index J ;
• The composition � of polynomial functors.

The frames defined by L and R thus correspond to, respec-
tively, the left-hand side and right-hand side of polynomials
and polynomial morphisms. As for the bifibration structure,
consider a pair of morphism u, v :K → I, L→ J in the base
category E × E , we have:
• A cobase-change functor reindexing a polynomial P :

PolycE(I, J) to a polynomial (u, v)!P :PolycE(K,L) ;
• A base-change functor reindexing a polynomial P :

PolycE(K,L) to a polynomial (u, v)
∗
P :PolycE(I, J).

This extra-structure lets us transport polynomials across
frames: given a polynomial, we can reindex or op-reindex it
to any frame along a pair of index morphisms.

The interpretation functor is an equivalence of framed bicat-
egory between PolycE and the framed bicategory PolyFuncE [1,
Theorem 3.13]. We thus conflate the category of polynomials
PolycE and the category of polynomial functors PolyFuncE .
Polynomials are a “small” presentation of the larger functorial
objects. Since both categories are equivalent, we do not lose
expressive power by working in the small language.

III. INDUCTIVE FAMILIES IN TYPE THEORY

In this section, we set out to establish a formal connection
between a presentation of inductive families in type theory
and the categorical model of polynomial functors. On the
type theoretical side, we adopt the universe-based presentation
introduced by Chapman et al. [11]. Working on a universe
gives us a syntactic internalisation of inductive families within
type theory. Hence, we can manipulate and reason about
inductive families from within the type theory itself.

We recall the definition of the universe in Fig. 3. A Desc
code is a syntactic object describing a functor from SETI



data Desc [I : SET] : SET1 where
Desc I 3 ’var (i :I)

| ’1
| ’Π (S : SET) (T :S→Desc I)
| ’Σ (S : SET) (T :S→Desc I)

J(D :Desc I)K (X :I→ SET) : SET
J’var iK X 7→ X i
J’1K X 7→ 1
J’ΠS T K X 7→ (s :S)→ JT sKX
J’ΣS T K X 7→ (s :S)× JT sKX

idesc (I : SET) (J : SET) : SET1

idesc I J 7→ J→Desc I
J(D : idesc I J)K (X :I→ SET) : J→ SET
JDK X 7→ λj. JD jK X

Fig. 3. Universe of inductive families

to SET. To obtain this functor, we have to interpret the
code using J K . The reader will gain intuition for the codes
by looking at their interpretation, i.e. their semantics. To
describe functors from SETI to SETJ , we use the isomorphism
[SETI , SET]J ∼= [SETI , SETJ ]. Hence, in idesc, we pull the
J-index to the front and thus capture functors on slices of SET.
The interpretation J K extends pointwise to idesc. Inhabitants
of the idesc type are called descriptions. By construction, the
interpretation of a description is a strictly positive functor: for
a description D, the initial algebra always exists and is denoted
(µD, in :JDK µD → µD).

Definition 6 (Described functor): A functor is described if
it is isomorphic to the interpretation of a description.

Example 6 (Natural numbers): The signature functor of
natural numbers is described by:

NatD : idesc 1 1

NatD 7→ λ∗. ’Σ (1 + 1) λ

{
injl ∗ 7→ ’1
injr ∗ 7→ ’var ∗

The reader can check that the interpretation J K of this code
gives a functor isomorphic to the expected X 7→ 1 +X .

A. Descriptions are equivalent to polynomials

We can now prove the equivalence between described
functors and polynomial functors.

Lemma 1: The class of described functors is included in
the class of polynomial functors.

〈(D : idesc I J)〉 : IContI,J
〈D〉 7→ λj.Shape (D j)�λj. Index (D j)λj.Pos (D j) where

Shape (D :Desc I) : SET
Shape ’var i 7→ 1
Shape ’1 7→ 1
Shape ’ΠS T 7→ (s :S)→Shape (T s)
Shape ’ΣS T 7→ (s :S)×Shape (T s)

Pos (D :Desc I) (sh :ShapeD) : SET
Pos ’var i ∗ 7→ 1
Pos ’1 ∗ 7→ 0
Pos ’ΠS T f 7→ (s :S)×Pos (T s) (f s)
Pos ’ΣS T (s, t) 7→ Pos (T s) t

Index (D :Desc I) (pos :PosD sh) : I
Index ’var i ∗ 7→ i
Index ’ΠS T (s, pos) 7→ Index (T s) pos
Index ’ΣS T pos 7→ Index (T (π0 sh)) pos

Fig. 4. From descriptions to containers

Proof sketch: By induction over codes D, we show that
the interpretation JDK is (isomorphic to) a polynomial functor.

Lemma 2: The class of polynomial functors is included in
the class of described functors.

Proof sketch: Reindexing, its left and right adjoints
can be described by idesc codes, while composition can be
implemented by computation over codes. Described functors
are defined up to natural isomorphism. By Corollary 1.14
[1], the class of polynomial functors is the smallest class of
functors closed under reindexing, its adjunctions, composition,
and natural isomorphism. Therefore, the class of polynomial
functors is included in the class of described functors.

We conclude with the desired equivalence:
Proposition 1: The class of described functors corresponds

exactly to the class of polynomial functors.
The benefit of this algebraic approach is its flexibility with

respect to the universe definition: for practical purposes, we are
likely to introduce new Desc codes. However, the implemen-
tation of reindexing and its adjoints will remain unchanged.
Only composition would need to be verified. Besides, these
operations are useful in practice, so we are bound to implement
them anyway. In the rest of this paper, we shall conflate
descriptions, polynomials, and polynomial functors, silently
switching from one to another as we see fit.

B. An alternative proof

An alternative approach, followed by Morris [6] for ex-
ample, consists in reducing these codes to containers. We
thus obtain the equivalence to polynomial functors, relying
on the fact that containers are an incarnation of polynomial
functors in the internal language [1, §2.18]. This less algebraic
approach is more constructive. However, to be absolutely
formal, it calls for proving some rather painful (extensional)
equalities. If the proofs are laborious, the translation itself
is not devoid of interest. In particular, it gives an intuition
of descriptions in terms of shape, position and indices. This
slightly more abstract understanding of our universe will be
useful in this paper, and is useful in general when reasoning
about datatypes.

We formalise the translation in Fig. 4, mapping descriptions
to containers. The message to take away from that translation
is which code contributes to which part of the container, i.e.
shape, position, and/or index. Crucially, the ’1 and ’Σ codes
contribute only to the shapes. The ’var and ’Π codes, on the



data Orn (D :DescK)[u :I→K] : SET1 where
– Extend with S:

Orn D u 3 insert (S : SET)(D+ :S→OrnD u)
– Refine index:

Orn (’var k) u 3 ’var (i :u−1 k)
– Copy the original:

Orn ’1 u 3 ’1
Orn (’ΠS T ) u 3 ’Π (T+ : (s :S)→Orn (T s) u)
Orn (’ΣS T ) u 3 ’Σ (T+ : (s :S)→Orn (T s) u)

– Delete ’ΣS:
| delete (s :S)(T+ :Orn (T s) u)

(a) Code

J(O :OrnD u)Korn : Desc I
JinsertS D+Korn 7→ ’ΣS λs. JD+ sKorn
J’var (inv i)Korn 7→ ’var i
J’1Korn 7→ ’1
J’ΠT+Korn 7→ ’ΠS λs. JT+ sKorn
J’ΣT+Korn 7→ ’ΣS λs. JT+ sKorn
Jdelete s T+Korn 7→ JT+ sKorn

(b) Interpretation

Fig. 5. Universe of ornaments

other hand, contribute to the positions. Finally, the ’var code
is singly defining the next index. The inverse translation is
otherwise trivial and given here for the sake of completeness:

〈(C :IContI,J)〉−1 : idesc I J
〈S�nP 〉−1 7→ ’ΣS λsh. ’Π (P sh) λpos. ’var (n pos)

C. Discussion

Let us reflect on the results obtained in this section. By
establishing an equivalence between descriptions – a program-
ming artefact – and polynomial functors – a mathematical ob-
ject – we connect software to mathematics, and conversely. On
the one hand, descriptions are suitable for practical purposes:
they are a syntactic object, fairly intensional, and can therefore
be conveniently manipulated by a computer. Polynomial func-
tors, on the other hand, are fit for theoretical work: they admit
a diagrammatic representation and are defined extensionally,
up to natural isomorphism.

Better still, we have introduced containers as a middle
ground between these two presentations. Containers are an
incarnation of polynomials in the internal language. Reasoning
extensionally about them is equivalent to reasoning about
polynomials. Nonetheless, they are also rather effective type
theoretic procedures: we can implement them in Agda.

The categorically minded reader might be tempted to look
for an equivalence of category. However, we have not yet intro-
duced any notion of morphism between descriptions. What we
have established is a lowly “set theoretic” equivalence between
the class of descriptions and the class of polynomial functors.
In terms of equivalence of categories, we have established
that the object part of a functor, yet to be determined, maps
descriptions to polynomial functors in an essentially surjective
way. We shall complete this construction in the following
section. We will set up descriptions in a double category
with ornaments as morphisms. The translation 〈 〉 will then
functorially map it to the double category PolyFuncE .

IV. A CATEGORICAL TREATMENT OF ORNAMENTS

The motivation for ornaments comes from the frequent
need, when using dependent types, to relate datatypes that
share the same structure. In this setting, ornaments play the
role of an organisation principle. Intuitively, an ornament is
the combination of two datatype transformations: we may
extend the constructors, and/or refine the indices. Ornaments

preserve the underlying data-structure by enforcing that an
extension respects the arity of the original constructors. By
extending a datatype, we introduce more information, thus
enriching its logical content. A typical example of such
an ornament is the one taking natural numbers to lists:

data Nat : SET where
Nat 3 0

| suc (n :Nat)

⇓ List-OrnA

data List [A : SET] : SET where
ListA 3 nil

| cons (a :A)(as :ListA)

By refining the indices of a datatype, we make
it logically more discriminating. For example,
we can ornament natural numbers to finite sets:

data Nat : SET where
Nat 3 0

| suc (n :Nat)

⇓ Fin-Orn

data Fin (n :Nat) : SET where
Fin (n= sucn′) 3 f0 (n′ :Nat)

| fsuc (n′ :Nat)(k :Finn′)

A. Ornaments

We recall the definition of the universe of ornaments in
Fig. 5. Besides our ability to copy the original description
(with the codes ’1, ’Σ, and ’Π), we can insert new Σ-types,
delete Σ-types by providing a witness, and use a more precise
index in the ’var codes. While this universe is defined on
DescK, i.e. functors from SET/K to SET, it readily lifts to
functors on slices, i.e. on descriptions idescK L:

orn (D : idescK L) (u :I→K) (v :J→L) : SET1

ornD u v 7→ (j :J)→Orn (D (v j)) u

J(o :ornD u v)Korn : idesc I J
JoKorn 7→ λj. Jo jKorn

Example 7 (Ornamenting natural numbers to list): We ob-
tain list from natural numbers with the following ornament:

List-Orn (A : SET) : orn NatD id id

List-Orn A 7→ λ∗. ’Σ λ

{
injl ∗ 7→ ’1
injr ∗ 7→ insertA λ . ’var ∗

The reader can check that the interpretation (J Korn) of this



ornament followed by the interpretation (J K) of the resulting
description yields the signature functor of list X 7→ 1+A×X .

Example 8 (Ornamenting natural numbers to finite sets):
We obtain finite sets by inserting a number n′ : Nat,
constraining the index n to sucn′, and – in the recursive
case – indexing at n′:

Fin-Orn : orn NatD (λn. ∗) (λn. ∗)
Fin-Orn 7→ λn. insert Nat λn′. insert (n = sucn′) λ .

’Σ λ

{
injl ∗ 7→ ’1
injr ∗ 7→ ’varn′

Again, the reader will verify that this is indeed describing the
signature functor of finite sets.
A detailed account of ornaments from a programmer’s per-
spective will be found elsewhere [12], [13], [18]. For the
purpose of this paper, these definitions are enough.

B. Ornaments are cartesian morphisms

Relating the definition of ornaments with our polynomial
reading of descriptions, we make the following remarks.
Firstly, the ornament code lets us only insert – with the insert
code – or delete – with the delete code – ’Σ codes while
forbidding deletion or insertion of either ’Π or ’var codes. In
terms of container, this translates to: shapes can be extended,
while positions must be isomorphic. Secondly, on the ’var
code, the ornament code lets us pick any index in the inverse
image of u. In terms of container, this corresponds to the
coherence condition: the initial indexing must commute with
applying the ornamented indexing followed by u. Concretely,
for a container S�nP , an ornament can be modelled as an
extension ext , a refined indexing n+ subject to coherence
condition q with respect to the original indexing:ext :S (v j)→ SET

n+ :ext sh→P sh→ I
q :∀e :ext sh. ∀pos :P sh. u (n+ e pos) = n pos

Equivalently, the family of set ext can be understood as
the inverse image of a function σ : S+ j→S (v j). The
function n+ is then the next index function of a container with
shapes S+ and positions P ◦σ. Put otherwise, the morphism
on shapes σ together with the coherence condition q form
a cartesian morphism from S+�n+

P ◦σ to S�nP . To gain
some intuition, the reader can revisit the cartesian morphism of
Example 4 as an ornament of container – by simply inverting
the morphism on shapes – and as an ornament of description
– by relating it with the ornament List-Orn (Example 7).

We shall now formalise this intuition by proving the fol-
lowing isomorphism:

Lemma 3: Ornaments describe cartesian morphisms be-
tween polynomial functors, i.e. we have the isomorphism

ornD u v ∼= PolycE( , D)u,v

In terms of cartesian morphism of polynomials, extending
the shape corresponds to the morphism α. Enforcing that the
positions, i.e. the structure, of the datatype remain the same
corresponds to the pullback along α. The refinement of indices
corresponds to the frame morphisms commuting.

Proof sketch: The proof proceeds in the internal lan-
guage, on the container presentation: this lets us work in
type theory, where is anchored the definition of ornaments.
This is a necessary hardship, for no other decent model of
ornaments is available to us. Since containers and polynomials
are equivalent, the desired equivalence falls out immediately.

The first half of the isomorphism consists in mapping the
ornament o of a description D to a cartesian morphism from
the container described by JoKorn to the container described by
D. In effect, this cartesian morphism describes how the extra
information introduced by the ornament can be stripped off the
ornamented container, thus giving back the original container.
We obtain a mapping

φ : (o :ornD u v)→〈JoKorn〉
u

=⇒c

v
〈D〉

In the other direction, we are given a cartesian morphism from
F to G. As hinted at, an ornament is but the inverse image of
a cartesian morphism. To define the ornament of G, we thus
invert the cartesian morphism, in the intent of describing F .
We obtain a mapping

ψ : (m :F
u

=⇒c

v
G)→orn 〈G〉−1 u v

And we verify that φ and ψ are inverse of each other.

In the previous section, we have established a connection be-
tween descriptions and polynomials. We have now established
a connection between ornaments and cartesian morphisms of
polynomials. It thus makes sense to organise descriptions in a
framed bicategory IDescc:

Definition 7 (Framed bicategory IDescc): The framed bi-
category IDescc is defined by:
• Objects: sets
• Vertical morphisms: functions between sets
• Horizontal morphisms: descriptions, framed by I and J
• Squares: a square from F to G framed by u and v is

an ornament o :ornG u v of G that interprets to (a code
isomorphic to) F

Where, as for PolycE (Example 5), the frame structure consists
in reindexing a description along a pair of functions.

C. A framed biequivalence

We are now ready to establish an equivalence of category
between IDescc and PolyFuncE , thus completing our journey
from the type theoretical definition of ornaments to its model
as cartesian morphisms.

Proposition 2: The double category IDescc is framed
biequivalent to PolyFuncE .

Proof sketch: As for the proof of Lemma 3, we work
in the internal language, from descriptions to containers. To
prove a framed biequivalence, we need a functor on the
base category and another on the total category. Both base
categories are SET: we shall therefore take the identity functor,
hence trivialising the natural isomorphisms on composition,
identity, and frames.



On the total category, we prove the equivalence by exhibit-
ing a full and faithful functor from IDesccI,J to IContI,J
that is essentially surjective on objects. Unsurprisingly, this
functor is defined on objects by 〈 〉, which is indeed essentially
surjective by Proposition 1. The morphism part is defined by
φ, which is full and faithful by Lemma 3.

We may now conflate the notions of ornament, cartesian
morphism, and cartesian natural transformation. In particular,
we shall say that “F ornaments G” when we have a cartesian
morphism from F to G. Let us now raid the polynomial
toolbox for the purpose of programming with ornaments.

V. TAPPING INTO THE CATEGORICAL STRUCTURE

In the previous section, we have characterised the notion
of ornament in terms of cartesian morphism. We now turn
to the original ornamental constructions [12] – such as the
ornamental algebra and the algebraic ornament – and rephrase
them in our categorical framework. Doing so, we extract the
structure governing their type theoretic definition.

Next, we study the categorical structure of cartesian mor-
phisms and uncover novel and interesting ornamental construc-
tions. We shall see how the identity and compositions translate
into ornaments. We shall also be interested in pullbacks in
the category PolyFuncE . Further structures are studied in the
companion technical report.

A. Ornamental algebra

Ornamenting a datatype is an effective recipe to augment
it with new information. We thus expects that, given an
ornamented object, we can forget its extra information and
regain a raw object. This projection is actually a generic
operation, provided by the ornamental algebra. It is a corollary
of the very definition of ornaments as cartesian morphisms.

Corollary 1 (Ornamental algebra): From an ornament o :

F
u

=⇒c

v
G, we obtain the ornamental algebra o-forgetAlg :

F (µG ◦ v)→ µG ◦ u.
Proof: We apply the natural transformation o at µG and

post-compose by the initial algebra in:

o-forgetAlg : F (µG ◦ v)
oµG−→ (G µG) ◦ u in−→ µG ◦ u

Folding the ornamental algebra, we obtain a map from
the ornamented type µF to its unornamented version µG.
In effect, the ornamental algebra describes how to forget the
extra-information introduced by the ornament.

Example 9 (Ornamental algebra of the List ornament):
The cartesian morphism from list to natural numbers
(Example 4) maps the nil constructor to 0, while the cons
constructor is mapped to suc. Post-composing by in , we
obtain a natural number. This is the algebra computing the
length of a list.

B. Algebraic ornaments

The notion of algebraic ornament was initially introduced
by the second author [12]. A similar categorical construction,
defined for any functor, was also presented by Atkey et al.
[19]. In this section, we reconcile these two works and show
that, for a polynomial functor, the refinement functor can itself
be internalised as a polynomial functor.

Definition 8 (Refinement functor [19, §4.3]): Let F an
endofunctor on E/I . Let (X : E/I , α : F X → X) an algebra
over F . The refinement functor is defined by:

Fα , Σα ◦ F̂ : (E/I)/X → (E/I)/X

Where F̂ – the lifting of F [20], [21] – is taken, in an LCCC,
to be the morphism part of the functor F .

The idea, drawn from refinement types [22], is that a
function LαM : µF →X can be thought of as a predicate
over µF . By integrating the algebra α into the signature
F , we obtain a signature Fα indexed by X that describes
the F -objects satisfying, by construction, the predicate LαM.
Categorically, this translates to:

Theorem 1 (Coherence property of algebraic ornament):
The fixpoint of the algebraic ornament of PF by α satisfies the
isomorphism µPF

α ∼= ΣLαM1µF where 1 : E/I → [E/I , E/I ],
the terminal object functor, maps objects X to idX .

Proof: This is an application of Theorem 4.6 [19], spe-
cialised to the codomain fibration (i.e. an LCCC).

Informally, using a set theoretic notation, this isomorphisms
reads as

µFα i x ∼= ΣLαM1µF
∼= {t :µF i | LαM t = x}

That is, the algebraic ornament µFα at index i and x corre-
sponds exactly to the pair of a witness t of µF i and a proof that
this witness satisfies the indexing equation LαMt = x. In effect,
from an algebraic predicate over an inductive type, we have
an effective procedure reifying this predicate as an inductive
family. This theorem also has an interesting computational
interpretation. Crossing the isomorphism from left to right,
we obtain the Recomputation theorem [12, §8]: from any
t+ : µFα i x, we can extract a t : µF i together with a
proof that LαM t equals x. From right to left, we obtain the
remember function [12, §7]: from any t :µF i, we can lift it
to its ornamented form with remember t :µFα i (LαM t).

When F is a polynomial functor, we show that the refine-
ment functor can be internalised and presented as an ornament
of F . In practice, this means that from a description D and an
algebra α, we can compute an ornament code that describes
the functor Dα.

Proposition 3: Let F a polynomial endofunctor on E/I . Let
(X,α) an algebra over PF , i.e. α :PFX → X . The refinement
functor PF α is polynomial and ornaments F .

Proof sketch: We exhibit a cartesian natural transforma-
tion from PF

α to PF . Since PF is polynomial, we get that
PF

α is polynomial [1, Lemma 2.2].



This should not come as a surprise: algebraic ornaments
were originally presented as ornamentations of the initial
description [12, §5].

C. Categorical structures
Identity: A trivial ornamental construction is the identity

ornament. Indeed, for every polynomial, there is a cartesian
morphism from and to itself, introducing no extension and no
refinement. In terms of Orn code, this construction simply
consists in copying the code of the description: this is a
generic program, taking a description as input and returning
the identity ornament.

Vertical composition: The next structure of interest is
composition. Recall that an ornament corresponds to a (carte-
sian) natural transformation. There are therefore two notions of
composition. First, vertical composition lets us collapse chains
of ornaments:

E/I E/J E/I E/J

F

G

H

F

H

⇓ o1

⇓ o2

o2 • o1

⇓
∼=

Example 10 (Vertical composition of ornaments): We have
seen that List ornaments Nat. We also know that Vec orna-
ments List. By vertical composition, we thus obtain that Vec
ornaments Nat.

Horizontal composition: Turning to horizontal composi-
tion, we have the following identity:

E/I E/J E/K

E/I E/K

F1

G1

F2

G2F2 ◦ F1

G2 ◦G1

⇓ o1 ⇓ o2

o2 ◦ o1

⇓

∼=

Example 11 (Horizontal composition of ornaments): Let
us consider the following polynomials:

SquareX 7→ X ×X : SET/1 → SET/1

Height {Xn | n ∈ Nat} 7→ {Xn ×Xn+1 | n ∈ Nat}
+ {Xn ×Xn | n ∈ Nat} : SET/Nat → SET/Nat

It is easy to check that VecCont ornaments ListCont and
Height ornaments Square. By horizontal composition of these
ornaments, we obtain that VecCont ◦ Height – describing a
balanced binary tree – is an ornament of ListCont◦Square –
describing a binary tree. Thus, we obtain that balanced binary
trees ornament binary trees.

The identity, vertical, and horizontal compositions illustrate
the algebraic properties of ornaments. The categorical sim-
plicity of cartesian morphisms gives us a finer understanding
of datatypes and their relation to each other, as illustrated by
Example 10 and Example 11.

D. Pullback of ornaments

So far, we have merely exploited the fact that PolyFuncE is
a framed bicategory. However, it has a much richer structure.
That extra structure can in turn be translated into ornamental
constructions. We shall focus on pullbacks, but we expect other
categorical notions to be of programming interest.

Proposition 4: The category PolyFuncE has all pullbacks.
Proof sketch: Cartesian morphisms arise from the fol-

lowing fibration:

[E/I , E/J ]

E/J

1

Using this fibration and the fact that E/J is pullback complete,
we generate pullbacks in the cartesian subcategory.

Example 12 (Pullback of ornament): Natural numbers can
be ornamented to lists (Example 7) as well as finite sets
(Example 8). Taking the pullback of these two ornaments,
we obtain bounded lists that correspond to lists of bounded
length, with the bound given by an index n : Nat. Put
explicitly, the object thus computed is the following datatype:

data BList [A : SET](n :Nat) : SET where
BListA (n= sucn′) 3 nil (n′ :Nat)

| cons (n′ :Nat)(a :A)(as :BListA n′)

The pullback construction is another algebraic property of
ornaments: given two ornaments, both describing an extension
of the same datatype (e.g. extending natural numbers to lists
and extending natural numbers to finite sets), we can “merge”
them into one having both characteristics (i.e. bounded lists).
In type theory, Ko and Gibbons [18] have experimented with
a similar construction for composing indexing disciplines.

VI. RELATED WORK

Ornaments were initially introduced by the second author
[12] as a programming artefact. They were presented in type
theory, with a strong emphasis on their computational contri-
bution. Ornaments were thus introduced through a universe.
Constructions on ornaments – such as the ornamental algebra
and the algebraic ornament – were introduced as programs in
this type theory, relying crucially on the concreteness of the
universe-based presentation.

While this approach has many pedagogical benefits, it was
also clear that more abstract principles were at play. For
example, in a subsequent paper [13], the authors success-
fully adapted the notion of ornaments to another universe
of inductive families, whilst Ko and Gibbons [18] explore
datatype engineering with ornaments in yet a third. The
present paper gives such an abstract treatment. This focus on
the theory behind ornaments thus complements the original,
computational treatment.

Building upon that original paper, our colleagues Ko and
Gibbons [18] also identify the pullback structure – called



“composition” in their paper – as significant, giving a treat-
ment for a concrete universe of ornaments and compelling ex-
amples of its effectiveness for combining indexing disciplines.
The conceptual simplicity of our approach lets us subsume
their type theoretic construction as a mere pullback.

The notion of algebraic ornament was also treated categor-
ically by Atkey et al. [19]: instead of focusing on a restricted
class of functors, the authors described the refinement of any
functor by any algebra. The constructions are presented in the
generic framework of fibrations. The refinement construction
described in this paper, once specialised to polynomial func-
tors, corresponds exactly to the notion of algebraic ornament.

Hamana and Fiore [23] also give a model of inductive
families in terms of polynomial functors. To do so, they give
a translation of inductive definitions down to polynomials.
By working on the syntactic representation of datatypes, their
semantics is defined by this translation. In our system, we can
actually prove that descriptions – our language of datatypes –
are equivalent to polynomial functors.

Finally, it is an interesting coincidence that cartesian mor-
phisms should play such an important role in structuring
ornaments. Indeed, containers stem from the work on shapely
types [24]. In the shape framework, a few base datatypes
were provided (such as natural numbers) and all the other
datatypes were grown from these basic blocks by a pullback
construction, i.e. an ornament. However, this framework was
simply typed, hence no indexing was at play.

VII. CONCLUSION

Our study of ornaments began with the equivalence between
our universe of descriptions and polynomial functors. This
result lets us step away from type theory, and gives access to
the abstract machinery provided by polynomials. For practical
reasons, the type theoretic definition of our universe is very
likely to change. However, whichever concrete definition we
choose will always be a syntax for polynomial functors. We
thus get access to a stable source of mathematical results that
informs our software constructions.

We then gave a categorical presentation of ornaments. Doing
so, we get to the essence of ornaments: ornamenting a datatype
consists in extending it with new information, and refining its
indices. Formally, this characterisation turns into a presentation
of ornaments as cartesian morphisms of polynomials.

Finally, we reported some initial results based on our ex-
plorations of this categorical structure. We have translated the
type theoretic ornamental toolkit to the categorical framework.
Doing so, we have gained a deeper understanding of the
original definitions. Then, we have expressed the categorical
definition of PolycE in terms of ornaments, discovering new
constructions – identity, vertical, and horizontal composition
– in the process. Also, we have studied the structure of PolycE ,
obtaining the notion of pullback of ornaments.

Future work: We have barely scratched the surface of
PolycE : a lot remain unexplored. Pursuing this exploration
might lead to novel and interesting ornamental constructions.

Also, our definition of ornaments in terms of polynomials
might be limiting. One can wonder if a more abstract criterion
could be found for a larger class of functors. For instance, the
functor 1C : [C,D]→ D is a fibration for D pullback complete
and C equipped with a terminal object 1C. Specialised to the
categories of slices of E , the cartesian morphisms are exactly
our ornaments. What about the general case?
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