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Résumé

We present an elaboration of inductive definitions down to a universe of datatypes. The
universe of datatypes is an internal presentation of strictly positive types within type theory.
By elaborating an inductive definition – a syntactic artefact – to its code – its semantics – we
obtain an internalised account of inductives inside the type theory itself: we claim that reasoning
about inductive definitions could be carried in the type theory, not in the meta-theory as it is
usually the case. Besides, we give a formal specification of that elaboration process. It is therefore
amenable to formal reasoning too. We prove the soundness of our translation and hint at its
completeness with respect to Coq’s Inductive definitions. The practical benefits of this approach
are numerous. For the type theorist, this is a small step toward bootstrapping, i.e. implementing
the inductive fragment in the type theory itself. For the programmer, this means better support
for generic programming: we shall present a lightweight deriving mechanism, entirely definable
by the programmer and therefore not requiring any extension to the type theory.

In a dependent type theory, inductive types come in various shapes and forms. Unsurprisingly, we
can define data-types à la ML, following the sum-of-product recipe: we offer a choice of constructors
and, for each constructor, comes a product of arguments. An example is the vintage List datatype:

data List [A :Set] :Set where
ListA 3 nil

| cons (a :A)(as :ListA)

For the working semanticist, this brings fond memory of a golden era: this syntax has a trivial
categorical interpretation in term of signature functor, here LAX = 1 + A × X. Without a second
thought, we can brush away the syntax, mapping the syntactic representations of sum and product
to their categorical counterpart. Handling parameters comes at a minor complexity cost: we merely
parameterise the functor itself, for instance with A here.

We ought to make sure that our language of data-type is correct, let alone semantically meaningful.
Indeed, if we were to accept the following definition

data Bad [A :Set] :Set where
BadA 3 ex (f :Bad A→A)

we would make many formal developments a lot easier to prove! To ban these bogus definitions,
theorem provers such as Agda [Norell, 2007] or Coq [The Coq Development Team] rely on a positivity
checker to ensure that all recursive arguments are in a strictly positive position. The positivity checker
is therefore part of the trusted computing base of the theorem prover. Besides, by working on the
syntactic representation of datatypes, it is a non negligible piece of software that is a common source
of frustration: it either stubbornly prevents perfectly valid definitions – as it sometimes is the case in
Coq – or happily accepts obnoxious definitions – as Agda users discover every so often.

While reasoning about datatypes is at a functor away, we seem stuck with these clumsy syntactic
presentations: quoting Harper and Stone [2000], “the treatment of datatypes is technically complex,
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but conceptually straightforward”. Following Stone and Harper, most authors [Asperti et al., 2012,
Luo, 1994, McBride et al., 2004] have no choice but to throw in the towel and proceed over a“. . . ”-filled
skeleton of inductive definition. Proving any property on such definition is a perilous exercise for the
author, and a hardship on the reader.

We attribute these difficulties to the formal gap between the syntax of inductive definitions and
their semantics. While inductive types have an interpretation in term of initial algebra of strictly
positive functors, we are unable to leverage this knowledge. Being stuck with a syntactic artefact, the
ghost of the de Bruijn criterion haunts our type theories: inductive definitions elude the type checker
and must be enforced by a not-so-small positivity checker. Besides, since the syntax of inductive
definitions is hardly amenable to formal reasoning, we are left wondering if its intended semantics is
indeed respected. How many inductive skeletons are hidden in the dark closet of your theorem prover?

An alternative to a purely syntactic approach is to reflect inductive types inside the type theory
itself. Following Benke et al. [2003], we extend a Martin-Löf type theory with a universe of inductive
types, all that for a minor complexity cost [Chapman et al., 2010]. From within the type theory, we
are then able to create and manipulate datatypes but also compute over them. However, from a user
perspective, these codes are a no-go: manually coding datatypes, for instance, is too cumbersome.
Rather than writing low-level codes, we would like to write a honest-to-goodness inductive definition
and get the computer to automatically elaborate it to a code in the universe. In this paper, we therefore
show how we can grow a programming language on top of a type theory with a universe of datatypes.

In this paper, we elaborate upon (pun intended) the syntax of datatypes introduced in an earlier
work [Dagand and McBride, 2012]. While this syntax had been informally motivated, this paper is
a first step toward a formal specification of its elaboration down to our universe of datatypes. Our
contributions are the following:

• In Section 2, we give a crash course in elaboration for dependent types. We will present a
bidirectional type checker [Pierce and Turner, 1998] for our type theory. We then extend it to
make programming a less cryptic experience. To that purpose, we shall use types as presentations
of more high-level concepts, such as the notions of finite set or of datatype constructor. While
this section does not contain any new result per se, we aim at introducing the reader to a
coherent collection of techniques that, put together, form a general framework for type-directed
elaboration ;

• In Section 3, we specify the elaboration of inductive types down to a simple universe of inductive
types. By lack of space, we had to leave out elaboration of inductive families. While the system
we present in this paper is restricted to strictly positive types, we take advantage of its simplicity
to develop our intuition. In this section, we aim at presenting a general methodology for growing
a practical programming language out of a core calculus. The choice of a particular universe
of datatypes is in large part irrelevant. In particular, the same ideas are at play in the case of
inductive families1 ;

• In Section 4, we consider two potential extensions of the elaboration machinery. For the proof-
assistant implementer, we show how meta-theoretical results on inductives, such as the work
of McBride et al. [2004], can be internalised and formally presented in the type theory. For the
programmer, we show how a generic deriving mechanism à la Haskell can be implemented from
within the type theory. This section aims both at demonstrating our universe-based approach,
but also at motivating extensions of the basic elaboration machinery.

1Inductive families are treated in a companion technical report, available on Dagand’s website.
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